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ABSTRACT 

If  is a connected graph, the distance  between two vertices G  ,d u v  ,u v V G

G

 is the length of a shortest path 

between them. Let  be an ordered set of vertices of  and let v  be a vertex of . The repre-

sentation 

 1 2= , , , kW w w w  G

 r v W  of v  with respect to  is the -tuple W k       1 2, ,d v w , , , kd v w d v w, . If distinct vertices of 

 have distinct representations with respect to , then  is called a resolving set or locating set for . A re-
solving set of minimum cardinality is called a basis for  and this cardinality is the metric dimension of , denoted 

by . A family  of connected graphs is a family with constant metric dimension if  is finite and 

does not depend upon the choice of  in . In this paper, we show that dragon graph denoted by  and the 

graph obtained from prism denoted by  have constant metric dimension. 
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1. Notation and Preliminary Results 

If  is a connected graph, the distance G  ,d u v  be- 
tween two vertices  ,u v V G

G
v

 is the length of a 
shortest path between them. Let 1 2  be 
an ordered set of vertices of  and let v  be a vertex 
of . The representation of the  with respect to  
is denoted by 

 , , kw w = ,W w

G W
  -tuplk

 , , kd v w

dim

r v W



 is the  

1 2 . If distinct vertices of 
 have distinct representations with respect to W , 

then  is called a resolving set or locating set for  
[1]. A resolving set of minimum cardinality is called a 
metric basis for  and its cardinality is the metric 
dimension of , denoted by . The concepts of 
resolving set and metric basis have previously appeared 
in the literature (see [1-14]). 

e
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    , , , ,w d v w 
G
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G
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W G

For a given ordered set of vertices  
 of a graph , the ith component 

of 
 1 2, , , kW w w w  G
 r v W  is 0 f and only if . Thus, to show that 

 is a resolving set it sufficient to verify that  
= iwv

W
   W r y Wr x  for each pair of distinct vertices  

 , \x y V G W . 
Motivated by the problem of uniquely determining the 

location of an intruder in a network, the concept of 
metric dimension was introduced by Slater in [2] and 
studied independently by Harary et al. [3]. Applications 

of this invariant to the navigation of robots in networks 
are discussed in [4] and applications to chemistry in [1] 
while applications to problems of pattern recognition and 
image processing, some of which involve the use of 
hierarchical data structures are given in [5]. 

By denoting G H  the join of  and G H , a fan  
is 1n nf K P   for  and   1n graphJahangir

 2 , 2nJ n 
ee

Tom

 (also known as ) is obtained 
from the wh alternately deleting n  spoke
Caceres et al. [6] found the metric dimension of fan nf  
and escu et al. [7] found the metric dimension of 

graphJahangir 2n

graphgear
l  2nW  by s. 

J . Also Tomescu et al. [8] the par- 
tition and connected dimension of wheels. 

Chartrand et al. proved:  
Theorem 1: [1] A graph  has metric dimension  

if and only if  is a path.  
G 1

G
Hence paths on  vertices constitute a family of 

graphs with constant metric dimension. Similarly, cycles 
with 

n

 3n   vertices also constitute such a family of 
graphs as their metric dimension is 2. Since  n  
are the trivalent plane graphs obtained by the cartesian 
product of the path 2  with a cycle n , hence they 
constitute a family of 3 -  with constant 
metric dimension. Also Javaid et al. proved in [9] that 
the plane graph  n

prisms D

P

antiprism

C
graphsregular

A  constitutes a family of 
regular graphs with constant metric dimension as  

  = 3nAdim  for every . 5n*Corresponding author. 
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Let  be a family of graphs of order  
obtained from a prism n  as shown in Figure 1 and 
Figure 2 respectively, by deleting the spokes 

2 n n nC x y  2n
D

i ix y  for 
. We prove the following.  2, , 1n  1,i

Theorem 2: Let  n n nx y 2G C  with  
  2V G n , then  for .    = 2dim G n 3
Let  be a cycle with vertex set  

 and  be a path with vertex 
set 1m n m . Dragon graph  
as shown in Figure 3, is a graph of order n m

nC

V P
   1 2= , , ,nV C v v v

  1 0= ,v u
n

u 
1mP 

, ,u  ,n mT
  

obtained by identifying  of  with  of nv nC 0u 1mP  . 
We prove the following.  

Theorem 3: For all  . 3, 2n m   , = 2n mdim T

2. Proofs 

Proof of the Theorem 2: By Theorem 1,   2dim G  . 
We only need to show that  is a resolving 
set for , which is obviously of minimal cardinality. 

 1 1= ,W y x 
G

 

 

Figure 1. Prism Dn. 
 

 

Figure 2. Graph 2Ck + {xk yk}. 
 

 

Figure 3. Dragon graph. 

Case (a) Wh Representations 
of

en = 2n k  for .k   
 all vertices from      are1 1y x  as follows, \ ,V G

 

 
 
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It is easy to check that all the above representations are 
distinct. For example, suppose that  
   3, = , 1s s n j n j     for some fixed s  and j . 
Then = 3s n j   and 1s n j   , a contra iction. 

Cas n =n .k   Represen - 
at

d
e (b) Whe  for t2 1k
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All the above representations are also distinct. 
Proof of the Theorem 3: By Theorem 1,  
 , 2n mm T  . We only need to show that

of cardinality 2. 
Case (a) W n = 2n k  for .k   The set  

di
resolving set W

 there is a 

he 
 1= ,k kv v   is ving s r the graph

s of all vertices from   \V G W  are as 
follows, 

W a resol et fo  ,n mT . 
Representation

   
 

, 1 , 1

, 1 , 2i

k i k i i k
r v W

i k i k k i n

1;

;

             
  

and 

   = , 1ir u W k i k i  

It is easy to check that all th present ions are 
di

, 1 .i m   

e re at
stinct. For example, suppose that  

   , 1 , 1k s k s j k j k        for some fixed s and j. 
Then 2j k s n    because 1 s , a contradiction. 

Cas = 2 1ke (b) When n   fo .  The set  r k
 1 1= , nv v   is g set e graph T

s of all vertices from   \V G W  are as 
follows, 

W
Representation

a resolvin for th ,n m . 

 
 

 
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1, 1 , 2 1;

| = 1, 1 , 1;

1, 1 , 2 2;
i

i i i k

r v W i n i k i k

n i n i k i n

    
      
        

 

   = 1,1 ;nr v W   

and 

   = 1, 1ir u W i i  ,
 

.1 mi   
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All the above representations are distinct. 
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