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Abstract 
 
This paper describes a new algorithm for the 2-D converted-measurement Kalman filter (CMKF) which es-
timates a target’s Cartesian state given polar position measurements. At each processing index, the new algo-
rithm chooses the more accurate of (1) the sensor’s polar position measurement and (2) the CMKF’s Carte-
sian position prediction. The new algorithm then computes the raw converted measurement’s error bias and 
the corresponding debiased converted measurement’s error covariance conditioned on the chosen position 
estimate. The paper derives explicit expressions for the polar-measurement-conditioned bias and covariance 
and shows the resulting polar-measurement-conditioned CMKF’s mathematical equivalence with the 2-D 
modified unbiased CMKF (MUCMKF). The paper also describes a method, based upon the unscented trans-
formation, for approximating the raw converted measurement’s error bias and the debiased converted meas-
urement’s error covariance conditioned on the CMKF’s Cartesian position prediction. Simulation results 
demonstrate the new CMKF’s improved tracking performance and statistical credibility as compared to those 
of the 2-D MUCMKF. 
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1. Introduction 
 

The converted-measurement Kalman filter (CMKF) is a 
popular solution to the nonlinear-estimation problem of 
tracking a target, whose 2-D kinematics are described in 
Cartesian coordinates, given polar position measurements 
[1-3]. The 2-D CMKF algorithm converts the polar posi-
tion measurement to Cartesian coordinates using the fa-
miliar nonlinear mapping between the two coordinate 
systems, yielding a measurement model that is a linear 
function of the target’s Cartesian state. The CMKF then 
performs target tracking entirely in Cartesian coordinates 
using the classical Kalman-filtering algorithm.  

As shown in [1], the nonlinear transformation of an 
unbiased polar measurement to a raw Cartesian converted 
measurement creates a bias in the raw converted meas-
urement’s error. Debiasing the raw converted measure-
ment with this bias produces an unbiased converted 
measurement for the classical Kalman-filter tracking 
algorithm. After the raw converted measurement is debi-
ased, the CMKF algorithm requires only the accurate 
determination of the debiased converted measurement’s 
error covariance to employ the classical Kalman-filter 

tracking algorithm to maximum effect. 
Lerro and Bar-Shalom’s original work in this area [1] 

derived explicit expressions for the raw converted meas-
urement’s true error bias and the debiased converted 
measurement’s true error covariance. Debiasing the raw 
converted measurement with the raw converted meas-
urement’s true bias and employing the debiased converted 
measurement’s true error covariance in the classical 
Kalman-filter tracking algorithm comprise the ideal de-
biased 2-D CMKF algorithm. However, Lerro and Bar- 
Shalom showed the true bias and covariance to be func-
tions of the target’s true position coordinates which are 
clearly unavailable in practice. In response to this obvious 
problem, Lerro and Bar-Shalom conditioned the mean of 
the raw converted measurement’s true error bias and the 
mean of the debiased converted measurement’s true error 
covariance on the readily available polar measurement to 
obtain practical bias and covariance approximations. 

The unbiased CMKF (UCMKF) subsequently devel-
oped by L. B. Mo, X. Q. Song, et al. [2] utilized a practical 
measurement conversion that produced an unbiased 
converted measurement by multiplying the raw converted 
measurement by a vector of bias-elimination factors. 
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However, L. B. Mo, X. Q. Song, et al. showed the unbiased 
converted measurement’s true error covariance to be a 
function of the target’s true position. The UCMKF’s 
corresponding practical approximation to the unbiased 
converted measurement’s true error covariance resulted 
from conditioning the covariance of the unbiased con-
verted measurement (rather than the unbiased converted 
measurement’s error) on the polar measurement.  

Duan, Han, and Li [3] later showed the approach of [2] 
to have a mathematical incompatibility between the 
derivations of the UCMKF’s unbiased converted meas-
urement and approximate converted-measurement error 
covariance. Duan, Han, and Li’s corrected algorithm, now 
known as the modified unbiased CMKF (MUCMKF), 
debiased the UCMKF’s already unbiased converted 
measurement with the polar-measurement-conditioned 
unbiased converted measurement’s error bias. Addition-
ally, Duan, Han, and Li derived the corresponding con-
verted-measurement-error covariance conditioned strictly 
on the polar measurement to complete the MUCMKF’s 
specifications. 

This paper describes an innovative yet practical CMKF 
algorithm which more accurately emulates Lerro and 
Bar-Shalom’s ideal debiased 2-D CMKF. Specifically, 
the new CMKF algorithm uses a three-stage process to 
compute the essential converted-measurement-error sta-
tistics conditioned on the more accurate of the two prac-
tically available target-position estimates rather than ex-
clusively on the polar position measurement. First, at each 
processing index, the new CMKF algorithm determines 
the more accurate of (1) the sensor’s polar position meas-
urement and (2) the CMKF’s Cartesian position predic-
tion. Second, the new CMKF algorithm calculates the raw 
converted measurement’s error bias conditioned on the 
chosen target-position estimate; the new CMKF algorithm 
then debiases the raw converted measurement with this 
calculated bias. Third, the new CMKF algorithm calcu-
lates the debiased converted measurement’s error co-
variance conditioned on the chosen target-position esti-
mate. The paper shows the CMKF algorithm which re-
sults from conditioning the raw converted measurement’s 
error bias and the corresponding debiased converted 
measurement’s error covariance exclusively on the polar 
measurement to be mathematically equivalent to the 2-D 
MUCMKF. More importantly, the paper proposes a novel 
method, based on the unscented transformation (UT) [4], 
for closely approximating the raw converted measure-
ment’s error bias and the corresponding debiased con-
verted measurement’s error covariance conditioned on the 
CMKF’s Cartesian position prediction since this tar-
get-position estimate is often more accurate than the 
sensor’s polar position measurement [1]. 

Section 2 reviews the technical background germane 
to polar-to-Cartesian measurement conversion and its 

application to the CMKF. Section 3 provides a detailed 
mathematical description of the new CMKF algorithm. 
Section 4 presents simulation results which demonstrate 
the new CMKF algorithm’s improved tracking perform-
ance and statistical credibility over those of the 2-D 
MUCMKF. Section 4 also compares the computational 
requirements of the new CMKF algorithm with those of 
the 2-D MUCMKF algorithm. Section 5 summarizes the 
paper’s significant contributions and the new CMKF 
algorithm’s advantages and disadvantages. 
 
2. Technical Background 
 
A sensor measures a target’s position and produces the 
polar position measurement 
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the error  m mx y    of the raw converted measurement 
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Lerro and Bar-Shalom [1] derived the raw converted 
measurement’s true error bias 

    , ,t m mr E x y r μ          (6) 

with which (4) can be debiased to produce an unbiased 
converted measurement. They also derived the corre-
sponding debiased converted measurement’s true error 
covariance 
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which is necessary for the classical Kalman-filter algo-
rithm. However, since (6) and (7) depend upon the tar-
get’s true range and bearing, realizable CMKFs cannot 
use these expressions. The next section presents a new 
approach to practically approximating (6) and (7). 
 
3. The New CMKF Algorithm 
 
This section develops a new 2-D CMKF algorithm in 
three parts on the assumption that better CMKF perform-
ance results from conditioning the raw converted meas-
urement’s error bias and the debiased converted meas-
urement’s error covariance on the most accurate available 
target-position estimate. The first part derives explicit ex- 
pressions for the raw converted measurement’s error bias 
and the debiased converted measurement’s error covari-
ance, when those quantities are conditioned on the polar 
measurement. This part also shows the corresponding 
polar-measurement-conditioned CMKF to be mathema- 
tically equivalent to the 2-D MUCMKF. The second part 
presents a technique, based on applications of the UT, for 
closely approximating the raw converted measurement’s 
error bias and the debiased converted measurement’s 
error covariance conditioned on the CMKF’s Cartesian 
position prediction. The third part describes a test which, 
for each processing index, chooses between the sensor’s 
polar position measurement and the CMKF’s Cartesian 
position prediction for the target-position estimate on 
which the raw converted measurement’s error bias and 
the debiased converted measurement’s error covariance 
should be conditioned. 
 
3.1. Converted-Measurement-Error Statistics  

Conditioned on the Sensor’s Polar Position  
Measurement 

 
The polar-measurement-conditioned bias of the raw con- 
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Using basic trigonometric identities and (5) of [1], we 
simplify (9) and (10) to 
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respectively. The corresponding polar-measurement- 
conditioned covariance of the debiased converted meas-
urement’s error is 
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with elements 
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Using basic trigonometric identities and (5) of [1], we 
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Substituting (20) and (21) into (17)-(19) produces pre-
cisely the elements of Rp, the 2-D MUCMKF’s con-
verted-measurement-error covariance [3]. Furthermore, 
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ments are specified as [3] 
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and the polar-measurement-conditioned debiased con-

verted-measurement elements of the new CMKF algo-
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Given a particular target-kinematics model and a par-
ticular filter-initialization method, a CMKF algorithm’s 
full description requires only (1) the final form of the 
converted measurement (whether raw, debiased, or un-
biased) and (2) the employed error covariance of the 
converted measurement’s final form. Thus, the CMKF 
algorithm which results from conditioning the raw con-
verted measurement’s error bias and the debiased con-
verted measurement’s error covariance exclusively on 
the polar measurement is mathematically equivalent to 
the 2-D MUCMKF since both algorithms use exactly the 
same final converted-measurement form and exactly the 
same converted-measurement error covariance. 
 
3.2. Converted-Measurement-Error Statistics  

Conditioned on the CMKF’s Cartesian  
Position Prediction 

 
This section describes a technique for conditioning the 
raw converted measurement’s error bias and the debiased 
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where p px y      is a zero-mean error with covariance 

covp p px y      
C             (27) 

We use the covariance of the position elements of the 
CMKF’s Cartesian state prediction as a practically 
available approximation to (27). Mathematically, at proc-
essing index k , 
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 
  
 

H            (29) 

is the 2-D CMKF’s measurement matrix [1] and 

1k k   P  is the CMKF’s predicted state-estimate-error 

covariance. 
The target’s true polar position is related to its true 

Cartesian position with 

 

2 2

1tan /

r x y

y x 

   
   

    
          (30) 

Substituting (30) into (1) yields 

 

2 2

1
.

tan /
m m

m m

r rx y

y x 

         
     


     (31) 

Solving (26) for [x y]’ and substituting the result into 
(30) and (31) yield 

   
   

2 2

1tan

p p p p

p p p p

x x y yr

y y x x 

                

 

 
    (32) 

and 

   
   

2 2

1
.

tan

p p p pm m

m m
p p p p

x x y yr r

y y x x 

                    

  


 
 (33) 

Using the elements of (32) and (33), the raw converted 
measurement’s error bias, when conditioned on the 
CMKF’s Cartesian position prediction, is 

( )
( )

( )

Cp
mxCp

pCp
my

x
E

y




          
       

μ p



       (34) 

with elements 

 

 

   

   

( )

2 2 1

2 2 1

cos tan

cos tan

Cp
x m p

p p
p p p p m m

p p

p p
p p p p p

p p

E x

y y
E x x y y r

x x

y y
x x y y

x x









                  
                

p

p



   



 



               (35) 

and 

 

   

   

( )

2 2 1

2 2 1

sin tan

sin tan .

Cp
y m p

p p
p p p p m m

p p

p p
p p p p p

p p

E y

y y
E x x y y r

x x

y y
x x y y

x x









                  
                

p

p



   



 



             (36) 

 
The corresponding debiased converted measurement’s 
error covariance, when conditioned on the CMKF’s  

Cartesian position prediction, is 

( ) ( )
( ) ( )

( ) ( )

( )

cov

cov cov

Cp Cp
mxx xyCp Cp

pCp Cp
myx yy

m mCp
p p

m m

xR R x

yR R y

x x

y y

                
        

                 
         

R μ p

μ p p
 
 

               (37) 

with elements 
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 

   

     

( )

2 2 1

2

22 2 1 ( )

var

cos tan

cos tan ,

Cp
xx m p

p p
p p p p m m

p p

p p Cp
p p p p p x

p p

R x

y y
E x x y y r

x x

y y
x x y y

x x











                  
                 

p

p



   



 



              (38) 

 

   

     

( )

2 2 1

2

22 2 1 ( )

var

sin tan

sin tan ,

Cp
yy m p

p p
p p p p m m

p p

p p Cp
p p p p p y

p p

R y

y y
E x x y y r

x x

y y
x x y y

x x











                   
                 

p

p



   



 



             (39) 

and 

 

   

   

   

( ) ( )

2 2 1

2 2 1 ( )

2 2

cov ,

cos tan

cos tan

sin tan

Cp Cp
xy yx m m p

p p
p p p p m m

p p

p p Cp
p p p p x

p p

p p p p m

R R x y

y y
E x x y y r

x x

y y
x x y y

x x

x x y y r











 

                  
  

             

       

p 

   



 



  

   

1

2 2 1 ( )sin tan .

p p
m

p p

p p Cp
p p p p y p

p p

y y

x x

y y
x x y y

x x





  
      

                   
p

 



 



             (40) 

 
Since the Cartesian position prediction’s error has an 
unknown joint density and a generally non-diagonal co-
variance, we cannot obtain simple, closed-form solutions 
for (35), (36), and (38)-(40). Thus, some non-analytical 
means of computing or at least approximating (35), (36), 
and (38)–(40) is required. Since these expressions all 
represent expectations of nonlinear transformations of 
the random vector 

p p m mx y r     w              (41) 

we propose applying the UT to the problem of approxi-
mating the output-distribution means of the nonlinear 
functions within the expectation operators of (35), (36) 
and (38)-(40) given the mean and covariance of w. 

Whereas the polar measurement’s noise m mr    
  is 

known to be jointly Gaussian, the Cartesian position pre-

diction’s error p px y      has a joint density that is  

both unknown and likely unknowable. We therefore as-
sume the joint density of (41) to be approximately Gaus-

sian with mean  0 0 0 0   and covariance 

  2 2

2 2

HP [ / 1] H '
cov

m

k k




 
  
  

0
w

0 R
          (42) 

since, relative to the true target position, the polar meas-
urement’s noise is uncorrelated with the Cartesian pre-
diction’s error. Since w , the vector at the input of the 
nonlinear transformations within the expectation opera-
tors of (35),(36) and (38)-(40), has dimension four, we 
generate the nine sigma points and the nine weights 
given by (3) of [4] with a choice of 1k    to satisfy 
the given heuristic. Using the generated sigma points and 
weights, we then calculate with (4) of [4] the 
UT-approximated output-distribution means of the 
nonlinear functions 
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     

   

( )

2 2 1

2 2 1

cos tan

cos tan

Cp
x

p p
p p p p m m

p p

p p
p p p p

p p

y y
f x x y y r

x x

y y
x x y y

x x






                  
  

          

w
   



 



            (43) 

and 

     

   

( )

2 2 1

2 2 1

sin tan

sin tan

Cp
y

p p
p p p p m m

p p

p p
p p p p

p p

y y
f x x y y r

x x

y y
x x y y

x x






                  
  

          

w
   



 



             (44) 

 
as approximations to ( )Cp

x  and ( )Cp
y , respectively. 

Using the same nine sigma points generated to approxim- 
 

ate ( )Cp
x  and ( )Cp

y , we calculate the UT-approximated 

output-distribution means of the nonlinear functions. 

 

     

     

( )

2 2 1

2

22 2 1 ( )

cos tan

cos tan ,

Cp
xx

p p
p p p p m mR

p p

p p Cp
p p p p x

p p

y y
f x x y y r

x x

y y
x x y y

x x









                  

              

w
   



 



             (45) 

     

     

( )

2 2 1

2

22 2 1 ( )

sin tan

sin tan ,

Cp
yy

p p
p p p p m mR

p p

p p Cp
p p p p y

p p

y y
f x x y y r

x x

y y
x x y y

x x









                  

              

w
   



 



             (46) 

and 

   

   

   

   

( ) ( )

2 2 1

2 2 1 ( )

2 2 1

cos tan

cos tan

sin tan

Cp Cp
xy yxR R

p p
p p p p m m

p p

p p Cp
p p p p x

p p

p p
p p p p m

p

f f

y y
x x y y r

x x

y y
x x y y

x x

y y
x x y y r

x x













                  
                

        

w w

   



 




  



   2 2 1 ( )sin tan

m
p

p p Cp
p p p p y

p p

y y
x x y y

x x





  
      
                




 



                 (47) 

 

as approximations to ( )Cp
xxR , ( )Cp

yyR , and ( ) ( )Cp Cp
xy yxR R , 

respectively. Note that the UT-calculated out-
put-distribution mean values of (43) and (44) are respec-

tively substituted for ( )Cp
x  and ( )Cp

y  in (45)-(47). 

3.3. Choosing the Target-Position Estimate for  
Bias and Covariance Conditioning 

 
This section describes a decision metric for choosing 
between the sensor’s polar position measurement and the 
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CMKF’s Cartesian position prediction for the target- 
position estimate on which to condition the raw con-
verted measurement’s error bias and the debiased con-
verted measurement’s error covariance. Lerro and 
Bar-Shalom’s test (Equation (35) of [1]) represents a 
simple and practical method for determining the less 
uncertain of these two target-position estimates by com-
paring the sizes, as measured by the matrix determinant, 
of the error covariances in Cartesian coordinates. We 
propose a test based on a conceptually identical approach. 
Specifically, if the determinant of pC  equals or exceeds 

the determinant of ( )pmR , the test judges the sensor’s 
polar measurement as the less uncertain target-position 
estimate, and the new technique computes the raw con-
verted measurement’s error bias and the debiased con-
verted measurement’s error covariance conditioned on 
the sensor’s polar measurement. Otherwise, the test 
judges the CMKF’s Cartesian position prediction as the 
less uncertain target-position estimate, and the new tech-
nique (approximately) computes the raw converted 
measurement’s error bias and the debiased converted 
measurement’s error covariance conditioned on the 
CMKF’s Cartesian position prediction. Mathematically, 
the test chooses the target-position estimate used for bias 
and covariance conditioning according to 

( )

( )

,
Target-position estimate  .

,

pm
p

pm
p p

  


z C R

p C R
  (48) 

4. Simulation Results 
 
To test the performance of the new CMKF against the 2-D 
MUCMKF, we replicate the two test cases used by [3] 
with 10000 Monte-Carlo runs rather than 500. Specifi-
cally, for both cases, the sensor takes 200 range and 
bearing measurements with a constant measurement in-
terval of 1 s. The sensor’s range-error standard deviation 
is 100 m, and the bearing-error standard deviation is 2.5°. 
Two independent draws from a Gaussian distribution with 
mean 10 km and standard deviation 100 m determine the 
target’s initial x and y position components. Additionally, 
two independent draws from a Gaussian distribution with 
mean 20 m/s and standard deviation 10 m/s determine the 
target’s initial x and y velocity components. The target’s 
two acceleration-disturbance components are independent, 
white, zero-mean, Gaussian noises with standard devia-
tion 0.01 m/s2. Case 1 uses the nearly-constant-velocity 
target-kinematics model (Equation (2-297) of [5]) for 
both Cartesian dimensions. Case 2 uses the 2-D nearly- 
coordinated-turn target-kinematics model of [6] with a 
known turn rate of 0.1 rad/s in the x-y plane. 

Figure 1 shows overlays of the RMS position-tracking 
errors for the target of Case 1. Clearly the new CMKF 
provides superior tracking performance (as indicated by  

 

Figure 1. RMS position-tracking errors (Case 1). 
 

 

Figure 2. ANEES (Case 1). 
 

its lower RMS position-tracking error) when compared 
to the 2-D MUCMKF for the first considered test case. 

Figure 2 shows overlays of the average normalized 
estimation error squared (ANEES) curves for the target 
of Case 1. Clearly the new CMKF provides superior 
credibility (as indicated by the nearer proximity of its 
ANEES to one) when compared to the 2-D MUCMKF 
for this test case. 

Figure 3 shows overlays of the RMS position-tracking 
error for the target of Case 2. Again the new CMKF pro-
vides superior tracking performance when compared to 
the 2-D MUCMKF for the second considered test case. 

Figure 4 shows overlays of the ANEES curves for the 
target of Case 2. Again the new CMKF provides superior 
credibility when compared to the 2-D MUCMKF for this 
test case. 

The 2-D MUCMKF algorithm required an average 
time of 0.19944 ms to execute a single iteration using 
MATLAB version 7.4 on an Intel® Core™ 2 Duo CPU 
T7300 running at 1.99 GHz with 2 GB of RAM. Using  
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Figure 3.RMS position-tracking errors (Case 2). 
 

 

Figure 4. ANEES (Case 2). 
 
the same hardware and software, the new CMKF algo-
rithm required an average time of 0.22763 ms to execute 
a single iteration when the raw converted measurement’s 
error bias and the debiased converted measurement’s 
error covariance are conditioned on the CMKF’s Carte-
sian position prediction. Thus, the performance improve- 
ments shown in Figures 1-4 come at the cost of in-
creased computational time required to compute the 
UT-approximated output-distribution means. 
 
5. Conclusions 
 
The work documented in this paper offers four significant 
contributions to the field of CMKF tracking. First, the 
paper derives explicit expressions for the raw converted 
measurement’s error bias and the debiased converted 
measurement’s error covariance when these quantities are 

conditioned on the polar measurement. Second, the paper 
shows the application of the polar-measurement-condi- 
tioned bias and covariance expressions results in a CMKF 
mathematically equivalent to the 2-D MUCMKF. Third, 
the paper describes a novel application of the UT to ap-
proximately solve the problem of conditioning the raw 
converted measurement’s error bias and the debiased 
converted measurement’s error covariance on the CMKF’s 
Cartesian position prediction. Fourth, the paper adapts a 
previously published decision metric to automatically 
choose the more accurate target-position estimate—either 
the sensor’s polar position measurement or the CMKF’s 
Cartesian position prediction—at each processing index, 
thus allowing the integration of the two conditioning 
techniques into a single algorithm. 

The new CMKF algorithm described in this paper 
yields noticeably better RMS tracking performance  
and statistical credibility when compared with the 2-D  
MUC-MKF or, equivalently, a 2-D CMKF which condi-
tions the raw converted measurement’s error bias and the 
debiased converted measurement’s error covariance 
strictly on the polar measurement. However, the new algo-
rithm’s improved performance comes at the cost of addi-
tional computations required for several UT calculations 
since the CMKF’s Cartesian position prediction is usually 
more accurate than the sensor’s polar position measure-
ment. 
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