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Abstract 
 
In this paper, we are concerned with Reflected Geometric Brownian Motion (RGBM) with two barriers. And 
the stationary distribution of RGBM is derived by Markovian infinitesimal Generator method. Consequently 
the first passage time of RGBM is also discussed. 
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1. Introduction 

We consider a finite-capacity fluid queue, the level of 
which at time t  is denoted by tZ . And tZ  satisfies 

the following differential equation: 

1 2

0

( )

[ , ]
t t t t t tdZ Z dt Z dB dL dU

Z x a d

      
  

  (1) 

This model shows fluid arrives into this queue at rate 

1 tZ  and leaves the queue at rate 2 tZ . This fluid level 

can be also varied by a local variance function tZ  and 

a standard Brownian motion tB . tL and tU  are non- 

decreasing processes, interfering only when tZ  hits a or 

d and make tZ  vary between a and d.  

In particular, when 0a   and d   , tL  and 

tU  disappear. Then the process tZ  becomes Geomet-

ric Brownian Motion. So we call tZ  determined by (1) 

Reflected Geometric Brownian Motion(RGBM). 
Speak precisely, we are concerned with RGBM 

t{ , 0}Z Z t   with two barriers a and d (d > a > 0), 

which is defined by 

0 [ , ]
t t t t t tdZ Z dt Z dB dL dU

Z x a d

    
  

    (2) 

where t{ , 0}B B t   is a standard Brownian Motion, 

0,   and   are constants and satisfy 
2

2

  . 

Moreover, the processes L and U are uniquely deter-
mined by the following property [1,2]: 

1) Both L and U are continuous nondecreasing proc-
esses with 0 0 0L U  ; 

2) L and U increase only when tZ a  and tZ d ; 

respectively, i.e., 

t t

{ } { }0 0
I , I , 0.

s sZ =a s t Z =d s tdL L dU = U for t    

According to the theory of stochastic differential equa-
tion, (2) is equivalent to 

t t

s s0 0
xt s t tZ Z ds Z dB L U           (3) 

Such a process is a regenerative Markov process with 
state space [a,d] compact. Then it has a unique stationary 
distribution [1,3,4]. In the coming section, our objective 
is to derive the stationary distribution and give an ex-
pression for the Laplace Transform of the first passage 
time of RGBM t{ , 0}Z Z t   by the method in [5-7]. 

2. Main Results on RGBM 

2.1. On the Stationary Distribution of RGBM 

In this section, we firstly give a Lemma on the stationary 
distribution of the reflected process t{ }Z Z  with 

two-sided barriers and omit its proof. 
Lemma 2.1 Let Z be the RGBM defined by (2) (or(3)). 

Then, as a Markov process, the stationary distribution 
( )   of the process must satisfy the following equation 
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2 2

( ) ( ) { "( ) '( ) '( ) ( )
2

'( ) ( )} ( ) 0

d d

a a

x
Af x dx f x xf x f a x

f d x dx

  

 

  

 

   (4) 

where ( ) lim , ( ) limx t x t

t t

dE L dE U
x x

dt dt
 

 
   and 

2 ([ , ])bf C a d  which denotes the space of all bounded 

continuous functions having twicely continuous deriva-
tives on [a,d]. 

Proof. See similar argument in [1]. 
Suppose ( ) ( )dx p x dx   be a probability distribu-

tion on [a,d] and satisfies that 

( ) ( ) 0
d

a
Af x p x dx              (5) 

for 2 ([ , ])bf C a d  . 

Define 
2 2

1 ( ) "( ) '( ),
2

x
A f x f x xf x

   then by (4) 

and (5) it is equivalent to the following equation (Note 

that 
d

a
( ) 1p x dx  ) 

1 ( ) ( ) '( ) '( ) 0
d

a
A f x p x dx f a f d       (6) 

where 
d

a
( ) ( )x p x dx    and 

d

a
( ) ( ) .x p x dx    

On one hand,   and   can be computed by the 

same method in [5]. 

Proposition 2.1 Choose 
2

2

1f x





  and 1
1f x , 

then they respectively satisfy the following equations, 

1 1

1 2

( ) 0, [ , ]

( ) 1, [ , ]

A f x x a d

A f x x a d

 
 

 

Then we have 

2 2

2 2 2 2

2 2

2 2

2 2 2 2
1 1 1 1

- -
2 2 = d ,  = a .

d a d a

 

 
   

   

  
 

   
 

 

Proof. A straightforward calculation. 
On the other hand, since ( )p x  satisfies that for all 

2 ([ , ])bf C a d , 

2 2

[ "( ) '( )] ( ) '( ) '( ) 0
2

d

a

x
f x xf x p x dx f a f d

        

By twice integral changes, the above equation be-
comes that 

2 2
2 2

2 2

[ "( ) (2 ) '( ) ( ) ( )]
2

( ) [ '( ) ( ) ( ) ( )]
2

d

a

d
a

x
p x xp x p x

x
f x dx f x p x xp x f x

    

 

   

 


 

2 2
2[( ( ) '( )) ( )]

2
'( ) '( ) 0

d
a

x
xp x p x f x

f a f d



 

 

  
 

i.e. 

2 2
2 2

2 2
2

2 2
2

2 2

2 2

[ "( ) (2 ) '( ) ( ) ( )]
2

( ) ( )[ ( ) ( ) '( )]
2

( )[ ( ) ( ) '( )]
2

'( )[ ( ) ]
2

'( )[ ( ) ] 0
2

d

a

x
p x xp x p x

d
f x dx f d dp d dp d p d

a
f a ap a ap a p a

d
f d p d

a
f a p a

    

 

 

 

 

   

  

  

 

  



 (7) 

Assume that 2 ([ , ])bf C a d , satisfying that ( ) 0f d  , 

'( ) 0f d  , and ( )P x  satisfies 
2 2

( )
2

a
p a

  and 

2 2
2( ) ( ) '( ) 0

2

a
ap a ap a p a

    , then it follows from 

(7) that 

2 2
2 2[ "( ) (2 ) '( ) ( ) ( )]

2
( ) 0

d

a

x
p x xp x p x

f x dx

       



   (8) 

Summarizing the discussion, we get the following 
theorem. 

Theorem 2.1 
2

2 2

2
22

2 2
1 1

2
1

( )p x x

d a




 

 


 

 






 is the solu-

tion of 

2 2
2 2

2 2

"( ) (2 ) '( ) ( ) ( ) 0
2

( ) (9)
2

( ) 1
d

a

x
p x xp x p x

a
p a

p x dx

    

 


    


 

 




 

Then for all 2 ([ , ])bf C a d  satisfying ( ) 0f d  , 

'( ) 0f d  , (5) holds, i.e. ( ) ( ) 0
d

a
Af x p x dx  . 

Furthermore (5) holds for all 2 ([ , ])bf C a d . This 

implies that ( ) ( )dx p x dx   is a stationary distribution 

of the corresponding Markov process t{ , 0}Z Z t  . 

Remark 2.1 This theorem is a standard application of 
renewal theorems, so we sketch its proof. 
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Thus 2

2 2

2
2 2

2 2
1 1

2
1

( ) , [ , ]p x x x a d

d a




 
 


 

 


 



 is the den-

sity of the stationary distribution of RGBM. Finally we 
will give an expression for the Laplace transform of the 
first passage time of RGBM. 

2.2. On the First Passage Time of RGBM 

In this section, we consider Equation (2). Let [ , ]y a d , 

define the first passage time by 
( ) : inf{ 0 : },tT y t Z y    with the usual convention 

inf    . On the other hand, suppose 0  , for 
2 ([ , ])bf C a d , define a operator  

2 2
( ) ( ) "( ) '( ) ( ), [ , ]

2

x
A f x f x xf x f x x a d        

Finally we are going to give the expression of the 
Laplace transform of ( )T y . 

Theorem 2.2. For [ , ]x a d  and 0  , then 

( ) 1

1

( )
( ) ,

( )
T y

x

f x
E e x y d

f y





          (10) 

( ) 2

2

( )
( ) ,

( )
T y

x

f x
E e a y x

f y





          (11) 

where 

2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2

2 2

2 ( 2 ) 8 2 ( 2 ) 8

2 2
1 1

2 ( 2 ) 8 2 ( 2 ) 8

2 2
2 2

( ) ,

( ) ,

f x x c x

f x x c x

         
  

         
  

       

       

 

 

 

and 

2 2 22 ( 2 ) 8

2 2 22 ( 2 ) 8

2 2 2 2 2

1 2

2 2 2 2 2

2 2

( ( 2 ) 8 ( 2 ))
,

8

( ( 2 ) 8 ( 2 ))
.

8

C a

C d

  

  

    


    


 

 

   


   


 

Proof. Let ( , ) ( )th t x e f x for 2 ([ , ])bf C a d . Then 

applying 
^

It o  formula for ( , )h t x , we have 

0 0 0
( , ) (0, ) ( , ) ( , )

t t

t s s s
s

h h
h t Z h Z s Z ds s Z dZ

s Z

 
  

    

2

20

1
( , ) ,

2

t

s s
s

h
s Z d Z Z

Z


  

  

2 2

0
"( ) '( ) ( )

2

t s s
s s s s

Ze dsf Z Z f Z f Z
 

         

0 0 0

0

( )
00 0

0 0

( ) '( ) '( )

'( )

( ) ( ) '( )

'( ) '( )

t ts s
s s s s

t s
s s s

t ts s
s s

t ts s
s s s s

f Z e f Z dL e f Z dU

e Z f Z dB

e A f Z ds f Z f a e dL

f d e dU e Z f Z dB

 



  

 





 



 

 

  



  

 

 

 

 

  

(12) 
The last equation holds, for tL  and tU  increase 

only when tZ a  and tZ d . Let T   be a stop-

ping time and [ , ]x a d . It follows from martingale 

optional theorem, that 

0

( )

00

( )

( ) '( )

'( ) ( )

T
x T

T s
x s

TT ss
x x ss

E e f Z

f x f a E e dL

f d E E e A f Z dse dU





 







  
     

         





 (13) 

In particular, take ( )T T y  for y [a,d] , and note 

that 
( )

0
0, ,

T y s
se dU for x y d     

and 
( )

0
0, ,

T y s
se dL for a y x     

Then 
( )

( )

( ) ( )

0

( )

0

( ( ))

( ) ( ( ) )

'( ) ( ), ,

T y
x T y

T y s
x s

T y s
x s

E e f Z

f x E e A f Z ds

f a E e dL for x y d



 









 

  




   (14) 

and 
( )

( )

( ) ( )

0

( )

0

( ( ))

( ) ( ( ) )

'( ) ( ), ,

T y
x T y

T y s
x s

T y s
x s

E e f Z

f x E e A f Z ds

f d E e dU for a y x



 









 

  




  (15) 

Replace f  by 1f
  in (14) and by 2f

  in (15), we 

immediately get (10) and (11) by ( )T yZ y , 

1 '( ) 0f a   and 2 '( ) 0f d  . Thus the Proof of the 

theorem is completed. 

3. Conclusions 

This paper studies Reflected Geometric Brownian Mo-
tion (RGBM) with two barriers. Both the stationary dis-
tribution and Laplace transform of the first passage time 
of RGBM are derived. The studies for RGBM have not 
only practical significance, but also give an important 
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result in theory of stochastic process. 
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