

Yonghong Liu

School of Automation, Wuhan University of Technology, Wuhan, China Email: hylinin@163.com

Received October 11, 2011; revised November 24, 2011; accepted December 5, 2011

ABSTRACT

This paper presents the BCL⁺-algebras, which is derived the fundamental properties. Results are generalized with version of BCL-algebras [5], using some unusual for a binary relation * and a constant 1 (one) in a non-empty set *X*, one may take different axiom systems for BCL⁺-algebras.

Keywords: BCL-Algebra; BCL⁺-Algebra; Logic Algebra

1. Introduction

The BCK/BCI/BCH-algebra (see [1-4]) has been a major issue, but BCL-algebra (see [5]) is a new algebra structure—and we started to grasp the properties. This paper presents the BCL⁺-algebras, we show that under our formulation, the BCL⁺-algebra is a variant of a BCLalgebra. We can define by taking some axioms and important properties in this way for the BCL⁺-algebras.

A BCL-algebra may be defined as a non-empty set X with a binary relation * and a constant 0 (zero) satisfying the following axioms:

Definition 1.1. [5] An algebra (X;*,0) of type (2,0) is said to be a BCL-algebra if and only if for any $x, y, z \in X$, the following conditions:

1) BCL-1: x * x = 0;

2) BCL-2: x * y = 0 and y * x = 0 imply x = y; 3) BCL-3:

$$(((x*y)*z)*((x*z)*y))*((z*y)*x) = 0.$$

Such set X in Definition 1.1 is called the underlying set of a BCL-algebra (X;*,0), which needs the following theorem:

Theorem 1.1. [5] Algebra (X;*,0) of type (2,0) is a BCL-algebra if and only if it satisfies the following conditions: for all $x, y, z \in X$,

1) BCL-1: x * x = 0;

2) BCL-2: x * y = 0 and y * x = 0 imply x = y; 3) ((x * y) * z) * ((x * z) * y) = (z * y) * x.

2. Main Result

The BCL⁺ product, denoted by *. We call the binary operation * on *X* the * product on *X*, and the constant 1(one) of *X* the unit element of *X*. For brevity we often write *X* instead of (X;*,1). We begin with the following defini-

tion:

Definition 2.1. An algebra (X;*,1) is called a BCL⁺algebra if it satisfies the following laws hold: for any $x, y, z \in X$,

1) BCL⁺-1: x * x = 1; 2) BCL⁺-2: x * y = 1 and y * x = 1 imply x = y; 3) BCL⁺-3:

((x*y)*z)*((x*z)*y)=(z*y)*x.

Such definition, clearly, the BCL⁺-algebra is a generalization of the BCL-algebra, imply a BCL-algebra is a BCL⁺-algebra, however, the converse is not true. We illustrate with the next theorem.

Theorem 2.1. A BCL⁺-algebra is existent.

Proof. The proof of this Theorem 2.1 is not difficult and uses only example. Let $X = \{0, 1, 2, 3\}$. Define an operation * on *X*, which are given in **Table 1**.

Then (X;*,1) is a proper BCL⁺-algebra. It is easy to verify that there are

BCI-1:

$$((2*3)*(2*1))*(1*3) = (1*1)*3 = 1*3 = 3 \neq 0;$$

BCI-2:

$$(2*(2*3))*3$$

= $(2*1)*3$
= $1*3$
= $3 \neq 0$;

BCH-3: 1) The left side of the equation is

$$(2*3)*1=1*1=1;$$

Table 1. BCL⁺ operation.

*	0	1	2	3	
0	1	0	0	0	
1	0	1	3	3	
2	3	1	1	1	
3	1	3	3	1	
					-

2) The right side of the equation is

$$(2*1)*3=1*3=3$$
.

In the expression we see that $1 \neq 3$.

BCL-3:

$$(((2*3)*1)*((2*1)*3))*((1*3)*2) = ((1*1)*(1*3))*(3*2) = (1*3)*3 = 3*3 = 1 \neq 0.$$

 BCL^+ -3: 1) The left side of the equation is

$$((2*3)*1)*((2*1)*3) = (1*1)*(1*3) = 1*3 = 3;$$

2) The right side of the equation is

$$(1*3)*2=3*2=3$$
.

In the expression we see that BCL^+-3 is valid. In fact, it is not difficult to verity that BCL^+-1 and BCL^+-2 are valid.

A BCL⁺-algebra (X;*,1) is a partially ordered relation \leq on *X*, now we obtain the following definition:

Definition 2.2. Suppose that (X;*,1) is a BCL⁺-algebra, the ordered relation if

$$x \le y$$
 if and only if $x * y = 1$,
for all $x, y \in X$, (2.1)

then $(X;\leq)$ is partially ordered set and (X;*,1) is an algebra of partially ordered relation.

Corollary 2.1. Let every $x \in X$. Then 1(one) is maximal element in a BCL⁺-algebra (X;*,1) such that

$$1 \le x \quad \text{imply} \quad x = 1 \,. \tag{2.2}$$

Definition 2.3. A BCL⁺-algebra X is called proper BCL⁺-algebra if X is not a BCL-algebra.

Example 2.1. Let $X = \{0, a, b, c, 1\}$. We define an operation * on X by **Table 2**.

In fact, it is not difficult to verify that (X;*,1) is a BCL⁺-algebra.

Copyright © 2012 SciRes.

Table 2. BCL⁺ operation.

*	0	а	b	с	1
0	1	0	0	0	0
а	а	1	1	С	1
b	b	а	1	С	1
с	С	b	С	1	1
1	0	1	1	1	1

Theorem 2.2. Assume that (X;*,1) is any a BCL⁺-algebra. Then the following hold: for any $x, y, z \in X$,

1) (x*(x*y))*y=1;

- 2) x * 1 = x imply x = 1;
- 3) ((x*y)*(x*z))*(z*y)=1;

4) BCL⁺-2: x * y = 1 and y * x = 1 imply x = y. **Proof.** *Necessity*. By BCL⁺-1 and 3), we obtain

$$(x*(x*y))*y=((x*1)*(x*y))*(y*1)=1.$$
 (2.3)

So, 1) holding.

By the same reasons, we derive

$$x*1 = (x*1)*1 = ((x*1)*(x*1))*(1*1) = 1. \quad (2.4)$$

Hence, 2) holding.

Sufficiency. It only needs to show BCL^+ -1. Substituting y for 1(one) in 1), we have

$$(x*(x*1))*1=1.$$
 (2.5)

Replacing x * 1 by y and x by z in 3), it follows

$$((x*(x*1))*(x*x))*(x*(x*1)) = 1.$$
 (2.6)

Using 2) and BCL^+ -1, we get

$$((x*(x*1))*1)*(x*(x*1)) = 1.$$
 (2.7)

Clearly, an application of (2.5) to (2.7) can give

$$1*(x*(x*1)) = 1.$$
 (2.8)

Comparing (2.4) with (2.7) and using BCL^+ -2, we get

$$x * (x * 1) = 1.$$
 (2.9)

Also, by 2) and 1), the following holds:

$$(x*1)*x = (x*(x*x))*x = 1.$$
 (2.10)

Combining (2.9) and (2.10) with 4) create x * 1 = x. So Theorem 2.2 is valid.

Theorem 2.3. An algebra (X;*,1) is a BCL⁺-algebra if and only if it satisfies the following conditions: for all $x, y, z \in X$,

1) BCL⁺-1:
$$x * x = 1$$
;

2) BCL⁺-2: x * y = 1 and y * x = 1 imply x = y;

3)
$$(((x*y)*z)*((x*z)*y))*((z*y)*x)=1;$$

4) $x*(1*y)=x$.

Proof. The proof is routine. *Necessity*. To prove 1). By BCL⁺-3.

$$x * x = (x * x) * 1$$

= ((1 * x) * x) * ((1 * x) * x) = 1. (2.11)

Then 1) holding.

Sufficiency. Substituting x * 1 for y and x for z in 3), by BCL⁺-3 and 1), it follows

$$\left(\left(\left(x * (x * 1) \right) * x \right) * \left((x * x) * (x * 1) \right) \right) * \left(\left(x * (x * 1) \right) * x \right)$$

= $\left((1 * x) * (1 * x) \right) * (1 * x).$
(2.12)

Also, substituting 1 * x for x in (2.11), by BCL⁺-3 and 1), we have

$$((1*x)*(1*x))*(1*x) = ((x*x)*x)*((x*x)*x)$$
(2.13)
= (1*x)*(1*x) = x*x = 1.

Using Theorem 2.2 with 4), we obtain

$$x*1 = x*(1*x) = x$$
. (2.14)

Hence (X;*,1) is a BCL⁺-algebra.

REFERENCES

- Y. Imai and K. Iséki, "On Axiom System of Propositional Calculi XIV," *Proceedings of the Japan Academy*, Vol. 42, No. 1, 1966, pp. 19-22. doi:10.3792/pja/1195522169
- [2] K. Iséki, "An Algebra Related with a Propositional Calculus," *Proceedings of the Japan Academy*, Vol. 42, No. 1, 1966, pp. 26-29. <u>doi:10.3792/pja/1195522171</u>
- [3] K. Iseki, "On BCI-Algebras," *Mathematics Seminar Notes* (*Kobe University*), Vol. 8, No. 1, 1980, pp. 125-130.
- [4] Q. P. Hu and X. Li, "On BCH-Algebras," *Mathematics Seminar Notes (Kobe University)*, Vol. 11, No. 2, 1983, pp. 313-320.
- [5] Y. H. Liu, "A New Branch of the Pure Algebra: BCL-Algebras," Advances in Pure Mathematics, Vol. 1, No. 5, 2011, pp. 297-299. doi:10.4236/apm.2011.15054