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ABSTRACT 

Alterations of annual temperature cycles have profound implications on how the planet responds to global climate 
change. In this study, a high resolution global analysis of temperature cycle shifts and their development over time is 
presented. We show that over the last 63 years, phase shifts in the annual near surface temperature cycle exhibit large 
spatiotemporal variability. The calculated phase shifts comprise earlier onsets of seasons as well as delays with similar 
frequencies, depending on location. From 1978 to 2010 Eastern Europe experienced an advanced annual cycle of 
near-surface temperature of 3.2 days while Eastern Australia shows an opposite shift towards later seasons of 3.5 days 
in comparison to the preceding 30-year period from 1948 to 1977. The largest phase shifts of –5.5 days toward earlier 
seasons over land were found in Belarus and Northwest Russia. For the first time the developments of seasonal tem-
perature shifts were generalized for large areas by using self-organizing feature map neural networks resulting into 4 
significant global trends. The temperature phase shifts are also shown to have strong correlations with the timing of 
shrub foliation observed at 57 phenological stations across the USA. The findings have far-reaching, yet regionally dis-
tinct consequences on agriculture, animal life cycles, plant phenology, and regional weather phenomena that change 
with annual temperature cycles. 
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1. Introduction 

Climate change is associated with momentous conse-
quences on vital aspects of human life. Acting through 
diverse and complex interdependencies, greenhouse gas 
driven warming is predicted to have large impacts on 
agriculture, the frequency and intensity of droughts and 
extreme precipitation events, drinking water supply, spe-
cies migration and conflicts over resources [1]. While an 
increasing atmospheric CO2 concentration causes the 
average global temperature to rise, the complex manner 
in which the climate system transports energy causes 
long-term trends of temperature to differ by region and 
season. The strongest warming within the last century 
was found in continental areas of the middle and higher 
latitudes especially a warming of the winter periods. 
Other regions, including parts of the northern Atlantic, 
the southern oceans, and parts of Antarctica actually 
cooled [1-5]. In addition to warming, or changes in the 
temperature amplitude, changes in the phase of annual 
cycle of air temperature have been shown in analyses of 
several datasets using a variety of methods [6-11]. 

Stine et al. [10] found that the temperature cycle ad-
vanced by 1.7 days between 1954 and 2007 over ex-
tra-tropical land, based on an averaged yearly shifts be-
tween monthly values of local solar insolation and sur-
face temperature. Thomson [6] discovered a coherency 
between the average change in phase and the logarithm 
of atmospheric CO2 concentration for Central England. 
Both studies, however, were affected by significantly 
large data gaps. Also correlations between large-scale 
atmospheric circulation systems and the earlier onset of 
spring were found in several studies [9,12-14] indicating 
the complex interdependencies between changes in the 
large-scale climate system and the phase of the annual 
temperature cycle and associated seasons. Nevertheless, 
the understanding of seasonal shifts and spatial patterns 
of global temperature trends over time, however, has 
been restricted by limitations in observations and associ-
ated scaling. Mechanisms by which warming through 
increasing atmospheric CO2 concentrations may cause 
shifts in the timing, duration, and intensity of the annual 
temperature cycle are not captured by current global 
models [10]. 

Several recent phenological studies also show an ear-*Corresponding author. 
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lier onset of spring and describe strong associations of 
this pattern with changes in the temperature cycle [15- 
18]. Parmesan [19] analyzed the phenological response 
of 203 different species on the northern hemisphere inc- 
luding plants, birds, butterflies, and fish and found signi- 
ficant differences in the strength of response to the ch- 
anged annual temperature cycles across geographic and 
taxonomic groups.  

Changes in the timing of the annual temperature cycle 
and the related altered onset of spring have also been 
shown to impact the amount of CO2 exchange, greenness 
index [18] and albedo of vegetated regions. Also an in-
creased frequency of wildfires is associated with corre-
sponding earlier onsets of spring in Western USA [20].  

These examples underline the importance of the phase 
shift and its effects on complex interactions between the 
phase of the temperature and dependent processes in our 
environment, while the extensive and complex reactions 
of ecosystems to changes in the seasonal cycle are still 
far from being understood or predictable. 

Hence, beyond proven effects on lifecycles of plants 
and animals [15,16,19], these phase shifts are an indica-
tor for ongoing momentous changes in the climate sys-
tem whether they are directly related to the global war- 
ming trend or not. 

It is important to note that an earlier onset of spring 
associated with a threshold temperature reached earlier in 
the year should not be confused with the phase shift of 
the annual cycle. A general increase of mean annual 
temperature consequently leads to an extended growing 
season and an earlier start of spring. A phase shift, how-
ever, can be negative or positive. Hence, in contrast to 
this effect of a generally higher mean annual temperature, 
a phase shift could lead to an advanced or delayed start 
of the growing season. In fact, the known changes of 
annual temperature amplitudes are superimposed by pha- 
se shifts of the air temperature time series [10,11]. 

In this study we focus on the phase shifts between 
temperature series of different periods using a cross- 
spectrum analysis approach [21,22] and a combination of 
a self-organizing feature map (SOFM) neural network 
[23,24] and a subsequent k-means clustering. The used 
NCEP/NCAR Reanalysis 1 temperature dataset with a 
2.5˚ resolution covers the last six decades and is spatially 
comprehensive. This high resolution enables us to also 
assess the phase shift over vast areas on the southern 
hemisphere and apply a pattern recognition algorithm on 
the global distribution of the phase shifts of the annual 
temperature cycle for the first time. 

2. Data and Methods 

2.1. The Reanalysis Dataset 

By comparing two continuous segments of one distinct 

temperature time series for each point of a global grid a 
statistically significant calculation of the long-term shift 
of the annual temperature cycle was achieved. For this 
purpose, the time series were divided into two 30-year 
segments. According to WMO standard, only periods of 
30 years or more are considered long enough to safely 
account for the effects of natural short-term variations 
and are therefore suitable for analyses of long-term cli-
mate effects [25,26]. The first fraction of the used series 
covers the period 1948 through 1977. This was consid-
ered the 30-year early reference period. The second part 
of the spatially apportioned series is from 1981 through 
2010. Thus, both 30-year periods are separated by a 
three-year gap with the data of 1978 to 1980. One effect 
of the three year gap is that the two sequences of the time 
series can be considered clearly independent from each 
other in terms of the persistence interval inherent to air 
temperature series. Secondly this separation was made 
according to the anomalies of the global near surface air 
temperature [3,5,27]. The early 1980s to 2010 are char-
acterized by an increase of positive temperature anoma-
lies as compared to previous decades and were chosen as 
the second period (Figure 1). 

For the cross-spectrum analyses applied to the de-
trended data series of each grid point we used the global 
NCEP/NCAR Reanalysis 1 dataset with a 2.5˚ × 2.5˚ 
resolution provided by the NOAA/OAR/ESRL PSD, 
Boulder, Colorado, USA [29,30]. For the benefit of the 
explanatory power of derived phase shift values and 
trends the dataset exhibits no gaps and provides a glob-
ally complete spatial coverage. 

We extracted a global dataset consisting of 10,512 time 
series for each grid point, containing the daily near sur-
face air temperature values from the beginning of 1948 to 
the end of 2010. Due to the Nyquist frequency restrictions, 
a second corresponding dataset with a 6-hourly temporal 
resolution was used to safely exclude time series whose 
biggest part of the spectral variance was not caused by 
 

 

Figure 1. The annual anomalies of the global surface air 
temperature based on the 20th century average [28].  
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the annual (i.e. seasonal) cycle but was associated with 
lower or higher frequencies. This excluded a vast part of 
the tropical regions where the diel variance in tempera-
ture is much higher than the variance on the annual time 
scale. The 1000 hPa temperature series used in this study 
exhibit the highest available data quality level A because 
the respective modeled values are highly influenced and 
evaluated by measured temperature values [29]. It should 
be noted that the availability of meteorological reference 
measurements available for the Arctic and Antarctica 
was limited. Nevertheless, the reliability of the widely 
used NCEP/NCAR Reanalysis 1 temperature dataset has 
been discussed and proven in numerous studies [29,31, 
32]. 

2.2. The Cross-Spectrum Analyses 

As a consequence of the applied cross-spectrum method, 
the global shifts of the annual temperature cycles pre-
sented are not adulterated by superimposed changes of 
the amplitudes of the temperature series over time caused 
by long-term temperature trends such as global warming. 

In fact, the accuracy of the calculated phase shifts only 
depends on the precision of the relative course of the 
temperature rather than being affected by uncertainties of 
the absolute temperature values.  

The Fourier cross spectrum function P over all har-
monics h of the periodic temperature time series can be 
separated into its real and imaginary part, i.e. in its co-
spectrum Co and quadrature spectrum Qu, respectively 
(Equation (1)). 

( )
( ) ( ) xyi h

xy xy xyP h A h e Co
 

( ) ( )xyh Qu h

( )xy h

   (1) 

The phase shift value θxy between the time series can 
then be calculated with the phase spectrum function 
  given through, 
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and then transformed from radians into a time value t by 
using  

( )

2π
xyT h

t





                 (3) 

Here, T is the period of one cycle, in our case one year. 

2.3. Finding Regional Trends in Phase Shift 
Using SOFM Networks 

To find general global trends in the phase shifts between 
the earliest reference period (1948-1957) and the follow-
ing decades we calculated 53 consecutive shifts of the 
annual temperature cycle for each grid point using a 
moving-window analysis with one-year steps and a ten- 

year window width. The 10-year window was chosen to 
accunt for year-to-year variability. 

In order to cluster the resulting, spatially assigned slid- 
ing-window dataset, a SOFM neural network using Gau- 
ssian distance functions was used. SOFM networks have 
been successfully used to find patterns in high-dimens- 
ional and large datasets [33-36]. 

A first SOFM network was applied to detect outliers in 
the 53-dimensional temporal patterns of the one-year steps 
and a ten-year window phase shifts. 

The network consisted of 144 neurons hexagonally ar-
ranged as a 12 × 12 lattice. The application of a hexago-
nal layout provides a better topology preservation of the 
input data compared to other feature map layouts [37]. 
Radial basis functions were used to calculate the nei- 
ghbourhood activation values. The distances between the 
organized neurons at the end of the adoption procedure 
were determined.  

Since the number of neighbours for each neuron varies 
within the net grid, the distances of each neuron to all of 
its neighbour neurons was averaged instead of comparing 
just the sum of the neighbour distances. 

If the average of Euclidian distance considering all its 
neighbours Dj of a neuron is higher than 3 times the dis-
tance average calculated over all 144 neurons, a neuron 
was considered an outlier. The applied outlier detection 
rule is given by, 
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here, the position of the weight vector of the respective 
neuron j in the 53-dimensional input space is given by 
the vector X. 

The vector N is the corresponding position of the 
weight vector of a neighbour neuron i, n gives the total 
number of neighbours of neuron j in the self-organizing 
feature map lattice, and k is the total number of neurons 
in the lattice. 

Hence, to obtain a good generalization of the temporal 
phase shift patterns, the values assigned to those outlier 
neurons were excluded from further analyses because the 
associated temporal phase shift patterns are very different 
from all the other temporal patterns that were observed 
globally. 

After excluding outliers as well as the vectors from 
areas that showed spectra with the highest variance at-
tributed to sub-yearly temperature cycles, the remaining 
input data consisting of 461,312 phase shift values (8704 
grid points × 53 temporal moving-window steps) was 
presented to a new SOFM with the same topology for the 
second SOFM clustering run. The resulting 144 SOFM 
neurons that represent the SOFM clusters after the train-
ing procedure where then merged into the 4 final clusters 
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by using a k-means clustering algorithm. To summarize 
the global patterns, the best number of final clusters for 
the k-means procedure was determined by using the Da-
vies-Bouldin validity Index [38-40]. 

3. Results and Discussion 

3.1. Global Long-Term Phase Shifts 

The majority (96.2%) of the local phase shifts of the an-
nual temperature cycle between the two 30-year segm- 
ents, hereafter referred to as the long-term phase shifts, 
occur in the range of –10 to +10 days and 81.2% are in 
the range of –5 to +5 days (Figure 2). This long-term 
phase shifts can be considered an average of the last 30 
years. 

Here, a positive phase shift means that the phase of the 
later time series (1981-2010) is delayed compared to the 
reference period (1948-1977), whereas a negative phase 
shift means that the temperature cycle of the later time 
series is shifted towards earlier seasons compared to the 
reference period. Outliers and extremely rare phase shifts 
that exceeded ±10 days were excluded with respect to the 
frequency distribution of calculated long-term shifts. 
Areas that exhibited maxima in the variance spectrum of 
their respective temperature time series that were not 
caused by a yearly temperature cycle but attributed to 
fluctuations at higher frequencies were also excluded 
 

 
(a) 

 
(b) 

Figure 2. The relative frequency distribution (a) and the 
cumulative frequencies (b) of the global long-term phase 
shifts (1981-2010 vs 1948-1977). 

from further analyses. This applied to the majority of the 
tropical regions. 

A map with gridded results of all cross-spectrum phase 
shift analyses for the two 30-year periods is given in 
Figure 3. 

A belt along the mid latitudes of the oceans of the 
southern hemisphere is evident, showing positive time 
shifts. It is interrupted by areas of South America and 
Australia that exhibit negative phase shifts (earlier sea-
sons).  

Within this belt between 15˚ and 55˚ South, the oceans 
show a positive shift, the annual temperature cycle is 
delayed by 4.52 days (±1.95 days standard deviation) on 
average in the period from 1981 through 2010 in com-
parison to the earlier climate period from 1948 through 
1977 (Figure 3). 

Many spatial agglomerations of areas that exhibit simi- 
lar long-term phase shift are evident such as the major 
part of the Australian inland with a phase shift of –2.41 
(±0.82) days, as well as Tasmania with –3.76 (±0.1) days. 
By contrast, Northeast Australia exhibits a shift that is 
associated with a time delay of the current cycle of +3.51 
(±2.7) days. This result is in accordance with a long-term 
study at 11 wine-growing sites in Australia. The study 
shows an advanced maturity of wine grapes, associated 
with an earlier onset of spring in Southeast Australia. 
However, a delayed maturity of 0.1 days per year was 
observed at a site located in Southwest Australia [41]. 

The direction and magnitude of the calculated long- 
term shift of –1.44 days over Northeast China (Figure 3) 
matches the results of a long-term study in Beijing based 
on a local time series [11].  

Over Europe, an east-west gradient is noticeable where 
the highest negative shifts of –3.16 (±2.03) days, associ-
ated with an earlier onset of spring, were found in East-
ern and Central Europe. Globally, the highest phase 
shifts of –5.5 days towards earlier seasons on land were 
found in regions in Belarus and Northwest Russia. The 
temperature in Alaska shows the highest phase shifts of 
its annual cycle in North America with –4.9 days during 
the last 30 years.  

Over the vast area of Russia, the annual cycle of tem-
perature is shifted by –2.44 (±1.36) days on average, 
whereas the long-term shift over Western Europe in-
cluding most parts of France, Spain, Portugal, Ireland, 
and Great Britain is considerably smaller with –0.8 (±0.37) 
days.  

A noticeable spatial variance of the shifts in the tem-
perature cycle was also observed across the continental 
USA. A west-east gradient shows a maximum negative 
shift of –3.04 (±1.54) on the West Coast (Washington, 
Oregon, and California) followed by the areas in the 
Midwest –2.25 (±1.28), whereas the southeast USA 
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Figure 3. Spatial distribution of the long-term temperature phase shifts for all grid cells with a predominant annual cycle of 
the near-surface air temperature. 
 

Table 1. Large-area averages and standard deviations of long- 
term temperature phase shifts. 

including Florida, South Carolina, and Southeastern Ala- 
bama exhibits a positive shift of 0.78 (±0.57) days during 
the last 30 years on average. 

 Average (days) σ (days) 

Overall –0.21 3.46 

Land –1.44 2.06 Global 

Ocean +0.37 3.84 

Overall –0.88 2.59 

Land –1.40 2.14 Northern Hemisphere

Ocean –0.60 2.85 

Overall +0.46 4.04 

Land –1.51 1.93 Southern Hemisphere

Ocean +1.16 4.34 

Africa +0.32 2.68 

Antarctica –1.90 1.46 

Asia –1.17 1.83 

Australia –0.53 2.24 

Europe –2.88 1.93 

North America –2.08 2.01 

South America +0.52 4.53 

The oceans also show earlier as well as later phases of 
the annual temperature cycle depending on their loca-
tions. A clear annual cycle of the sea surface temperature, 
also incorporating the tropics, has been shown in previ-
ous studies [42,43]. 

With the exception of the Antarctic Peninsula and ad-
jacent waters of the Weddell Sea and Ross Sea, the Ant-
arctic continent is also affected by an advanced yearly 
cycle with an average temperature shift of –1.9 (±1.46) 
days. The effects of large ocean currents on surface tem-
perature lead to local temperature regimes that are re-
flected in the spatial patterns of temperature cycle shifts. 
The geographic position of these areas conforms to the 
position of major ocean gyres.  

This can be observed in the area of North Pacific gyre 
that is surrounded by the mainstreams of the Alaska cur-
rent and the Oyashio current. Moreover, the area that is 
surrounded by the North Atlantic gyre created by the 
Gulf Stream and the Canary current, respectively is 
clearly visible and centered at 40˚ North and 50˚ West.  

The average phase shift values on a global and conti-
nental scale are given in Table 1. 
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This in particular affects the informative value of glo- 
bal and hemispheric averages. Nevertheless, with exception 
of Africa and South America the annual temperature cy-
cle of the continents exhibit phase shift averages between 
0.5 and almost 3 days towards earlier seasons. The spa-
tial coverage of the continents is as given in Figure 3. 
Most of these large area values show high standard de-
viations caused by the high spatial variance evident in the 
results (Figure 3). 

3.2. Temperature Shift Driven Changes of 
Phenological Events 

In order to assess the effects of the temperature phase 
shift on phenological events and to validate the method 
used to calculate the phase shift values, the long-term 
North American First Leaf and First Bloom Lilac Phe- 
nology dataset was compared to the corresponding shifts 
of the temperature cycle based on the NCEP/NCAR Re-
analysis 1 dataset. Starting 1956 lilac shrubs (Syringa 
chinensis clone and Syringa vulgaris) were planted across 
the USA and the dates of the first leaf were recorded an-
nually [17,44-46]. Because the first bloom is strongly 
controlled by photoperiod [47] while the beginning of 
foliation is strongly controlled by temperature [48], the 
“first leaf” record was used as indicator to analyze the 
effect of the temperature phase shift. 

The lilac “first leaf” time series have a length of 3 to 
23 years with an average of 10.6 years. 

A moving-window analysis (1-year steps and 1-year 
window width) was applied to calculate annual phase 
shifts from the Reanalysis 1 temperature dataset for the 

periods with available lilac data. Only meaningful and 
statistically significant correlations with a Pearson coef-
ficient r of at least ±0.4 and p < 0.1 are shown.  

The results show that 82.5% of the phenological time 
series exhibits a correlation coefficient of +0.6 or higher 
with the corresponding temperature phase shift time se-
ries for the respective area (Figure 4). 

The occurrence of weak correlations (r < 0.4) or high 
negative correlations indicates that parameters, other than 
air temperature influence the life cycle of the plants and 
thus the day of “first leaf”. In particular, radiation and 
water availability are also considered to drive foliation 
and influence its timing [49]. 

The mostly high positive correlations show that chan- 
ges in the phase of the temperature cycle exert strong eff- 
ects on the life cycle of plants. As the foliation of trees 
and shrubs is directly related to their ability to assimilate 
carbon, the results also imply the existence of a strong 
effect of the phase shifts on vegetation carbon dynamics 
on a global scale. 

Unfortunately, long term phenological records are lar- 
gely confined to North America and Europe, limiting our 
ability to make larger scale conclusions about the phen- 
ological impacts of seasonal shifts in temperature cycles. 

Nevertheless, the North American First Leaf and First 
Bloom Lilac Phenology dataset represents a well-docu- 
mented long-term dataset that covers various climates 
and growing conditions in the mid-latitudes. 

For the correlation analyses of the annual temperature 
shift values derived from the Reanalysis 1 dataset and the 
annual phenological shifts of the first leaf lilac dataset,

 

 

Figure 4. Correlations between the time series of the annual temperature cycle and the time series of the North American 
first leaf lilac phenology dataset. 
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the phenological sites were assigned to the closest grid 
point of the 2.5˚ × 2.5˚ Reanalysis 1 dataset as given in 
Table 2. 

In cases where more than one site was close to the grid 
point and all of the points fulfilled the significance re-
quirements for the correlation analysis with the tempera-
ture phase shift series, the station with the longest dataset 

was chosen. 
All correlations are significant on a confidence level of 

90% or higher. The p-values for the Pearson correlation 
factors r were tested using Student t significance tests. 

The p-values, given in Table 2 for the two-tailed tests, 
were calculated conservatively by doubling the more 
significant of the respective two one-tailed p-values. 

 
Table 2. The locations and statistical parameters for the intercomparison of shifts of the temperature cycle and associated 
phenological shifts. Values that are significant on a 95% level are bold. 

Location of 

Phenological lilac site 
Nearest grid point 

Latitude Longitude Latitude Longitude 

r p 
Length of time 
series (years) 

31.54 –109.49 30.00 –107.50 0.876 0.001 10 

32.56 –107.34 30.00 –105.00 0.642 0.002 20 

32.06 –103.12 30.00 –102.50 0.855 0.014 7 

32.58 –102.24 30.00 –100.00 0.955 0.045 4 

34.58 –111.45 32.50 –110.00 0.887 0.008 7 

34.07 –109.56 32.50 –107.50 0.752 0.085 6 

35.19 –106.33 32.50 –105.00 0.670 0.034 10 

35.24 –104.11 32.50 –102.50 0.583 0.047 12 

33.15 –98.21 32.50 –97.50 0.772 0.025 8 

33.35 –95.54 32.50 –95.00 0.994 0.006 4 

36.54 –121.36 35.00 –120.00 0.962 0.009 5 

37.37 –119.02 35.00 –117.50 0.563 0.090 10 

36.27 –103.09 35.00 –102.50 0.649 0.005 17 

36.32 –88.85 35.00 –87.50 0.666 0.025 11 

39.09 –123.12 37.50 –122.50 0.487 0.034 19 

40.09 –122.15 37.50 –120.00 0.731 0.039 8 

37.37 –118.01 37.50 –117.50 0.582 0.016 18 

39.17 –114.51 37.50 –112.50 –0.520 0.047 15 

39.03 –108.27 37.50 –107.50 0.747 0.013 10 

39.53 –106.42 37.50 –105.00 0.912 0.088 4 

39.14 –104.45 37.50 –102.50 0.722 0.043 8 

39.38 –101.10 37.50 –100.00 0.415 0.087 18 

38.82 –90.82 37.50 –90.00 0.789 0.012 9 

40.25 –76.93 37.50 –75.00 0.432 0.039 23 

40.38 –123.54 40.00 –122.50 0.835 0.079 5 

40.08 –120.21 40.00 –120.00 0.519 0.033 17 

41.35 –109.13 40.00 –107.50 –0.715 0.071 7 

41.18 –105.38 40.00 –105.00 0.496 0.084 13 

42.03 –93.80 40.00 –92.50 0.963 0.037 4 

40.10 –88.23 40.00 –87.50 0.634 0.036 11 

42.40 –86.28 40.00 –85.00 0.823 0.044 6 

41.92 –84.02 40.00 –82.50 0.762 0.017 9 

41.68 –78.50 40.00 –77.50 0.596 0.090 9 

39.97 –75.63 40.00 –75.00 0.686 0.075 10 

41.42 –73.70 40.00 –72.50 0.622 0.055 10 
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Continued 

44.38 –123.35 42.50 –122.50 0.672 0.033 10 

44.49 –119.25 42.50 –117.50 –0.857 0.007 8 

43.15 –116.23 42.50 –115.00 –0.675 0.016 12 

43.55 –113.37 42.50 –112.50 –0.945 <0.001 8 

45.12 –111.41 42.50 –110.00 –0.410 0.081 19 

43.03 –104.42 42.50 –102.50 0.990 0.010 4 

44.12 –89.53 42.50 –87.50 0.625 0.072 9 

42.27 –77.78 42.50 –77.50 0.666 0.013 13 

42.90 –75.65 42.50 –75.00 0.771 0.015 9 

44.22 –73.58 42.50 –72.50 0.918 0.043 3 

44.48 –71.57 42.50 –70.00 0.451 0.040 21 

47.10 –123.39 45.00 –122.50 0.907 0.049 3 

46.00 –120.18 45.00 –120.00 0.426 0.078 18 

45.43 –118.38 45.00 –117.50 0.585 0.035 19 

47.28 –114.53 45.00 –112.50 –0.546 0.066 12 

45.55 –108.15 45.00 –107.50 –0.496 0.043 17 

46.18 –107.13 45.00 –105.00 –0.912 0.001 9 

45.58 –95.92 45.00 –95.00 0.578 0.015 17 

48.12 –122.42 47.50 –122.50 0.858 0.063 5 

48.01 –106.24 47.50 –105.00 0.697 0.082 7 

48.18 –101.30 47.50 –100.00 0.632 0.037 11 

49.25 –57.42 47.50 –60.00 –0.861 0.028 6 

 
3.3. Spatiotemporal Patterns of the Temperature 

Phase Shifts 

To examine the development of the annual temperature 
phase shifts over the last six decades while accounting 
for spatial variances, the annual phase shift was analyzed 
by finding spatial similarities in the temporal patterns 
rather then using simple geographic subdivisions like the 
hemispheres or continents. 

The temporal courses of the phase shifts were clus-
tered using a SOFM neural network in connection with 
an ensuing k-means clustering procedure. 

The Davies-Bouldin index for various numbers of 
trend-clusters is given in Figure 5. The input values for 
the SOFM network clustering were not normalized be-
fore being presented to the network as the inputs of all 53 
dimensions were given in the same unit as phase shift xy  
in days. 

The Davies-Bouldin index reached a minimum when 
the 144 SOFM clusters were merged to 4 final clusters 
(Figure 5) indicating that the separation was best in 
terms of getting a high similarity within each cluster in 
combination with a high dissimilarity between the 4 
clusters. This two-step clustering has been proven to 
provide a more accurate summarization of multidimen-
sional input data than a single SOFM clustering or k- 
means clustering approach alone. Moreover, because the 

 

Figure 5. The cluster separation performances over 40 clu- 
sters expressed by the corresponding Davies-Bouldin valid-
ity index. 
 
pre-clusters built by the SOFM are local averages of the 
raw values, the final k-means clustering is less sensitive 
to random variations than a direct k-means clustering of 
the original data [36,50]. The clustering result shows four 
very different temporal patterns and trends in the devel-
opments of the shifts of the yearly temperature cycles 
(Figures 6(a) and (b)).  

Clusters 1 and 2 exhibit trends towards positive shifts 
whereas clusters 3 and 4 show development towards 
negative phase shifts (Figure 6(b)). In comparison to the 
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(a) 

 
(b) 

Figure 6. Spatial distribution and the courses of the clustered annual phase shifts using 10-year comparison periods. The gray 
error bars show the ±1σ standard deviations. The dashed lines show the linear trends (p < 0.01). Note the different scales of 
the vertical axes. 
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steep descent of cluster 3, however, the temperature shift 
in the areas assigned to cluster 4 shows a less pro-
nounced trend in the first five decades of the analyzed 
period. 

The averages of the spatially corresponding long-term 
shift shown in (Figure 3) also indicate that the phase of 
the temperature cycle during the recent 30 years is re-
markably ahead of the temperature cycle during the early 
period from 1948 through 1977. The associated areas 
exhibit the strongest negative averaged long-term phase 
shift of –3.12 days (Table 3). 

The global spatial assignments to these phase shift 
clusters are shown on the map in Figure 6(a). A com-
parison of Figures 3 and 6 shows that the assignment of 
areas according to their long-term shift leads to similar 
spatial patterns as an apportionment based on the devel-
opment of the phase shifts over time. To check the statis-
tical significance of trends of the clustered temporal 
courses of the phase shift, two-tailed Mann-Kendall trend 
tests were applied. The tests proof that all trends given in 
Figure 6(b) are significant on a 99% confidence level. 
To account for temporal changes of the course of the 
phase shift in the areas assigned to cluster 2 and 3, the 
respective linear regressions were calculated for two pe-
riods. 

The distinct areas over the West Atlantic, Western 
China, and the Antarctic Peninsula for instance, which 
differ from their surrounding vicinity in terms of their 
long-term shift (Figure 3), are also assigned to different 
trend clusters than the respective neighboring areas 
(Figure 6(a)). In addition to short-term fluctuations, the 
courses of the clustered phase shift values show clear 
trends.  

The linear trends in the areas assigned to clusters 1 and 
4 are monotonically increasing or decreasing, respec-
tively. By contrast, the linear trends of the phase shift 
values show a noticeable change in central and southeast 
Europe as well as in the Western USA (both cluster 3), 
beginning in the late 1980s when the trend turns from an 
earlier to later phase shift. Nevertheless, the phase shift 

shows that the temperature cycle of the most recent dec-
ade from 2001 to 2010 is still +4.2 (±1.6) days ahead of 
the temperature cycle during the reference decade 1948- 
1957, averaged over the areas assigned to cluster 3.  

The course of the phase shifts calculated for cluster 2 
also exhibits a change in direction in the late 1970s 
(Figure 6(b)). The local phase shifts summarized in 
cluster 2 show an inflection point in the temporal course 
from negative to positive phase shifts. Here, the tem-
perature cycle of the following years used to be ahead of 
the temperature cycle of the reference decade (1948-1957) 
until the late 1990s. Thereafter, the temperature cycle is 
delayed in comparison to the reference decade as a result 
of a relative phase shift of about 2 days. 

The standard deviations given in the long-term shifts 
are attributed to the spatial variations within the clusters. 
The temporal patterns of the phase shift in combination 
with the maps given in Figures 3 and 6(a) show that the 
phase shift values are varying significantly over space 
and over time. This partially explains the discrepancy 
between the finding of Thomson [6] who used a long- 
term central England time series, and the average shift in 
the opposite direction in Northern Europe that was found 
in another study [10] using data with a lower spatial res-
olution and from different periods. 

Areas that are only several hundred km apart can ex-
hibit very different shift values as observed across China 
or Northern Europe (Figure 3).  

4. Summary and Conclusions 

The scope and detail presented in this analysis shed light 
on several common assumptions. Estimating long-term 
shifts through extrapolation from phenological data or 
temperature data measured over a few years only, is 
likely to be misleading. 

Conversely, scaling down observed long-term shifts to 
“days per-year” also is prone to false conclusions due to 
the temporal variance of the shifts, which do not neces-
sarily monotonically increase or decrease over time. An-
other weakness in the calculation of linear long-term

 
Table 3. Shift of the 1981-2010 temperature cycles in comparison to the 1948-1975 cycles of the clustered areas and the linear 
trends of the sliding window analyses (α = 0.99). 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Long-term shift (days) 
(1948-1977 vs 1981-2010) 

3.56 ± 2.65 1.83 ± 1.57 –3.12 ± 2.27 –1.44 ± 1.38 

inflection period: 
1969-1978 

inflection period: 
1989-1998  

before: –1.2 (R2 = 0.56)  
(P < 0.001) 

before: –1.1 (R2 = 0.81) 
(P < 0.001) 

Linear slope  
(Days per decade) 

0.9 (R2 = 0.85) 
(P < 0.001) 

after: 2.4 (R2 = 0.9) (P < 0.001) 
after: 1.6 (R2 = 0.71) 

(P = 0.003) 

–0.21 (R2 = 0.34)
(P < 0.001) 
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trends from data collected over less than 30 years is that 
results highly depend on the chosen period as the shifts 
change direction over time. Also calculations of large 
spatial averages are prone to misleading results as phase 
shifts are heterogeneous on continental and multi-conti- 
nental scales as shown here (Table 1). Therefore, for the 
assessment of large area trends in the annual phase shift 
an appropriate clustering of the observed shifts is re-
quired and could be reached with a combination of an 
SOFM and a k-means algorithm. Four highly significant 
large-area trends for the globe were found with various 
directions and even changing directions of the trends 
over time (Figure 6). This allows a classification of 
phase shifts of the annual temperature or temporal shifts 
of phenological events that were observed in many spa-
tially and temporally constricted studies. 

The highest long-term phase shifts towards earlier 
seasons on land from up to –5.5 days over the last 30 
years were found in the areas of continental Europe in 
Belarus and West Russia. Considering the occurrence of 
such high phase shift values and the effects on the timing 
of the foliation, coupled climate-carbon cycle models 
that predict vegetation responses and feedbacks to cli-
mate change need to incorporate the effects of the tem-
perature phase shift.  

The timing of foliation and hence the ability to as-
similate CO2 is highly coupled with the phase shift of 
temperature. For all of the above reasons, integrating the 
high resolution spatial and temporal trends and phase 
shift values presented in this study is an indispensable 
step for state-of-the-art climate modeling. 

5. Acknowledgements 

This research was supported by the Office of Science 
(BER), US Department of Energy. The NCEP/NCAR 
Reanalysis 1 data was provided by the NOAA/OAR/ 
ESRL PSD, Boulder, Colorado, USA, from their internet 
site at http://www.esrl.noaa.gov/psd/data/gridded/data.ncep. 
rea nalysis.html. The climate report data of the NOAA 
National Climatic Data Center is available at http://ww 
w.ncdc.noaa.gov/sotc/global. The North American First 
Leaf and First Bloom Lilac Phenology dataset was pro-
vided by the World Data Center for Paleoclimatology, 
Boulder and the NOAA paleoclimatology program at 
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/phenology/north_a
merica_lilac.txt. The authors gratefully acknowledge the 
provision of the data and the easy public access to these 
outstanding long-term datasets. 

REFERENCES 
[1] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, 

et al. Eds., “Climate Change 2007: The Physical Science 
Basi,” Contribution of Working Group I to the 4th Assess-

ment Report of the Intergovernmental Panel on Climate 
Change, Cambridge University Press, Cambridge, 2007, 
p. 996. 

[2] J. Hansen, R. Ruedy, J. Glascoe and M. Sato, “GISS 
Analysis of Surface Temperature Change,” Journal of 
Geophysical Research, Vol. 104, No. D24, 1999, pp. 
30997-31022. doi:10.1029/1999JD900835 

[3] J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. Lea and M. 
Medina-Elizade, “Global Temperature Change,” Pro-
ceedings of the National Academy of Sciences, Vol. 103, 
No. 39, 2006, pp. 14288-14293. 
doi:10.1073/pnas.0606291103 

[4] P. A. Agudelo and J. A. Curry, “Analysis of Spatial Dis-
tribution in Tropospheric Temperature Trends,” Geo-
physical Research Letters, Vol. 31, 2004, Article ID: 
L22207. doi:10.1029/2004GL020818 

[5] J. Hansen, R. Ruedy, M. Sato and K. Lo, “Global Surface 
Temperature Change,” Reviews of Geophysics, Vol. 48, 
No. 4, 2010, Article ID: RG4004. 
doi:10.1029/2010RG000345 

[6] D. J. Thomson, “The Seasons, Global Temperature, and 
Precession,” Science, Vol. 268, No. 5207, 1995, pp. 59- 
68. doi:10.1126/science.268.5207.59 

[7] M. Mann and J. Park, “Greenhouse Warming and Changes 
in the Seasonal Cycle of Temperature: Model Versus 
Observations,” Geophysical Research Letter, Vol. 23, No. 
10, 1996, pp. 1111-1114. doi:10.1029/96GL01066 

[8] C. J. Wallace and T. J. Osborn, “Recent and Future 
Modulation of the Annual Cycle,” Climate Research, Vol. 
22, No. 1, 2002, pp. 1-11. 
doi:10.3354/cr022001 

[9] M. Palus, D. Novotna and P. Tichavsky, “Shifts of Sea-
sons at the European Mid-Latitudes: Natural Fluctuations 
Correlated with the North Atlantic Oscillation,” Geo-
physical Research Letter, Vol. 32, 2005, Article ID: 
L12805. 

[10] A. R. Stine, P. Huybers and I. Y. Fung, “Changes in the 
Phase of the Annual Temperature Cycle of Surface Tem-
perature,” Nature, Vol. 457, No. 7228, 2009, pp. 435-440. 
doi:10.1038/nature07675 

[11] C. Qian, C. Fu, Z. Wu and Z. Yan, “The Role of Changes 
in the Annual Cycle in Earlier Onset of Climatic Spring 
in Northern China,” Advances in Atmospheric Sciences, 
Vol. 28, No. 2, 2011, pp. 284-296.  
doi:10.1007/s00376-010-9221-1 

[12] A. Aasa, J. Jaagus, R. Ahas and M. Sepp, “The Influence 
of Atmospheric Circulation on Plant Phenological Phases 
in Central and Eastern Europe,” International Journal of 
Climatology, Vol. 24, No. 12, 2004, pp. 1551-1564. 
doi:10.1002/joc.1066 

[13] K. M. De Beurs and G. M. Henebry, “Northern Annular 
Mode Effects on the Land Surface Phenologies of North-
ern Eurasia,” Journal of Climate, Vol. 21, 2008, pp. 
4257-4279. doi:10.1175/2008JCLI2074.1 

[14] D. J. Kang and H. J. Wang, “Analysis on the Decadal 
Scale Variation of the Dust Storm in North China,” Sci-
ence in China Series D, Vol. 48, No. 12, 2005, pp. 2260- 
2266. doi:10.1360/03yd0255 

Copyright © 2012 SciRes.                                                                                  ACS 

http://dx.doi.org/10.1029/1999JD900835
http://dx.doi.org/10.1073/pnas.0606291103
http://dx.doi.org/10.1029/2004GL020818
http://dx.doi.org/10.1029/2010RG000345
http://dx.doi.org/10.1126/science.268.5207.59
http://dx.doi.org/10.1029/96GL01066
http://dx.doi.org/10.3354/cr022001
http://dx.doi.org/10.1038/nature07675
http://dx.doi.org/10.1007/s00376-010-9221-1
http://dx.doi.org/10.1002/joc.1066
http://dx.doi.org/10.1175/2008JCLI2074.1
http://dx.doi.org/10.1360/03yd0255


A. SCHMIDT  ET  AL. 87

[15] A. Menzel, T. H. Sparks, N. Estrella, E. Koch, A. Aasa, et 
al., “European Phenological Response to Climate Change 
Matches the Warming Pattern,” Global Change Biology, 
Vol. 12, No. 10, 2006, pp. 1969-1976.  
doi:10.1111/j.1365-2486.2006.01193.x 

[16] T. L. Root, J. T. Price, K. R. Hall, S. H. Schneider and C. 
Rosenzweig, et al., “Fingerprints of Global Warming on 
Wild Animals and Plants,” Nature, Vol. 421, 2003, pp. 
57-60. doi:10.1038/nature01333 

[17] M. D. Schwartz, R. Ahas and A. Aasa, “Onset of spring 
starting earlier across the Northern Hemisphere,” Global 
Change Biology, Vol. 12, No. 2, 2006, pp. 343-351. 
doi:10.1111/j.1365-2486.2005.01097.x 

[18] D. Dragoni, H. P. Schmid, C. A. Wayson, H. Potter, C. S. 
B. Grimmond, et al., “Evidence of Increased Net Ecosys-
tem Productivity Associated with a Longer Vegetated 
Season in a Deciduous Forest in South-Central Indiana, 
USA,” Global Change Biology, Vol. 17, No. 2, 2011, pp. 
886-897. doi:10.1111/j.1365-2486.2010.02281.x 

[19] C. Parmesan, “Influences of Species, Latitudes and Me- 
thodologies on Estimates of Phenological Response to 
Global Warming,” Global Change Biology, Vol. 13, No. 
9, 2007, pp. 1860-1872.  
doi:10.1111/j.1365-2486.2007.01404.x 

[20] A. L. Westerling, H. G. Hidalgo, D. R. Cayan and T. W. 
Swetnam, “Warming and Earlier Spring Increase Western 
U.S. Forest Wildfire Activity,” Science, Vol. 18, 2006, pp. 
940-943. doi:10.1126/science.1128834 

[21] G. M. Jenkins and D. G. Watts, “Spectral Analysis and Its 
Applications,” Holden-Day, San Francisco, 1968, p. 525. 

[22] M. B. Priestley, “Spectral Analysis and Time Series,” 
Academic Press, London, 1981, p. 890. 

[23] T. Kohonen, “Self-Organization and Associative Mem-
ory,” 3rd Edition, Springer, New York, 1998, p. 312. 

[24] T. Kohonen, “The Self-Organizing Map,” Proceedings of 
IEEE, Vol. 78, No. 9, 1990, pp. 1464-1480. 
doi:10.1109/5.58325 

[25] World Meteorological Organization, “Calculation of 
Monthly and Annual 30-Year Standard Normals,” World 
Meteorological Organization, Geneva, 1989. 

[26] World Meteorological Organization, “The Role of Cli-
matological Normals in a Changing Climate,” WCDMP- 
No. 61, WMO-TD/No. 1377, World Meteorological Or-
ganization, Geneva, 2007. 

[27] T. Smith, M. Thomas, R. W. Reynolds, T. C. Peterson 
and J. Lawrimore, “Improvements to NOAA’s Historical 
Merged Land-Ocean Surface Temperature Analysis (1880- 
2006),” Journal of Climate, Vol. 21, No. 10, 2008, pp. 
2283-2296. doi:10.1175/2007JCLI2100.1 

[28] NOAA National Climatic Data Center.  
http://www.ncdc.noaa.gov/sotc/global 

[29] E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D 
Deaven, et al. “The NCEP/NCAR 40-Year Reanalysis 
Project,” Bulletin of the American Meteorological Society, 
Vol. 77, No. 3, 1996, pp. 437-471.  
doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO
;2 

[30] The NOAA Earth System Research Laboratory, Physical 

Science Division.  
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.rean
alysis.html 

[31] R. Kistler, E. Kalnay, W. Collins, S. Saha, G. White, et 
al., “The NCEP–NCAR 50-Year Reanalysis: Monthly 
Means CD-ROM and Documentation,” Bulletin of the 
American Meteorological Society, Vol. 82, No. 2, 2001, 
pp. 247-267. 
doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.
CO;2 

[32] D. Barriopedro, E. M. Fischer, J. Luterbacher, R. M. 
Trigo and R. García-Herrera, “The Hot Summer of 2010: 
Redrawing the Temperature Record Map of Europe,” 
Science, Vol. 332, No. 6026, 2011, pp. 220-224. 
doi:10.1126/science.1201224 

[33] X.-Z. Wang, M. Yoshizawa, A. Tanaka, K. Abe, K. 
Imachi, et al., “An Automatic Monitoring System for Ar-
tificial Hearts Using a Hierarchical Self-Organizing Map,” 
The International Journal of Artificial Organs, Vol. 4, No. 
3, 2001, pp. 198-204. doi:10.1007/BF02479894 

[34] N. Tigrine-Kordjani, F. Chemat, B. Y. Meklati, L. Tuduri, 
J. L. Giraudel, et al., “Relative Characterization of Rose- 
mary Samples According to Their Geographical Origins 
Using Microwave-Accelerated Distillation, Solid-Phase 
Micro Extraction and Kohonen Self- Organizing Maps,” 
Analytical and Bioanalytical Chemistry, Vol. 389, No. 2, 
2007, pp. 631-641. doi:10.1007/s00216-007-1441-6 

[35] U. S. N. Murty, A. K. Banerjee and N. Arora, “Applica-
tion of Kohonen Maps for Solving the Classification Puz-
zle in AGC Kinase Protein Sequences,” Interdisciplinary 
Sciences Computational Life Sciences, Vol. 1, No. 3, 
2009, pp. 173-178. doi:10.1007/s12539-009-0032-1 

[36] A. Schmidt, C. Hanson, J. Kathilankal and B. E. Law, 
“Classification and Assessment of Turbulent Fluxes above 
Ecosystems in North-America with Self-Organizing Fea- 
ture Map Networks,” Agricultural and Forest Meteo- 
rology, Vol. 151, No. 4, 2011, pp. 508-520. 
doi:10.1016/j.agrformet.2010.12.009 

[37] E. Arsuaga-Uriarte and F. Diaz-Martin, “Topology Pres-
ervation in SOM,” International Journal of Applied 
Mathematics and Computer Science, Vol. 1, No. 1, 2005, 
pp. 19-22.  

[38] D. L. Davies and D. W. Bouldin, “A Cluster Separation 
Measure,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol. 1, No. 2, 1979, pp. 224-227.  
doi:10.1109/TPAMI.1979.4766909 

[39] A. K. Jain and R. C. Dubes, “Algorithms for Clustering 
Data,” Prentice Hall, Englewood Cliffs, 1988, p. 334.   

[40] U. Maulik and S. Bandyopadhyay, “Performance Eva- 
luation of Some Clustering Algorithms and Validity In-
dices,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, Vol. 24, No. 12, 2002, pp. 1650-1654.  
doi:10.1109/TPAMI.2002.1114856 

[41] L. B. Webb, P. H. Whetton and E. W. R. Barlow, “Ob-
served Trends in Winegrape Maturity in Australia,” 
Global Change Biology, Vol. 17, No. 8, 2011, pp. 2707- 
2719. doi:10.1111/j.1365-2486.2011.02434.x 

[42] J. A Carton and Z. Zhou, “Annual Cycle of Sea Surface 

Copyright © 2012 SciRes.                                                                                  ACS 

http://dx.doi.org/10.1111/j.1365-2486.2006.01193.x
http://dx.doi.org/10.1038/nature01333
http://dx.doi.org/10.1111/j.1365-2486.2005.01097.x
http://dx.doi.org/10.1111/j.1365-2486.2010.02281.x
http://dx.doi.org/10.1111/j.1365-2486.2007.01404.x
http://dx.doi.org/10.1126/science.1128834
http://dx.doi.org/10.1109/5.58325
http://dx.doi.org/10.1175/2007JCLI2100.1
http://dx.doi.org/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(2001)082%3C0247:TNNYRM%3E2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2001)082%3C0247:TNNYRM%3E2.3.CO;2
http://dx.doi.org/10.1126/science.1201224
http://dx.doi.org/10.1007/BF02479894
http://dx.doi.org/10.1007/s00216-007-1441-6
http://dx.doi.org/10.1007/s12539-009-0032-1
http://dx.doi.org/10.1016/j.agrformet.2010.12.009
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1109/TPAMI.2002.1114856
http://dx.doi.org/10.1111/j.1365-2486.2011.02434.x


A. SCHMIDT  ET  AL. 

Copyright © 2012 SciRes.                                                                                  ACS 

88 

Temperature in the Tropical Atlantic Ocean,” Journal of 
Geophysical Research, Vol. 102, No. C13, 1997, pp. 
27813-27824. doi:10.1029/97JC02197 

[43] P. Knudsen, O. B. Andersen and T. Knudsen, “Annual 
Cycles of ERS-1 Altimetric Sea Surface Height Data and 
ATSR Sea Surface Temperature Data,” 3rd ERS Symp. on 
Space at the Service of our Environment, Florence, 17-21 
March 1997. 

[44] M. D. Schwartz, “Monitoring Global Change with Phenol-
ogy: The Case of the Spring Green Wave,” International 
Journal of Biometeorology, Vol. 38, No. 1, 1994, pp. 18- 
22. doi:10.1007/BF01241799 

[45] M. D. Schwartz and B. E. Reiter, “Changes in North 
American Spring,” International Journal of Climatology, 
Vol. 20, No. 8, 2000, pp. 929-932. 
doi:10.1002/1097-0088(20000630)20:8<929::AID-JOC5
57>3.0.CO;2-5 

[46] D. R. Cayan, S. A. Kammerdiener, M. D. Dettinger, J. M. 
Caprio and D. H. Peterson, “Changes in the Onset of 
Spring in the Western United States,” Bulletin of the 

American Meteorological Society, Vol. 82, No. 3, 2001, 
pp. 399-415. 
doi:10.1175/1520-0477(2001)082<0399:CITOOS>2.3.C
O;2 

[47] T. Imaizumi and S. A. Kay, “Photoperiodic Control of 
Flowering: Not Only by Coincidence,” Trends in Plant 
Science, Vol. 11, No. 11, 2006, pp. 550-558.  
doi:10.1016/j.tplants.2006.09.004 

[48] J. Repkova, M. Brestic and K. Olsovska, “Leaf Growth 
under Temperature and Light Control,” Plant, Soil and 
Environment, Vol. 55, No. 12, 2009, pp. 551-557. 

[49] B. Min, “Comparison of Phenological Characteristics for 
Several Woody Plants in Urban Climates,” Journal of 
Plant Biology, Vol. 43, No. 1, 2000, pp. 10-17.  
doi:10.1007/BF03031030 

[50] J. Vesanto and E. Alhoniemi, “Clustering of the Self- 
Organizing Map,” IEEE Transactions on Neural Networks, 
Vol. 11, No. 3, 2000, pp. 586-600.  
doi:10.1109/72.846731 

 
 

http://dx.doi.org/10.1007/BF01241799
http://dx.doi.org/10.1002/1097-0088(20000630)20:8%3C929::AID-JOC557%3E3.0.CO;2-5
http://dx.doi.org/10.1002/1097-0088(20000630)20:8%3C929::AID-JOC557%3E3.0.CO;2-5
http://dx.doi.org/10.1175/1520-0477(2001)082%3C0399:CITOOS%3E2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2001)082%3C0399:CITOOS%3E2.3.CO;2
http://dx.doi.org/10.1016/j.tplants.2006.09.004
http://dx.doi.org/10.1007/BF03031030
http://dx.doi.org/10.1109/72.846731

