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ABSTRACT 

The field of modern biotechnology is thought to have 
largely begun in 1980, when the United States Su- 
preme Court ruled that a genetically-modified mi- 
croorganism could be patented. The growth of the 
Biotechnology industry has stimulated extensive re- 
search on its determinants. One of the areas which 
has attracted a fair amount of attention is the distri- 
bution of firm size within an industry. What is less 
known however, is the dynamics of firm size. This 
paper considers a statistical model to describe the 
spatial dynamics of firm size across the biotechnology 
industry. It is found that firm size fluctuates around 
its long run stationary equilibrium according to a 
temporal drift and random disturbance. The empiri- 
cal results illustrate that diffusion is a potential tech- 
nique for the analysis of spatial dynamics of firm size.  
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1. INTRODUCTION 

While much attention has been devoted in the economics 
literature to the explanation of the shape of firm size dis-
tribution with reference to steady state arguments [1-7], 
the dynamics in question have been relatively ignored. 
Sutton [8] proposes a theory with implications for the 
evolution of the size distribution but the empirical test of 
his theory does not include dynamic data. McCloughan 
[9] simulates the evolution of size distribution of firms 
but is interested in concentration as a summary measure 
of the size distribution, rather than on the whole distribu-
tion. The stochastic process generating the size of a firm 
in Jovanovic’s model [10] is characterized by a form of 
heterogeneity, the model implies a monotone conver-
gence, with the size distribution of survivors increasing 
stochastically over time. The present study builds on 
Jovanovic, but proposes a framework for the smooth 
evolution of density of cross-sectional distribution of 
firm size instead. It is shown that interesting issues arise 
when one considers how firm structure evolves over time, 

rather than simply attending to equilibrium implications 
of processes. Information on the shape and time-evolu- 
tion of the size distribution of firms over an extended 
period of time can be used to make inferences about an 
underlying process; specifically, on which characteristics 
lead to which kinds of dynamics.  

2. THE MODEL 

Consider an industry consisting of a constant number of 
firms with different sizes. Average costs of producing an 
amount x of output are a non-increasing function of firm 
size, for a given quality of output. Each firm may have 
significant fixed costs, and marginal costs may essen-
tially be constant. Furthermore, consumers prefer small 
firms for perceived higher quality of service. The set of 
firms forms a distribution which evolves over time. 

Consistent with the above, it is hypothesized that the 
dynamics of firm size distribution rely on two counter-
acting forces: 1) a mean-reversion process along time, 
and 2) a diffusion process across space, driven by learn-
ing, trial and error and imitation [11,12]. More precisely, 
for the drift spread, it is assumed that there exists some 
equilibrium distribution of firm size with a certain mean 
and variance, towards which the ensemble of firms gra-
vitate. The diffusive flux is related to the concentration 
field, by postulating that the flux goes from regions of 
high concentration to regions of low concentration, fol-
lowing Fick’s law, with a magnitude that is proportional 
to the concentration gradient.  

Remark: In the study of transport phenomena (heat 
transfer, mass transfer and fluid dynamics), “flux” is de-
fined as the flow through a unit area per unit time. In 
biology, flux relates to movement of a substance between 
compartments. In the case of movement of molecules 
across a membrane, flux is defined by the rate of diffu-
sion or transport of a substance across a permeable 
membrane. Equations based on Fick’s law have been 
commonly used to model transport processes in neurons, 
biopolymers, pharmaceuticals, porous soils, population 
dynamics, semiconductor doping process, etc. Theory of 
all voltametric methods is based on solutions of Fick’s 
equation. For an elaboration see [13,14]. 
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In general, one can study a Markov process generated 
by a matrix of transitions from one firm size to another, 
where the Markov process can be treated as firm size 
diffusion. Then one can apply the general Fokker-Planck 
equation to describe evolution in time of firm size. 
Hence, assuming that firm size behaves like a stochastic 
process and that it is continuous and Markovian, we con-
sider the most natural candidate; a classical linear sto-
chastic differential equation driven by Gaussian white 
noise: 

 d + d = 2 dt tS u S t  tB            (1) 

where t  is firm size. S   denotes velocity of adjust-
ment to stationary equilibrium interpreted as firm size 
adjustment rate. For simplicity, assume this rate to be 
constant. u denotes the mean of the stationary equilib-
rium distribution, 0   is a constant diffusion parame-
ter, and t  is the Brownian motion. Equilibrium in this 
paper refers to a statistical equilibrium, which is charac-
terized by a stationary probability distribution of firm 
size1. 

B

3. ANALYSIS OF THE MODEL 

Letting f denote probability density, and s firm size, the 
time-development of the distribution in Eq.1 can be ex-
pressed by: 
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0  represents the initial mean of firm size distribution 
and 
u

2
0  represents the initial variance. N is the nor-

malization constant. The process derived from the diffu-
sion model evolves according to an Ornstein-Uhlenbeck, 
but with a transition, such that the mean tends to u, in-
stead of 0.  

4. EMPIRICAL APPLICATION 

Our data set describes the biotechnology industry be-
tween the years 1989-2007. The sample consists of a 

total of 197 biotechnology firms primarily engaged in the 
research, development, manufacturing and/or marketing 
of products based on genetic analysis and genetic engi-
neering2. Observations were available annually. We have 
chosen number of employees as proxy for firm size real-
izing that for technological and research industries such 
as biotechnology, there are additional measures one 
could use. On this, we have built on earlier literature on 
firm size where size had been proxied by sales, income, 
number of employees, or total assets [1,4,7,16-18]. An 
interesting property of firm size distributions noted in 
previous studies of large firms is that the qualitative cha-
racter of such distributions is independent of how size is 
defined [4]. 

Figure 1 provides a description of the evolution of the 
distribution of firm sizes in the data, where our measure 
of firm size is the total number of employees. The verti-
cal axis measures firm size in logarithms, and the hori-
zontal axis measures time in years. The solid curve 
represents the mean size of the industry and the dotted 
curves one standard deviation around the mean.  

Estimation 

The model has been applied to log firm size distribution 
in the biotechnology industry as a function of time. The 
dynamic process has five parameters: 0, u, ε, 2

0u  , and λ. 

0 denotes the initial mean of the size distribution (1989), 
and u denotes the mean of the steady state distribution. 

0

u

  is the initial variance, ε represents the strength of the 
diffusion effect, and λ represents the strength of the mean 
reversion. The process derived from the diffusion model 
is the size distribution of the population at chosen se-
quences of times through the observation period. It evolves 
according to an Ornstein-Uhlenbeck, but with a transi-
tion, such that the mean tends to u, instead of 0. From the 
analytic solution to the model, the dynamics of the size 
distribution can be followed through time, given our ini-
tial distribution function3. 

Table 1 reports estimates for the five model parame-
ters, along with the standard errors and t-values.  

Figure 2 graphically illustrates the mean of the firm 
size distribution in the biotechnology data (dotted curve), 
superimposed on the mean of the size distribution as 
predicted by the model (bold solid curve, +/– one stan-
dard deviation). The vertical axis on this panel measures 
the mean of the size distribution (in logarithms) and the 
horizontal axis measures time in years.  

Figure 3 graphically illustrates the standard deviation 
of the size distribution in the biotechnology industry 
(dots), superimposed on the standard deviation of the  

2The 197 companies comprise the universe of all firms in the biotech-
nology industry as reported by Compustat.  
3References [19-23] provide an elaboration. 

1Reference [15] provides a full analysis of this model albeit in a differ-
ent context.  
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Figure 1. Distribution of firm size in biotechnology industry. 
 

 

Figure 2. Distribution mean. 
 

 

Figure 3. Distribution standard deviation. 

Table 1. Parameter estimates for biotechnology industry. 

Parameter Value Std. Error t-value 

  0.33 0.13 2.51 

u  2.13 0.02 92.14 

0u  2.43 0.05 43.96 

0  1.09 0.03 30.36 

  0.18 0.01 23.63 

 
distribution as predicted by the model (solid curve). 

In order to confirm that the parameter estimates relia-
bly characterize the real data presented in the descriptive 
analysis, Figure 4 graphically illustrates the evolution of 
the firm size distribution (log-normals) over time for the 
industry, superimposed on histograms which describe the 
time evolution of the distribution of firm sizes in the data 
(for selected years). The solid curves in these figures 
illustrate the distribution of firm size as predicted by the 
model, and the dotted curves illustrate the distribution of 
firm size in the data. The vertical axes in these figures 
denote frequency, and the horizontal axes measure firm 
size in logarithms. These figures illustrate that the nice 
pattern which we see in the fitted log normals are being 
pulled out of a set of histograms whose shape are irregu-
lar.  

The following observations can be made concerning 
our results: 

1) Figure 3 illustrates that the mean of the distribution 
is clearly evolving, corresponding to our theoretical pre-
dictions. 

2) Figure 4 illustrates that the variance of the distribu-
tion is evolving, likewise corresponding to our theoreti-
cal predictions. 

3) Table 1 reports that the value for the strength of the 
mean reversion process ,  is positive, corresponding to 
our theoretical predictions. 

4) The value for the strength of the diffusion effect ,  
is small and positive, likewise corresponding to our 
theoretical predictions. The diffusive limit is:  

2lim .t
t

  


  The results predict that if we start with a  

normal distribution and let the model drive the distribu-
tion, the distribution variance will tend toward a constant 

2 ,t    and concentrated around a mean u. 

5. CONCLUSIONS 

A methodology has been proposed which is a more 
transparent way to quantify the dynamics of firm size, as 
it avoids the complications associated with dynamic in-
ference and statistical regression fallacy inherent in sta-
tistical cross-sectional tests [24,25].  

The model developed in thi  paper can be extrapolated  s  
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Figure 4. Predicted versus actual distribution. 
 
to new and different situations. The methodology pro-
posed can be fruitfully extended to map industry charac-
teristics on the dynamics of firm structure. Such an ex-
tension would demonstrate how information on the shape 
and time evolution of the size distribution of firms over 
an extended period of time can be used to make infer-
ences about an underlying process; specifically on which 
characteristics lead to which kinds of dynamics. Of spe-
cial interest is whether the learning speed and dynamics 
are dependent on industry size, stage of growth, and level 
of competition. Such analysis would have poignant pol-
icy implications with respect to competition and trade, as 
well as the diffusion of knowledge across firms and how 
this might be impacted by a myriad of government poli-
cies with respect to intellectual property. This is impor-
tant because a good understanding of which kinds of 
characteristics lead to which kinds of dynamics can help 
us understand how incentives should be provided for the 
socially optimal amount of creative activity to take place. 
From an industrial organization perspective, it would be 
valuable to estimate the minimum future expected in-
come necessary to attract potential innovators in the bio-
technology industry. This becomes even more important 
when one considers that technological innovation con-
tinuously changes the opportunity cost and reservation 
values of the various stakeholders involved in R & D 
within the industry. 

In general, forces driving the dynamics of firm size 

distribution are so varied and complex, that a model 
which allows mapping industry characteristics into dy-
namics becomes substantive. Given that significant amount 
of resources are reallocated across firms due to firm level 
dynamics associated with uncertainty, these questions are 
important not only for public policy but for investment 
decision making as well. 
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