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Abstract 
 
The gravitational instability of a thermally conducting self-gravitating system permeated by a uniform and 
oblique magnetic field has been analyzed in the framework of Tsallis’ nonextensive theory for possible mod-
ifications in the Jeans’ instability criterion. It is concluded that the instability criterion is indeed modified 
into one that depends explicitly on the nonextensive parameter. The influence of thermal conductivity on the 
system stability is also examined. 
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1. Introduction 
 
In any subject of astrophysics and cosmology, many- 
body gravitating systems play an essential role. Globular 
clusters and elliptical galaxies, which are recognized as 
self-gravitating stellar systems, are typical examples. 
Hence, the study of stability of self-gravitating systems 
becomes very essential. 

The condition of gravitational instability of self- gra-
vitating systems is determined by the Jeans’ criterion put 
forward by James Jeans [1] in 1902. In terms of wave-
number, the criterion reads: “An infinite homogenous 
self-gravitating atmosphere is unstable for all wavenum-
bers k  less than the Jeans’ wavenumber Jk   

04 SG v  , where 0  is the density, G  is the gravita-

tional constant, BSv k T m  is the speed of sound, Bk  

is the Boltzmann’s constant, T is the physical tempera-
ture and m is the mass of the particle.” 

The Jeans’ problem has been extensively studied 
under varying assumptions. A comprehensive account 
of these studies has been given by Chandrasekhar [2] 
in his monograph on hydrodynamic and hydromagnetic 
stability. The Hall Effect on plasma stability has been 
analyzed by several researchers (Ariel [3], Bhowmik [4] 
and Ali & Bhatia [5]) leading to the conclusion that 
Hall Currents are destabilizing in nature. Vyas & 
Chhajlani [6], Sharma & Chand [7], Khan & Bhatia [8] 
have investigated the influence of permeability of po-
rous medium on plasma instability due of the impor-

tance of such studies in geology and heavy oil recovery. 
In view of the role played by thermally conducting 
fluids in various astrophysical and geophysical phe-
nomena as well as industrial and engineering processes, 
the stability of such fluids has been the center of nu-
merous analyses (Kumar [9],Chhajlani and Vaghela 
[10], Mehta and Bhatia [11]). 

In all these investigations, the Boltzmann-Gibbs statis-
tical mechanics have been employed to study the ther-
modynamics of the system. However, the physical re-
strictions of this formalism have been recently pointed 
out in different literatures based on various studies in-
volving long-range interacting systems (Padmanabhan 
[12], Taruya & Sakagami [13]). As an alternative, the 
nonextensive theory proposed by Tsallis [14] is gaining 
considerable attention. 

The new framework for thermodynamics based on 
Tsallis’ nonextensive theory has been applied exten-
sively to deal with a variety of interesting problems to 
which the standard B-G statistical mechanics cannot be 
applied. Examples include the study of waves and insta-
bility phenomena, such as the plasma oscillations [15,16], 
the relativistic Langmuir waves [17], the linear or nonli-
near Landau damping in plasmas [18] and dark matter 
and gas density profiles observed in galaxies and clusters 
[19]. The study of self-gravitating stellar systems has 
been one of the most interesting applications of Tsallis’ 
nonextensive thermodynamics [20-24]. 

In this paper, we analyze the stability of a thermally 
conducting self-gravitating system embedded by a uni-
form and oblique magnetic field for possible modification 
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in the Jeans’ instability criterion due to the presence of 
nonextensive effects. The influence of thermal conductiv-
ity on the growth rate of the system is also examined. 
 
2. Nonextensive Theory 
 
The physical restrictions of the Boltzmann-Gibbs statis-
tical mechanics have stressed the need for a possible ge-
neralization of this formalism. Such a generalization was 
proposed by Tsallis in 1988 (known as “Tsallis’ Statis-
tics”) by constructing a new form of entropy written as 

 1 / 1q
q iB i

S k p q 
 
 

               (1) 

where ip  is the probability of the i th microstate and q 
is a parameter quantifying the degree of nonextensivity 
of the system. In the limit 1q , the celebrated B-G 
extensive formula, namely 

lni iB i
S k p p                  (2) 

is recovered. 
Various literatures involving the thermo-statistical 

analysis of many astrophysical systems and processes 
(Plastino & Plastino [25], Abe [26]) make it clear that 
Tsallis’ statistics may be the appropriate theory for de-
scription of astrophysical systems with long-range inter-
action of gravitation. 

The nonextensivity in the Jeans’ problem is introduced 
through the equation of state of an ideal gas. In the frame-
work of nonextensive theory, the q-nonextensive velocity 
distribution function for free particles is given by 

   
1

2 1
1 1

2

q
q

B

mvf v B q
k T

 
 
  

               (3) 

where qB  is a normalization constant and the other va-
riables have their usual meanings. 

If N denotes the particle number density, pressure is 

defined by 21
3

P Nm v    with 2v   the mean square 

velocity of the particle defined in Tsallis’ statistics by 

 
 

2 3
2

3

q

q
v f v d v

v
f v d v

  
  

 


             (4)
 

In 2003, Silva & Alcaniz [27] calculated the q expec-
tation value for the square velocity of the particle as 

 2 6 , 0 5/3
5 3

B
q

k T
v q

q m
    


           (5) 

Clearly, the standard mean square velocity 
2 3 /Bv k T m   is perfectly recovered when 1q . 

Thus, the equation of state of an ideal gas in the nonex-
tensive kinetic theory is obtained as 

21 2
3 5 3

B
q q

k T
P Nm v

q m


   
           (6)

 

where we have written /N m . Note that the standard 
equation of state is correctly recovered in the limit 

1q . The above equation can also be written in the 
form q qBP Nk T , with the physical temperature qT , a 

variable that depends on the nonextensive parameter q as 
2

5 3q
TT

q



. Consequently, the speed of sound can be 

written as 

2
5 3

qB
q

k T
S S

m q
 

               (7) 

significantly different from the one in B-G statistics (q 
=1, T Tq  ). We shall use this modified form while 

writing the perturbation equations of the self-gravitating 
system considered in this paper. 
 
3. Perturbation Equations 
 
Following standard lines, we write the linearized pertur-
bation equations characterizing the flow of a thermally 
conducting self-gravitating fluid embedded by a uniform 
and oblique magnetic field denoted by  ,0,x zH H H


. 

1 . 0u
t
 
  




                 (8) 

 1 1 1
1u p h H

t


      


  
         (9) 

 1h
u H

t


 





               (10) 

2
1 1G                    (11) 

   2 2 2
1 1 1 1q qp S p S

t
   

   
          (12) 

where    1 1 1, , , , , , ,u u v w h h h h px y z 
 

 and 1  are respec-

tively the perturbations in velocity u


, magnetic field H


, 

density  , pressure   and gravitational potential  , 
G  is the gravitational constant,   denotes an adiabatic 
exponent and x is the coefficient of thermal conductivity. 

We seek the solutions of the Equations (8)-(12) whose 
dependence on the space coordinates (x,y,z) and time t is 
of the form 

 exp sin . cos . .ik x ik z i t              (13) 

where  sin ,0, cosk k k 


 is the wavenumber of per-

turbation making angle   with the x-axis and   is 
the frequency of perturbation. Eliminating 1 1 1, & p   
from the above equations, we get six equations govern-
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ing the perturbation of velocity and magnetic field which 
can be written in the matrix form 

0A B                        (14) 

where [A] is a sixth order square matrix and [B] is a sin-
gle column matrix in which the elements are 

 , , , , ,
T

x y zu v w h h h . The elements of [A] are 

2
11 sin ,A i iD    

 
12 13

0, sin cos ,A A iD    
 

14 15 16
cos , 0, sin ,z z

H H
A ik A A ik 

 
  

 

21 22 230, , 0,A A i A    

24 25 260, ( sin cos ), 0,x z
ik

A A H H A 


   
 

  2
31 32 33sin cos , 0, cos ,A iD A A i iD       

 

34 35 36

41 42 43

cos , 0, sin ,

cos , 0, cos ,

x x

z x

H H
A ik A A ik

A H ik A A H ik

 
 

 

   

     

44 45 46, 0, 0,A i A A  
 

51 52 530, ( sin cos ), 0,x zA A ik H H A       

54 55 560, , 0,A A i A    

61 62 63sin , 0, sin ,z xA H ik A A H ik     

64 0,A  65 660,A A i             (15) 
where we have written 

   
 

2 2 2 2

2

qS k i k G i k
D

i k

     

  

  



      (16)

 

4. Dispersion Relation 

The vanishing of A  gives the dispersion relation as the 

product of three factors: 

          
 2 2

2 22 2 2 2 2. .
x zH H

i i k V i i iD i k iDk V    


      
   

                                (17) 
By writing in   and using the value of D  in the 
third factor of Equation (17), we obtain the resulting 
dispersion relation, which is an equation of degree five in 
n  of the form 

5 4 3 2
4 3 2 1 0 0n c n c n c n c n c              (18) 

with the coefficients 4c  to 0c  given by 

2
4c k  

 2 2
2 2 2

3
x z

q

H H
c S k G k 




  
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2 2 2 2

2

x z

q

H H
c k S k G k 



 
   
 
   

 2 2 2 2
1 qc k V S k G  

 
 4 2 2 2

0 qc k V S k G             (19)
 

where we have taken 

 2
2 sin cosx zH H

V
 




 

5. Analysis of Dispersion Relation 

In the study of Jeans’ instability, the boundary between 
stable and unstable solutions is achieved by setting 

0n   in the dispersion relation (Equation (17)). The 
result is a family of q -parameterized critical wave-
numbers qk  given by 

5 3

2q J
q

G q
k k

S

 
 

            

(20)

 
Note that the standard values as obtained from fluid the-

ory are recovered only if 1q  . We have, thus, obtained a 
modified form of Jeans’ Criterion which shall now be ana-
lyzed for different values of q. As we know, the value of 
nonextensive parameter q lies between 0 and 5/3. Hence, 
we will analyze the Jeans’ criterion for different values of q 
in this range. Let us calculate the critical wave numbers for 
q = 1, q = 0.3, i.e. 0 < q < 1 and q = 1.6, i.e. 1 < q < 5/3. For 
these calculations, we take numerical values for conditions 
prevailing in magnetic collapsing clouds: 

21 31.7 10 ,kgm     

  111 3 2

2 8 2 2

2 8 2 2

6.658 10 ,

2.5 10 ,

5 10 .

G kg m s

S m s

V m s

 





 

 

         (21) 
The following critical wave numbers are obtained 
through numerical calculations 

20 1
1.0 2.12 10qk m 
                 (22) 

20 1
0.3 3.04 10qk m 

                 (23) 
20 1

1.6 0.67 10qk m 
                 (24) 
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Let us discuss the Jeans’ Criterion in light of the above. 
a) When 1q  , the Jeans’ Criterion as obtained 

through fluid theory is recovered perfectly. The system is 

unstable for wavenumbers 1.0qk k   and stable for 

wavenumbers 1.0qk k  . 

b) When 0.3q   i.e. 0 1q  , the system is unsta-

ble for 0.3qk k   and stable for wave numbers 

0.3qk k  . Hence, the Jeans’ Criterion is modified as 

0.3qk k   and 1.0qk k   i.e. the system may now be 

unstable even for the wave numbers greater than 1.0qk   

provided that they are less than 0.3qk  . 

c) When 1.6q   i.e. 1 5/3q  , the system is un-

stable for 1.6qk k   and stable for wave numbers 

1.6qk k  . Hence, the Jeans’ Criterion is modified as  

1.6 1.0q qk k k    i.e. the system which was believed 

to be unstable for wave numbers less than 1.0qk   ac-

cording to fluid theory, may now be stable for wave 
numbers less than 1.0qk   but greater than 1.6qk  . 

We have demonstrated the effect of nonextensive pa-
rameter q on the system stability by plotting wavenum-
ber against growth rate for the values of q mentioned 
above. The result is as shown in Figure 1. The same con-
clusions, as outlined in a)-c), are drawn by studying the 
plot. 

In order to gauge the influence of thermal conductivity 
on the growth rate of the system, we have plotted 
wavenumber against growth rate for varying values of 
thermal conductivity in Figure 2 for a fixed value of 
nonextensive parameter q = 1. We notice that as the value 

of   (taken as X in the figure) increases, the value of 
growth rate initially increases in the unstable region. 
However, as the system moves from unstable to stable 
region, the growth rate decreases with increase in ther-
mal conductivity for a fixed wave number. Hence, we 
conclude that thermal conductivity has a mixed, but pre-
dominantly stabilizing, influence on the system stability. 

6. Results 

The Jeans’ gravitational instability of a thermally con-
ducting self-gravitating fluid permeated by a uniform and 
oblique magnetic field has been analyzed in the frame-
work of nonextensive theory. It is concluded that thermal 
conductivity has a predominantly stabilizing influence on 
the growth rate of the system. The presence of nonexten-
sive effects modifies the standard Jeans’ Criterion into one 
that depends explicitly on the nonextensive parameter q. 
However, in spite of this modification, the basic instability 
criterion is maintained: perturbations with qk k  do not 

grow while instability takes place for qk k . 

7. Concluding Remarks 

We have studied the stability of a large-scale self- gravi-
tating system in the framework of Tsallis’ Nonextensive 
Statistical Mechanics (NSM). Our approach differs from 
the kinetic theoretical approach based on the Vlasov eq-
uation, where the evolution of the system is described by 
perturbing the equilibrium Max-wellian velocity distri-
bution function. We have, instead, considered the 
non-Maxwellian (power-law) equilibrium distribution 
function (Equation (3)) which is a nonextensive generali-
zation of the standard distribution function. Considerable 
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Figure 1. Graph of wavenumber vs. growth rate of a thermally conducting fluid for varying values of nonextensive parame-
ter. 
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Figure 2. Graph of wavenumber vs. growth rate of a thermally conducting fluid for varying values of coefficient of thermal 
conductivity. 
 
amount of experimental evidence supports the employ-
ment of such a distribution (e.g. Liu et al. [28]), clearly 
indicating that the standarsd Maxwellian velocity distri-
bution might provide only a very crude description of the 
velocity distribution for a self-gravitating gas, or gener-
ally for any system endowed with long range interactions. 
Infact, a well determined criterion for gravitational insta-
bility is not a privilege of the exponential velocity dis-
tribution function, but is shared by an entire family of 
power-law functions (named q-exponentials) which in-
cludes the standard Jeans’ result for the Maxwellian dis-
tribution as a limiting case (q = 1). This being said, it 
must also be stressed that all nonextensive systems need 
not require the Tsallis’ statistics to understand their be-
haviors (Cohen [29]). In the light of present understand-
ing, it is still unclear which class of nonextensive sys-
tems requires Tsallis’ statistics for its statistical descrip-
tion, mainly due to the fact that the physical meaning of 
the nonextensive parameter q is yet to be settled. Al-
though some progress in this regard is being made (Du 
[22,23]), the Nonextensive Statistical Mechanics remains 
open to further verification and deeper understanding. 

Further Reading: Interested readers may refer to simi-
lar works by the authors [30,31,32] on the instability of 
thermally conducting self-gravitating systems in the 
framework of nonextensive statistics. 
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