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Abstract 
 
A new approach is proposed to describe the autowave processes responsible for plastic deformation localiza-
tion in metals and alloys. The existence of a quasi-particle, which corresponds to a localized plastic flow 
autowave, is postulated and its characteristics are determined. The above postulate leads to a number of cor-
ollaries and quantitative assessments that are considered herein. The deformation processes occurring on the 
macro- and micro-scale levels are found to be directly related. 
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1. Introduction 
 
The experimental studies of plastic flow in solids carried 
out during last decades [1,2] allow one to throw light 
upon the plasticity phenomenon and to detect the most 
important experimental fact that the plastic flow would 
exhibit a localization behavior from yield point to failure. 
Recently strong experimental evidences for the above 
viewpoint were presented independently by several 
workers [3-5]. In order to visualize the localization pat-
terns observed by mechanical testing, a technique of dou-
ble-exposure speckle-photography was developed [6].  

Some of the observed localization patterns are demon-
strated in Figure 1(a). As is seen from Figure 1(b), 
these have very complex structure characterized by a 
typical macroscopic scale of about 10-2 m. This suggests 
that the deforming medium becomes spontaneously 
stratified into macroscopic layers, with deforming (active) 
layers alternating with non-deforming (passive) ones. In 
a general case, the boundaries between such layers are 
mobile; therefore, the process of plastic flow is conven-
tionally considered as evolution of localized plastic flow 
patterns. 

The phenomenology and quantitative characteristics of 
the localization effect have been fully elucidated by now. 
Thus a detailed investigation of space-time periodic lo-
calization patterns [1,2] allows one to refer the localiza-
tion phenomenon to self-organization processes. The 
above assumption is only valid provided the term ‘self- 
organization’ is taken to imply, according to Haken [7], 
that the system acquires spatial, temporal or functional 

structure in the absence of any specific periodic external 
action. Of major importance is the finding that the local-
ized plastic flow patterns have all the particular features 
of autowave (self-excited) process. This comes into par-
ticular prominence at the linear stage of deformation 
hardening as the plastic flow localization takes on the 
form of phase autowave, which has length  10-2 m 

and propagation rate 
5 4 110 10 m sawV     . The auto- 

waves in question are distinct from the well-known plastic 
deformation waves that are generated in solids under 
shock loading which are described by Kolsky in [8].  

However, the nature of localized plastic flow phe-
nomena is poorly understood so that the challenge of 
interpreting rich experimental evidences on plastic flow 
macrolocalization can be daunting. To accomplish this 
demanding task, a new model of plastic flow localization 
is proposed herein.  

2. On the Observation of Localization  
Phenomena  

As noted above, the experimental observation of local-
ized plastic flow autowaves was carried on with help of a 
specially developed speckle photography technique re-
lated to focused-image holography [6]. The method de-
veloped makes feasible the experimental determination 
of displacement vector fields and the calculation of plas-
tic distortion tensor components for the deforming 
specimen. A vast array of wavelength and propagation 
rate data has been acquired and stored digitally in a 
computer.  
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Figure 1. (a) A typical example of localized plastic flow 
autowave generated at the linear work hardening stage in 
the single crystal of alloyed -Fe; (b) xx - local elongation; x 

and y- specimen length and width, respectively;  - nucleus 
spacing (autowave length); awV  - autowave propagation 
rate; the distributions of the plastic distortion tensor com-
ponents, xx , xy  and z , within the localization zone in 
the single crystal of alloyed -Fe. 
 

The spatial distributions of plastic distortion tensor 
components can be used to locate localized plastic flow 
nuclei; the kinetic characteristics of the nuclei can be 
determined from the temporal evolution thereof. The 
characteristics of autowaves are defined as follows. First 
the spatial period (length of autowave, ) is determined 
from the variation in the space co-ordinates of localiza-
tion nuclei with time (see Figure 2); then the time of 
variation, Т, is defined. Hence the phase rate of autowave 
propagation is given as awV T k   (here T 2  
is the frequency and 2k  is the wave number). 

 

Figure 2. The spatial () and temporal (T) periods of local-
ized plastic deformation as determined for the single crys-
tals of alloyed -Fe for n = 1 and n ~ 0.5 (linear and para-
bolic work hardening stages, respectively); )( - stress- 
strain dependence;  X t - variation in the localization nu-
cleus co-ordinates with time (●; ▲;▼; ■; +; ; ; -). 
 

The quantitative characteristics of autowave processes 
involved in the plastic flow localization were determined 
experimentally in our investigations [1,2]. The test 
specimens were prepared from the single crystals of FCC 
BCC and HCP alloys (Al, Cu, Ni and -Fe; -Fe, V and 
Nb and Mg, Zn, Zr and Ti, respectively) and from poly-
crystalline metals and alloys. The alkali halide crystals 
KCl, NaCl and LiF and some rocks were also studied. 
The mechanical characteristics and the shape of plastic 
flow curve are found to be determined by chemical 
composition, grain size (in the case of polycrystals) and 
tension axis orientation (in the case of single crystals). 
The plastic localization patterns observed for all materi-
als studied have many features in common which are 
discussed below. 
 
3. Correspondence between the Localized 

Plastic Flow Patterns and the Work  
Hardening Stages  

 
One of the striking results obtained in these investiga-
tions is the finding that the emergent localized plastic 
flow patterns strictly correspond to the well-known plas-
tic strain stages [9]. 

Using the Ludwik equation [10], the flow curve 

   is readily separated into individual stages, i.e. 

  n  0 ,              (1) 

where 0  is the proof stress,  is the work hardening 
coefficient and n is the hardening exponent. Especially 
convenient for this separation is the value n since it 
changes discretely with the plastic flow. Then the flow 
stages singled out on the curve    are matched against 
the respective specific patterns of plastic flow localiza-
tion. In what follows the localized plastic flow patterns 

(a) 

(b) 
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are discussed in the order of their emergence. 
The first to appear is a solitary front of localized plas-

tic flow, which travels along the specimen elongation 
axis at the yield plateau in the polycrystals (n = 0) or at 
the easy glide in the single crystals (n  0). In this case, 
an elastic-plastic transition takes place. The motion of 
such a front can be regarded as switching autowave [11]. 
The next pattern is a mobile set of parallel fronts sepa-
rated by distance , which is observed at the linear work 
hardening stage in the single-crystal and polycrystalline 
specimens (n = 1;  ~ ). In accordance with [8], the 
latter pattern corresponds to a typical phase autowave 
having length  and propagation rate awV . The third in 
the order of appearance is a group of immobile equidis-
tant localized plasticity nuclei, which occurs at the para-
bolic work hardening (Tailor’s) stage (n = ½; 21~ ) in 
most materials [9]. This pattern might be considered a 
stationary dissipative structure [11]. The autowave pat-
tern emergent at the pre-failure stage (0  n ½) is spe-
cifically associated with ‘collapse’ of the autowave [12] 
which takes place concurrently with the onset of 
macro-necking. The final stage of the plastic flow proc-
ess ( n 0) is ductile failure of material. The above phe-
nomena would emerge spontaneously in the specimen 
under constant-rate tensile loading. Following Seeger 
and Frank [13], we regard these phenomena as processes 
of structure formation.  

On the base of conclusive evidence obtained for a 
wide range of materials the following Rule of Corre-
spondence is introduced: in accordance with the acting 
work hardening law,    , each plastic flow stage in-
volves a special kind of autowave process. The rule for-
mulated above applies to all the plastic flow phenomena 
having a characteristic macro-scale of about 10-2 m. 
However, the work hardening law governs the mecha-
nisms involved in the interaction of lattice defects [6]. 
Therefore, the said rule apparently applies to the defect 
subsystem of the deforming crystal [9]. For this reason, 
the plastic flow is expected to manifest certain micro-
scopic features that are indications of microscopic effects. 
In our opinion, three such manifestations merit special 
note. These are considered below. 
 
4. On the Manifestations of Microscopic  

Effects  
 
4.1. Elastic and Plastic Deformation Invariant 
 
On the base of experimental data a significant regularity 
is established for the autowave process of plastic flow 
localization in a range of metals. Thus a close correla-
tion is found to exist between the product of the macro-
scopic parameters of the autowave process, awV , and 

the product of the microscopic (lattice) parameters of 
material, Vd . Here d is the spacing between the 

close-packed planes of the lattice and 
V is the trans-

verse elastic wave rate. The numerical data obtained for 
studied metals is listed in Table 1. Matching of this data 
suggests that the following equality is good within an 
acceptable range of accuracy  

1 2 3 2aw iV d V r V                  (2) 

Indeed, a numerical analysis shows that 3 id r  (here 

ir  is the Pauling ion radius [14]). Equation (2) is vali-

dated by the fact that the average ratio 2 awV d V    
 1.04  0.52 obtained for studied metals is about close 
to unity and the dependence  awd V V 

 is a linear one 

(see Figure 3). 
  Equation (2) is physically significant since it estab-
lishes a quantitative relationship between the micro-scale 
(lattice) characteristics (d and V ) of elastic waves 
which govern elastic deformation processes on the one 
hand and the macro-scale characteristics (  and awV ) 
of localized plastic flow autowaves which are generated  
 
Table 1. Matching of awV  and d V values calculated 
from Equation (2). 

awV ·107 d·1010 V ·10-3
 Vd ·107 

Metal 
(m2s1) (m) (ms1) (m2s1) 


Vd

Vaw2

Cu 3.60 2.08 2.30 4.78 1.50 
Al 7.92 2.33 3.23 7.52 2.10 
Zr 1.92 2.46 2.25 5.53 0.70 
Ti 3.50 2.24 2.96 6.63 1.06 
V 2.80 2.14 2.83 6.06 0.92 
-Fe 2.55 2.07 3.32 6.87 0.74 
-Fe 2.24 2.03 3.32 6.74 0.66 
Ni 2.10 2.03 3.22 6.54 0.64 

 

 

Figure 3. Verification of the validity of Equation (2) with help 
of a linear dependence between the ratios d  and awV V ; 
■ – easy glide stage; ● – linear work hardening stage. 
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in deforming media on the other hand. In this case, it 
might be reasonable to regard the products Vd and 

awV  as invariants of elastic and plastic deformation 
processes, respectively. The above regularity suggests 
that the elastic and the plastic processes simultaneously 
involved in the deformation ( 1  and 1  , respec-
tively) are closely related. The quantity V  is the rate of 
elastic stress redistribution in the deforming solid and the 
quantity awV is the rate of localized plasticity front rear-
rangement in the same solid. Thus, the macro-scale local-
ization of plastic deformation can no longer be regarded as 
a mere disturbance of plastic flow homogeneity by neck-
ing. What is more, the localization phenomena are taken to 
be an attribute of the plastic deformation, with their char-
acteristics being closely associated with and largely de-
termined by the properties of crystal lattice. 
 
4.2. Autowave Characteristics and the Planck 

Constant 
 
A numerical analysis suggests that for all metals and 
alloys studied the following equality holds good:  

hrV iaw  3 ,             (3)  

where  is material density. In other words, the quantum 
(Planck’s) constant h can be calculated by multiplying 
the values awV and which are localized plastic flow 
characteristics measured experimentally by the values 
and ir  which are hand-book material constants. Indeed, 
the calculated values h listed in Table 2 are close to the 
Planck constant h = 6.626  10-34 Js, with the average 
value h  being (6.44  0.88)  10-34 Js and the ratio 

hh 0.96  0.07 being close to unity. Thus the Planck 
constant can be estimated directly from the macro-scale 
characteristics awV  and , which appears striking in  

itself. 
 
4.3. Form of Dispersion Relation  

 
Let us consider the following quadratic dispersion law 
[15]  

 200 kk   ,           (4) 

where , 0  and 0k  are empirical constants. The val-
ues of these constants were derived for localized plastic 
flow autowaves from the experimental data in Figure 4. 
Note that the value  can be both negative and positive, 
i.e. for the easy glide stage, and for the linear work 
hardening stage, . Equation (4) is readily reduced to 
the canonic form 21 k     by substituting 0      

and 
0

0
sign

~

 


k
kk  (here ~  and k

~
 are the di-

mensionless frequency and the wave number, respec-

tively, and the signum function of is 
1

sign
1


 
 

 

for 0

for 0






). Wave processes that have quadratic dis-

persion law of the latter form would generally satisfy a 
number of nonlinear equations, e.g. the Schrödinger 
nonlinear equation, the sine-Gordon equation, etc., which 
are frequently employed to address self-organization 
processes occurring in nonlinear media [16]. Therefore, 
the dispersion relation (4) is taken to be an additional 
proof for plastic flow localization being involved in the 
self-organization of the deforming medium. Moreover, 
Equation (4) turned out to be formally equivalent to the 
de Broglie wave dispersion law for electrons in sharp- 
cornered potential well [17], which is significant in itself. 
 
5. A Postulate of Plastic Flow Localization 

and the Ensuing Corollaries: Introduction 
of a New Quasi-particle 

 
Taken as a whole the above localization patterns demon-
strate that the phenomenon in question has not only 
macroscopic characteristics of autowave process ( and 

awV ) but also microscopic ones (h and d or ir ). In view 

of the ratio ir  being about equal to 108, the key 
problem in this case is how the macro- and micro-scales 
could be reconciled. To overcome this problem, we pro-
pose to use an approach based on the wave-particle dual-
ism, which received wide application in the physics of 
solids [18]. We are led to postulate the existence of aq-
uasi-particle having effective mass, efm , quasimomentum, 

p, and energy, E, which corresponds to the autowave of 
localized plastic deformation having wavelength, and  

 

Figure 4. The dispersion law  k  established for local-

ized plastic flow autowaves generated at the stages of easy 
glide (1) and linear work hardening (2); ● – single crystals 
of Cu, Sn and alloyed -Fe; ■ – single crystals of alloyed 
-Fe; ▲- polycrystalline Al.  
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Table 2. Microscopic characteristics and the Planck constant values calculated from the data on localized plastic flow 
autowaves. 

·103 
510awV

 
efm  

2710


910d  
910ionr

 
h1034 

Metal 

(m) (ms1) (a.m.u) 

210
 

n 

(m3) (m) (m) 
ionrd  

(J·s) 
Cu 4.5 8.0 1.1 1.74 1 0.21 0.059 0.072 0.82 8.14 
Al 7.2 11 0.50 1.87 3 0.31 0.068 0.051 1.33 5.0 
Zr 5.5 3.5 2.05 2.24 4 0.53 0.081 0.079 1.03 6.13 
Ti 7.0 5.0 1.1 2.3 4 4.2 0.075 0.076 0.99 6.91 
V 4.0 7.0 1.42 2.81 5 0.33 0.069 0.059 1.17 6.52 
-Fe 5.0 5.1 1.76 2.81 8 0.33 0.069 0.064 1.08 6.32 
-Fe 4.3 5.2 1.77 3.0 8 3.75 0.072 0.064 1.13 6.32 
Ni 3.5 6.0 0.89 3.24 10 0.32 0.068 0.069 0.99 6.17 

 
propagation velocity, awV . Then it can be written that 

awef Vhm  .              (5) 

Equality (5) is a mathematical expression of the above 
postulate to which we conventionally add the equa-
tions ef awp m V k    and E    (here 2h ) for 
momentum and energy, respectively [19,20]. It is com-
mon knowledge that to validate a postulate, one has to 
match the corollaries ensuing from the same against ex-
perimental evidence. It turns out that a set of corollaries 
ensues from the above postulate which give an insight 
into the nature of localized plastic flow processes. These 
corollaries are considered below. 

Corollary 1. First we will demonstrate that the effec-
tive mass, mef, calculated from Equation (5) has a physi-
cal meaning; this quantity depends on the characteristics 
of the deforming crystal. Indeed, the calculated values 
listed in Table 2 for a number of metals are in the range 
0.5  efm  2 a.m.u. (here 1 a.m.u. = 1.6610-27 kg is 
atomic mass unit). Evidently, the volume is readily cal-
culated as efm ; then the length is found 

as 3 d . The latter value is close to the value ir , i.e. 

ird  , with the average ratio being ird = 1.07  

0.091. Thus, the effective mass, mef, turns out to be re-

lated to the lattice characteristics, ρ and ir . 

Apparently, the values mef calculated from Equation (5) 
differ slightly for each particular metal. The normaliza-
tion of effective masses, mef, to the atomic masses, mA , 

of respective metals yields normalized (dimensionless) 
mass 1 mef Am , which increases linearly with the 
number of electrons per unit cell, n (see Figure 5) [21], 
i.e.  

n  0 .              (6) 

The correlation coefficient for  and n values is ~0.95; 
it has a high statistical significance.  

Now we propose a physical interpretation of Equation 
(6) which is based on the consideration of jump-like dis-
location motion. Thus a dislocation would become ar- 

 
Figure 5. The dimensionless parameter, as a function of the 
number of electrons per unit cell, n.

  
rested at a local barrier until the thermal fluctuation 
causes its breakaway, which suggests that the plastic 
deformation results from the dislocation motion in a vis-
cous medium [22]. For dislV const , the motion of dis-

locations is controlled by viscous drag force per unit 
length, 

dislv BVF   (here B is the viscous drag factor for 
dislocations) [22]. For 

dislV const , an inertial term 

proportional to the dislocation acceleration, dislV , is 

added to the viscous drag force [23]. Then the total drag 
force, F , is given by 

 v in disl a dislF F F BV B V       ,    (7) 

where a  is the frequency of an elementary deforma-
tion act and B   apparently has the meaning of added 
mass per unit length of dislocation.  

In the case of metals, the factor B is determined by the 
interaction of dislocations with phonon and electron 
gases [22]; moreover, the contributions of phonon and 
electron gases, i.e. phB  and eB , respectively, are addi-

tive so that eph BBB  . In this case, the first and the 

second term in the right-hand side of Equation (6) are 
evidently connected with the contributions to the added 
mass, B  , of the viscous drag of both gases.  
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The term 0  from (6) is apparently independent of 

the kind of metal, which is reasonable since the proper-
ties of metal are only weakly dependent on the charac-
teristics of its phonon spectrum at temperatures exceed-
ing the Debye temperature [21]. However, the contribu-
tion of electron gas to the added mass should be propor-
tional to n, i.e. ~eB n  [22]. Hence it can be written   

      disldislephdislephin VnVmmVBBF    0~~~  (8) 

Thus Equation (8) relates the normalized mass, , to 
the contributions of phonon and electron gases. 

Corollary 2. Equation (5) can be rewritten as 




 


 3
ief

aw r

h

m

h
V .            (9) 

The quantity  from (9) is calculated as 3
ih r  . 

Then the calculated values,  , are matched with the 

experimental 
awV data. The average values obtained for 

the single -Fe crystals and polycrystalline Al are, re-
spectively, awV  = (2.86  0.44) 107 m2·s-1 ( = 3.2  

107 m2·s-1) and awV  = (7.75  1.36)107 m2·s-1 ( = 
18.4107 m2·s-1). 

Corollary 3. Equation (5) can be also rewritten as 

k
r

h

m

h
V

ief
aw 










 2

1  .      (10) 

It is shown above that dkdVV graw   and 

  dkkd   2 . Hence we can write 





0

0 02

kk

dkkd







.            (11) 

It follows from (11) that dispersion relation of quad-
ratic form can be written for localized plastic flow 

autowaves, i.e.    200
2

00 4
kkkk  


 . 

Apparently, the latter relation corresponds to (4). The 
coefficient  from the dispersion relation of quadratic 
form can be found by matching the experimental  k  

data against the calculated values  4  obtained 

for Fe and Al. Thus the experimental values  obtained 
for Fe and Al are 5.4108 m2·s-1 and 7.9107 m2·s-1, re-
spectively, and the calculated data are 2.5108 m2·s-1 and 
1.46107 m2·s-1, respectively. Both sets of data have 
practically the same order of magnitude. 

Corollary 4. It follows from Equation (5) that 
3

iaw rhV  .            (12) 

The terms in both sides of (12) evidently have the 
units of dynamic viscosity, i.e. kgm1s1  Pas. The 
calculated value   awV  is about equal to 5104 Pas 

for all studied metals. Hence the latter quantity can be 
identified with the viscosity of phonon gas, B, which 
controls dislocation mobility by quasi-viscous motion 
[22]. This is good indirect evidence for the validity of the 
same quantity, in particular, by interpreting the physical 
meaning of dependence (6).  

Corollary 5. The dispersion relation obtained for lo-
calized plastic deformation autowaves can be rewritten in 
the form appropriate for quasi-particles, i.e.  E E p   

 2

0 0E p p   (here 0E , 0p  and   are constants). 
Then the effective mass of the hypothetical quasi-particle 
is estimated [17] as  

    122122 
 kpEmef  .     (13) 

The experimental and calculated effective masses ob-
tained for iron and aluminum are 0.6 and 0.1 a.m.u., re-
spectively. This lends credence to the existence of the 

hypothetical quasi-particle having efm 1 a.m.u. 

Corollary 6. As is seen from Figure 4, the oscillation 

spectrum  2

0 0k k     has a narrow gap in the 
range 00    10-2 Hz. Hence for any temperature, 

0 Bk T   (here Bk  is the Boltzmann constant). Lo-
calization phenomena are liable to occur spontaneously 
at any temperature provided geometric constraints place 
no restrictions, in particular, in the case of small-sized 
specimens [1].  

Corollary 7. Finally, the jump-like plastic deformation 
in solids [24] can be explained with help of the above 
postulate. Let us rewrite Equation (5) as 

  1

i awL h rV   .            (14) 

Now suppose that the specimen length L accommo-
dates an integer m = 1, 2, 3… of autowaves having 
length , i.e. L m  , which precludes the occurrence 

of deformation within the clamps of the testing machine. 
With growing total deformation, , the elongation of the 
specimen occurs as  0 01L L L L      (here 0L  

is the original specimen length). Hence from (14) follows 
that 

  1

i awL h rV m    .         (15) 

For the linear work hardening stage, awV const . 
From (15) apparently follows that the specimen length 
would vary discretely ( ~L m ) in accord with the 
jump-wise deformation behavior, i.e. the specimen 
length would be accommodated to the emergent auto- 
wave pattern. Deformation jumps may occur by different 
mechanisms depending on the kind of material so that 
Equation (15) only states that this kind of deformation 
behavior is a must.  

From (15) follows that 1~ awL V  . The available ex-
perimental evidence [1] suggests that the autowave 
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propagation rate is proportional to the cross-head motion 
velocity, i.e. ~aw machV V . With increasing velocity of the 
movable clamp of the test machine, the amplitude of 
jumps is expected to grow less. The latter inference is 
supported by the experimental data obtained for Al at 1.4 
K [24]. 

Corollary 8. Now it transpires that Equation (3) of the 
form 3

aw iV r h      is readily derived from the same 
postulate provided 3

ef im r  . 

 
6. Conclusions 
 
It is pertinent to mention here the early efforts to apply 
quantum ideas to problems of strength and plasticity 
physics. Thus Steverding was the first to introduce the 
notion of elastic waves quantization by fracture [25]. By 
addressing the kinetics of brittle fracture, the existence of 
a quasi-particle in the deforming medium was postulated. 
The quasi-particle was identified with the tip of a grow-
ing crack; therefore, it got the name ‘crackon’ [26]. 
Quantum models were applied to explain the tunnel ef-
fect observed by dislocation motion [27,28]. On the other 
hand, recent theoretical and experimental studies indicate 
that the plastic flow involves wave processes [1-5,7,29, 
30]. 

The above findings justify the use of quantum con-
cepts to address plastic flow development in solids. In 
this approach one has to reconcile micro- and macro- 
scale manifestations of the localization phenomenon; 
therefore, physicists dealing with plasticity problems 
might consider it invalid. When the micro-scale (disloca-
tion) level is addressed, the quantization idea appears 
quite appropriate. In view of crystal lattice discreteness, 
the minimal possible shear is by the Burgers vector, b, 
which has microscopic scale d of about 10-10 m and 
hence might be regarded as a ‘quantum of shear defor-
mation’. Hence the use of (2) allows the quantization 
concept to be extended to the macro-scale level, i.e. 

awV  1 2d V  . 

The fact that the Planck constant value calculated from 
the data derived in rather ‘rough’ macro-experiments is 
close to a handbook value might be due to the manifesta-
tion of so-called ‘universality concept’ [31], which pos-
tulates that the system’s measurables are virtually unaf-
fected by the distribution of its major microscopic prop-
erties. In other words, both the qualitative and the quan-
titative characteristics of material substructure are only 
partly responsible for, e.g. plastic flow evolution, flow 
stress level, work hardening coefficient, etc.  

The corollaries ensuing from the postulate proposed 
herein have proven to be very fruitful to study deforma-
tion localization processes, which validates the concept 
of wave-particle duality. By way of summary it should 
be emphasized that the macro-scale effects (characteris-

tic scale 
macro L ) emerging in a plastically deforming 

multi-scale system are found to be directly related to the 
micro-scale effects (characteristic scale

 micro irL ), with 
the scale ratio being 810macro micro ir L L .  

The above gives justification to the use of a common 
approach, i.e. postulation of a quasi-particle correspond-
ing to a localized plastic flow autowave. This turns out to 
be a fruitful effort by explaining a number of relation-
ships in plasticity physics, which have remained poorly 
understood in the frame of traditional models of crystal 
plasticity. The postulated quasi-particle would be named 
“auto-localizon”. 

As far back as the 1960-ies Dzyaloshinski [32] was the 
first to discuss the possibility of measuring the Planck 
constant in mechanical experiments. In his paper this 
worker emphasizes the importance of studying the mac-
roscopic manifestations of typical quantum effects, e.g. 
superfluidity, superconductivity and the quantum Hall 
effect discovered later on. In the light of the foregoing it 
is maintained that the plastic flow in solids is analogous 
to all these phenomena; therefore, this might also be re-
garded as a macroscopic quantum effect.  
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