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ABSTRACT 

This paper extends and generalizes the works of [1,2] to allow for cross-sectional dependence in the context of a 
two-way error components model and consequently develops LM test. The cross-sectional dependence follows the first 
order spatial autoregressive error (SAE) process and is imposed on the remainder disturbances. It is important to note 
that this paper does not consider alternative forms of spatial lag dependence other than SAE. It also does not allow for 
endogeneity of the regressors and requires the normality assumption to derive the LM test. 
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1. Introduction 

The standard error components model assumes, among 
others, spatial independence across cross-sectional units. 
However, this restrictive assumption may not hold for a 
lot of panel data applications. When one begins to look at 
a cross section of regions, states, countries, etc., these agg- 
regate units may exhibit cross-sectional correlation that 
has to be dealt with (see [3]). Ignoring cross-sectional 
dependence when in fact it exists, results in biased, in- 
consistent and inefficient estimates of regression coeffi- 
cients (see [1,4,5]). 

In the literature, several test statistics have been de- 
veloped for spatial econometrics however in the context 
of either cross sectional framework or one-way error 
components model.1 The specification of cross-sectional 
dependence in linear regression models by most of these 
works follows either spatial autoregressive (SAR) pro- 
cess often defined as spatial lag dependence (see [6-10]); 
spatial moving average processes (SMA) often called 
spatial error dependence (see [11]); spatial autoregressive 
error process (SAE) (see [6,12,13]); SARMA (a combi- 
nation of SAR and SMA) (see [2,4,14]); a combination 
of SAR and SARE (see [15]); direct representation form 
of cross-sectional dependence (see [16,17]) or spatial 
error component process (SEC) suggested by [18]. Con- 
sequently, various tests as well as estimators were de- 
rived against these different specification forms using ei- 
ther the Maximum Likelihood (ML) approach (see [2,19]; 

for a survey of the literature) or Instrumental Variables 
(IV) and Generalized Method of Moments (GMM) (see 
[9,20,21]). 

The present study develops LM test for cross-sectional 
dependence in the context of panel data framework. The 
latter is a two-way random effects model where the 
cross-sectional dependence follows the SAE and is im- 
posed on the remainder disturbances. Prominent papers 
that have adopted the SAE include [2,4] in the context of 
cross-sectional framework, and [1,22,23] in the context 
of one-way error components framework. Thus, the main 
objective of this work is to extend and generalize the 
works of [1,2] to allow for cross-sectional dependence in 
the context of a two-way error components model. The 
panel data model considered here is the restricted two- 
way random effects model assuming no cross-sectional 
dependence in the remainder disturbances. Thus, the LM 
test will be similar to the one developed by [1] if we fur-
ther modify the hypothesis to test for cross-sectional de-
pendence assuming the presence of random individual 
effect only (while ignoring the presence of time effects). 
In the same vein, the LM test will be similar to [2,4] if 
the hypothesis is reconstructed to test for cross-sectional 
dependence ignoring the presence of both the random 
country and time effects.  

In Section 2, the structure of the two-way error ran-
dom effects model is described in the context of cross- 
sectional dependence in the remainder disturbance term. 
Analyses of the LM test are provided in Section 3 and 
Section 4 concludes the paper.  

1A review of score test statistics for alternative specifications in spatial 
econometrics in the context of cross sectional data and one-way error 
components model can be found in [2,3] respectively. 
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2. The Model 1k

We consider the following panel data regression model:  

; 1, , ; 1, ,y x u i N t Tti ti ti    

y
thi tht

     (1) 

where the index i denotes N regional units and the index t 
refers to the T observations of each region i. The i sub-
script, therefore, denotes the cross-sectional dimension 
whereas t denotes time-series dimension. The total num-
ber of observations is NT.

 ti  is the observation on the 
 region over the  time period; tix

 
is the  

observation on k explanatory variables and ti  is the 
regression disturbance term. The error term ti  follows 
a two-way random effects with both regional specific and 
temporal effects; that is, 

thti
u

u

ti i tu vti                  (2) 

where i  denotes regional specific effects, t  denotes 
temporal effects and ti

v
  represents the remainder distur- 

bance term. Stacking the N observations of each time- 
period t, Equation (2) may be written as:  

t t N tu i v   

 u   1, ,1Ni
 

 1 2, , ,t tN   

             (3) 

where 1 2 tN ,  is a vector 
of ones of N dimension, 

, , ,t t tu u u 
t t

   and 
 , N1 2, ,      . 

Assumption 1: Both i  and tv  are assumed inde-
pendent and normally distributed according to,  

   2 2; ~ 0,t vN~ 0,i N v  

( )

        (4) 

The remainder disturbance term t  is assumed to 
follow the first order spatial error correlation (see [2,3]), 
that is: 

t t tW e   

 
              (5) 

where 1 tN, ,t t      , ,e e e   and 1t t tN . The 
term   is the scalar spatial autoregressive coefficient 
with 1  . The matrix W is an  spatial weight 
matrix which represents the degree of potential interac-
tion between neighboring locations whose diagonal ele-
ments are zero and off-diagonal elements are non-zero. 
Equation (5) can be further simplified as: 

N N

  1

t N tI W e  

 

            (6) 

Given Equation (6), the weight matrix W also satisfies 
the condition that NI W  is nonsingular for all 

1  . t  is also assumed to be independent and nor-
mally distributed as: 

e

 2~ 0,t ee IN                (7) 

The ti  process is also independent of the e i  and 
 terms.  tv
The model (1) can be re-written in matrix notation as: 

y X u 

1NT

               (8) 

where y is of dimension   vector, X is an NT k   

matrix,   is    vector and u is  vector. The 
matrix X is assumed to be of full column rank and its 
elements are assumed to be asymptotically bounded in 
absolute value. Given Equation (6), Equation (3) can be 
re-written as: 

1NT 

  1

t N t N tu I W e i v             (9) 

We can write Equation (8) in vector from as: 

     1
T T N T Nu I B e i I I i v     

(Ω)

 

    (10) 

The variance-covariance (VCV) matrix  of Equa-
tion (10) (that is, the unrestricted model) can be ex- 
pressed as: 

   
  

12 2

2

Ω T e T N

T v N N

I B B J I

I i i

 



   

 
    (11)2 

where T T TJ i i  and it is a matrix of ones of dimension 
T. To obtain the spectral decomposition of Equation (11), 
we use the [24] method. Essentially, we replace TJ  by 

TTJ  and TI  by T TE J  where T T  and TE I J 
T TJ J T

   

 and consequently, we obtain3: 

   

12 2

12 2 2

Ω T e v N N

T e N v N N

E B B i i

J B B T I i i

 

  





     
  (12) 

      

   

Also, using the [25] method of inversion, Equation (12) 
can be expressed as: 

   

111 2 2

112 2 2

1 2

Ω T e v N N

T e N v N N

T T

E B B i i

J B B T I i i

E A J A



 

  





     

        (13)  
   

   
112 2

1 e v N NA B B i i 
   where  

   
112 2 2

2 e N v N NA B B T I i i  


 and  

     

2

. 

 

3. Derivation of the LM Test 

In this section, we derive the LM test for testing for no 
cross-sectional dependence in a two-way random effects 
model. We employ the Maximum Likelihood (ML) ap-
proach and consequently, the log-likelihood function. 
The LM test derived is based on the idea that the score of 
the likelihood function evaluated under the null is equal 
to zero when the null hypothesis is true, so that a   
test based on the square of the score divided by the ap-
propriate element of the information matrix (since this is 
the variance of the score) can be constructed. The use of 
the normal likelihood function requires the assumption of 
2See the appendix for the derivation. 
3Note that TE  and J  are symmetric idempotent matrices. T

Copyright © 2012 SciRes.                                                                                  OJS 



A. SALISU  ET  AL. 90 

normality of the error term.  
Essentially, the derivation of the LM test involves the 

following steps:  
Step 1: Derive the VCV matrix for the unrestricted 

model; 
Step 2: Derive the VCV matrix for the restricted 

model; 
Step 3: Derive the spectral decomposition for the ma-

trices obtained in steps 1 and 2; 
Step 4: Derive the inverse of the matrices obtained in 

steps 1 and 2 using the results from step 3;  
Step 5: Derive the general log-likelihood function;  
Step 6: Use the information in steps 1 - 5 to derive the 

score functions of the likelihood evaluated from the re-
stricted ML  under 0

aH ; 
Step 7: Derive the information matrix and its inverse; 
Step 8: Use the results obtained in steps 6 and 7 to de-

velop the LM test. 
The log likelihood function, L under normality of dis-

turbances is given as: 

  11
og Ω Ω

2 2
u u

u y X

1
, lL c         (14) 

where  

  2, , ,

 and the vector of parameters is de- 

noted as  2 2, ,e v       
2 2 2

 

 , , ,

 where 

e v      .  
Since our test statistic requires information only on the 

vector of parameters  , consequently, information due 
to   is ignored. Following [26], the gradient of the log 
likelihood with respect to   can be expressed as: 

 

 1 1

Ω Ω

Ωu u



 

  

  

11

2

1
Ω Ω

2

L
tr




  


 
      (15) 

2

i j

L
I E  

 
  

   
            (16) 

By further simplification, it is easy to show that: 

1 1Ω Ω
Ω Ω

i j

1

2
I tr  

 
  
 

   

, 1, 2,3,4.i j 

I

  

For  Equations (15) and (16) represent 
the score function and the information matrix respec- 
tively. The information matrix-   is block diagonal. 
The LM statistic can, therefore, be written generally as:  

  1
D I DLM  


  
 

D

           (17) 

where 
  and I   are the score function and informa- 

tion matrix respectively evaluated at the null hypothesis. 
The LM test statistic expressed in (17) is distributed as 

2
k

  (i.e. chi-square distributed) with k  degrees of 

freedom, k  being the number of parameters in the 
vector  . Based on Equation (17), therefore, the fol-
lowing hypotheses can be tested in relation to cross-sec-
tional dependence: 

2 2 2
0 : 0 0; 0; 0a

e vH                (18) 

This is a test of no cross-sectional dependence assume- 
ing the presence of random individual and time effects. 
This is the null hypothesis this study sets out to test. 

2 2 2
0 : 0 0; 0; 0b

e vH               (19) 

This hypothesis tests for cross-sectional dependence 
assuming the presence of random individual effect only 
(while ignoring the presence of time effects). This test is 
similar to [1] LM test for spatial error correlation as well 
as random country effects. 

2 2 2
0 : 0 0; 0; 0c

e vH             (20) 

This hypothesis tests for cross-sectional dependence 
ignoring the presence of both the random country and 
time effects. This is similar to the LM test by [2,4].  

We derive below the score function for the null hypo- 
thesis expressed in (18) above which is the focus of this 
paper; that is: 

2 2 2
0 : 0 0; 0; 0a

e vH       

 

 

Under the null hypothesis in (18), the VCV matrix re-
duces to:4 

 

2 2

2 2 2

Ω T e N v N N

T e N N v N N

E I i i

J I T I i i

 

  

    
  (21) 

     

0Given that   ; then ti tie  and, therefore, 
   Var Var e 

 

ti ti . The Equation (21) is the VCV ma-
trix for the restricted model. Using [25] Lemma 2.1, the 
inverse of Equation (21) can be expressed as: 

 

11 2 2

12 2 2

1 2

Ω T e N v N N

T e N N v N N

a a
T T

E I i i

J I T I i i

E A J A



 

  

     


         (22)  
   

 
12 2

1 e N v N NA I i i 


  where  

 
12 2 2

2 e N N v N NA I T I i i  


and 

    .  
The Equation (22) is the reduced form of Equation (13) 

and is also the VCV matrix for the familiar two-way 
random effects error components model. In addition, it is 
a principal component required in the log-likelihood 
function to derive the LM test. In particular, both Equa-
tions (21) and (22) are required to derive the partial de-
rivatives and information matrix for the LM test. 

4See the appendix for the derivation. 
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Using the general formulas on log likelihood differen-
tiation, we derive its gradients evaluated at the restricted 
ML under 0

aH  as follows: 
Recall Equation (15): 

    1Ω Ω Ω u    
1 11 1

Ω Ω
2 2

L
tr u


            

 

Assumption 2: Let   1
M B B


 




 , then  

  1 M B B
 W B B W  NB I W . Recall,  

a
 and 

since under 0H , 0  ; then NB I  and M W W  .  
Assumption 3: If , andT T T  are idempotent and 

symmetric matrices, we can write that 
E I J

T T TI E J   
where T T TE I J  . Then,  and TE TJ  are orthogonal 
(see [3]). 

Proposition 1: Based on assumptions 2 and 3, we can 

write the derivatives 
0

Ω

aH



 for the parameters,  , 

2
e , 2

  and 2
v , respectively, as: 

 2
e T

0

Ω

aH

I M 





 

0

2

Ω

a
T N

e H

I I



 


 

0

2

Ω

a

T N

H

TJ I



 


 

0

2

Ω

a
T N N

v H

I i i

  


 

Proof: 

   

   

  
  
     

2

1 1

N N

N v N N

i i

I i i

B B



 
 

 
 

   

  
  

0

12 2

12 2

12

12

2

Ω
(A)

aH

T e v

T e

T e

T e

e T T

E B B

J B B T

E B B

J B B

E B B J





 


 





















    



  

  

  


 
  

 

 (24) 

Based on assumption 1, it is easy to establish from 
Equation (24) that: 

 TE J M    

 


    

 
0

2

2

Ω

a
e T

H

e TI M









 
     (25)5 

 

 

 

0

2

2

2 2 2 2 2

2 2
2

2 2 2
2

Ω
B

ae H

T
e

e N v N N T e N N v N N

T e N v N N
e

T e N N v N N
e

T N T N T T N

E

I i i J I T I i i

E I i i

J I T I i i

E I J I E J I









    

 


  






 


          
   



    


      

 

0

2

Ω

a
T N

e H

I I



 


 

         (26) 

 
  

 

 

 

 

0

2

2 2
2

2 2 2

2 2
2

2 2 2
2

2 2 2
2

2
2

Ω
C

aH

T e N v N N

T e N N v N N

T e N v N N

T e N N v N N

T e N N v N N

T N

E I i i

J I T I i i

E I i i

J I T I i i

J I T I i i

J T I




















 


  

 


  


  








     

     
   



    


    



 



 

0

2

Ω

a

T N

H

TJ I



 



 

          (27) 




 

 

   

 

0

2

2 2
2

2 2 2

2 2
2

2 2 2
2

2 2
2 2

Ω
D

av H

T e N v N N
v

T e N N v N N

T e N v N N
v

T e N N v N N
v

T v N N T v N N
v v

T N N T N N T T N N

E I i i

J I T I i i
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        (28) 

Proposition 2: Based on proposition 1 and assumptions  

2 and 3, we can write the derivations of 
0

1 Ω
Ω

aH
 


 for  

the parameters,  , 2
e , 2

  and 2
v , respectively, as: 
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Proof: 
These derivatives are quite straightforward to show 

particularly using the information in proposition 1. 
Proposition 3: Based on propositions 1 and 2 and as-

sumptions 2 and 3, we can write the derivations of 

0

1 1Ω
Ω Ω

aH
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

 for the parameters,  , 2
e , 2

  and 

2
v , respectively, as: 
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Proof: 
These derivatives are straightforward to show using 

the information in proposition 2. 
Proposition 4: Following propositions 1 - 3, we can  

easily calculate the partial derivates 
L





, for 2
e , 2

  

and 2
v , respectively, evaluated at the restricted MLE: 
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where          and  
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Proof:  
See the appendix for further simplifications and proofs 

of the partial derivatives.  
Recall that we define      

0
a

, therefore, 

 2 2 2, , ,0e v         can be defined as the H , under 

solution obtained after maximization of the first order 
condition and MLE  is the corresponding re-
sidual under 
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. This is 
because we are testing whether   is statistically dif-
ferent from zero. Thus, the partial derivatives under 0

aH  
are rewritten in vector form as: 
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Also, using the method developed by [27], we obtain 
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0
athe information matrix under H . The information ma-

trix is given by: 
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   (29) 

Proposition 5: Using the formular expressed in Equa-
tion (29) and information in proposition 2, we can derive 
respective elements in I

a under 0H  for the vector of 
parameters  2 2, ,e  2 ,v       as follows: 
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Given these information under H , the LM statistic is 
given by,6  

     1
LM D I D  

   
 

,a

        (30) 

Under 0

Decision Criteria: 
The LM statistic is a scalar and the value obtained 

when the test is performed on the two-way error compo-
nents model is compared with the critical value for the 
chi-squared distribution— 1

2 . The intention is to ascer-
tain whether to reject the null hypothesis, 0

aH , that there 
is no cross-sectional dependence problem in a two-way 
random effects model. Essentially, if LM  is less than 
the critical value for the chi-squared distribution, then, 
we do not reject the null hypothesis implying that there is 
no cross-sectional dependence; otherwise, we reject it. 
 
4. Concluding Remarks 

This paper provides a framework for testing for no cross- 
sectional dependence assuming the presence of random 
individual and time effects. Thus, several important is- 
sues have not been incorporated. These include testing 
other hypotheses earlier specified, that is; 

2 2 2: 0 0; 0; 0bH    0 e v     which tests for cross- 
sectional dependence assuming the presence of random 
individual effect only (while ignoring the presence of time 
effects; and 2 2 2: 0 0; 0; 0cH    0 e v     which 
tests for cross-sectional dependence ignoring the pres-
ence of both the random country and time effects. Also, 
the empirical applications section involving Monte Carlo 
experiments is also not yet considered. These are some of 
the suggestions for future research.  
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Appendix 

(A) Derivation of the VCV Matrix for the 
Unrestricted Model 

Here, 0 
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 and the VCV matrix of u can be derived as 
follows. 

Recall Equation (10), 
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Let  in this case be represented by , and by 
further simplification, (A.1) becomes: 
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where T T TJ i i

T

 and it is a matrix of ones of dimension 
T. To obtain the spectral decomposition of (A.3), we use 
the [24] method which involves replacing  J  by TTJ  
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T TJ J T  in (A.3). This is done as follows: 
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Using the [25] method of inversion, therefore, the in-
verse of Equation (A.5) can be expressed as: 
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Thus, (A.4) under the unrestricted model reduces to:  
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Just as before, we use the [24] method to
spectral decomposition of (B.4) and following the same 
procedure as Appendix A, we have: 
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Similarly, using the [25] method of inversion, 1Ω
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(C) Derivation of the Partial Derivatives 
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where 2 2g T    . 
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Note further that: 
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Using the information leading to (C.2), we can prove
that: 

J

 

 

 

1 2

2
2 2

1

1

g1
1 1

v i
v i

i

tr T A A

N
T




   

 
     


2 2 2

2 1g 1
g

i ie e v
v i

N      

 

And also with the representations that:  
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 information therefore, (C.3) becomes: Given this
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