On BCL^{+}-Algebras

Yonghong Liu
School of Automation, Wuhan University of Technology, Wuhan, China
Email: hylinin@163.com

Received October 11, 2011; revised November 24, 2011; accepted December 5, 2011

Abstract

This paper presents the BCL^{+}-algebras, which is derived the fundamental properties. Results are generalized with version of BCL-algebras [5], using some unusual for a binary relation * and a constant 1 (one) in a non-empty set X, one may take different axiom systems for BCL^{+}-algebras.

Keywords: BCL-Algebra; BCL^{+}-Algebra; Logic Algebra

1. Introduction

The $\mathrm{BCK} / \mathrm{BCI} / \mathrm{BCH}$-algebra (see [1-4]) has been a major issue, but BCL-algebra (see [5]) is a new algebra struc-ture-and we started to grasp the properties. This paper presents the BCL^{+}-algebras, we show that under our formulation, the BCL^{+}-algebra is a variant of a BCLalgebra. We can define by taking some axioms and important properties in this way for the BCL^{+}-algebras.
A BCL-algebra may be defined as a non-empty set X with a binary relation * and a constant 0 (zero) satisfying the following axioms:

Definition 1.1. [5] An algebra $(X ; *, 0)$ of type $(2,0)$ is said to be a BCL-algebra if and only if for any $x, y, z \in X$, the following conditions:

1) BCL-1: $x * x=0$;
2) BCL-2: $x * y=0$ and $y * x=0$ imply $x=y$;
3) BCL-3:

$$
(((x * y) * z) *((x * z) * y)) *((z * y) * x)=0
$$

Such set X in Definition 1.1 is called the underlying set of a BCL-algebra $(X ; *, 0)$, which needs the following theorem:

Theorem 1.1. [5] Algebra $(X ; *, 0)$ of type $(2,0)$ is a BCL-algebra if and only if it satisfies the following conditions: for all $x, y, z \in X$,

1) BCL-1: $x * x=0$;
2) BCL-2: $x * y=0$ and $y * x=0$ imply $x=y$;
3) $((x * y) * z) *((x * z) * y)=(z * y) * x$.

2. Main Result

The BCL^{+}product, denoted by *. We call the binary operation * on X the * product on X, and the constant 1 (one) of X the unit element of X. For brevity we often write X instead of $(X ; *, 1)$. We begin with the following defini-
tion:
Definition 2.1. An algebra $(X ; *, 1)$ is called a $\mathrm{BCL}^{+}-$ algebra if it satisfies the following laws hold: for any $x, y, z \in X$,

1) $\mathrm{BCL}^{+}-1: x * x=1$;
2) $\mathrm{BCL}^{+}-2: x * y=1$ and $y * x=1$ imply $x=y$;
3) $\mathrm{BCL}^{+}-3$:

$$
((x * y) * z) *((x * z) * y)=(z * y) * x
$$

Such definition, clearly, the BCL^{+}-algebra is a generalization of the BCL-algebra, imply a BCL-algebra is a BCL^{+}-algebra, however, the converse is not true. We illustrate with the next theorem.

Theorem 2.1. A BCL^{+}-algebra is existent.
Proof. The proof of this Theorem 2.1 is not difficult and uses only example. Let $X=\{0,1,2,3\}$. Define an operation * on X, which are given in Table 1.

Then $(X ; *, 1)$ is a proper BCL^{+}-algebra. It is easy to verify that there are

BCI-1:

$$
\begin{aligned}
& ((2 * 3) *(2 * 1)) *(1 * 3) \\
& =(1 * 1) * 3 \\
& =1 * 3 \\
& =3 \neq 0 ;
\end{aligned}
$$

BCI-2:

$$
\begin{aligned}
& (2 *(2 * 3)) * 3 \\
& =(2 * 1) * 3 \\
& =1 * 3 \\
& =3 \neq 0 ;
\end{aligned}
$$

BCH-3: 1) The left side of the equation is

$$
(2 * 3) * 1=1 * 1=1
$$

Table 1. BCL^{+}operation.

$\boldsymbol{*}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{0}$	1	0	0	0
$\mathbf{1}$	0	1	3	3
$\mathbf{2}$	3	1	1	1
$\mathbf{3}$	1	3	3	1

2) The right side of the equation is

$$
(2 * 1) * 3=1 * 3=3 .
$$

In the expression we see that $1 \neq 3$.
BCL-3:

$$
\begin{aligned}
& (((2 * 3) * 1) *((2 * 1) * 3)) *((1 * 3) * 2) \\
& =((1 * 1) *(1 * 3)) *(3 * 2) \\
& =(1 * 3) * 3 \\
& =3 * 3 \\
& =1 \neq 0 .
\end{aligned}
$$

$\left.\mathrm{BCL}^{+}-3: 1\right)$ The left side of the equation is

$$
\begin{aligned}
& ((2 * 3) * 1) *((2 * 1) * 3) \\
& =(1 * 1) *(1 * 3) \\
& =1 * 3 \\
& =3
\end{aligned}
$$

2) The right side of the equation is

$$
(1 * 3) * 2=3 * 2=3
$$

In the expression we see that $\mathrm{BCL}^{+}-3$ is valid. In fact, it is not difficult to verity that $\mathrm{BCL}^{+}-1$ and $\mathrm{BCL}^{+}-2$ are valid.

A BCL^{+}-algebra $(X ; *, 1)$ is a partially ordered relation \leq on X, now we obtain the following definition:

Definition 2.2. Suppose that $(X ; *, 1)$ is a $\mathrm{BCL}^{+}-\mathrm{al}-$ gebra, the ordered relation if

$$
\begin{gather*}
x \leq y \text { if and only if } x * y=1, \\
\text { for all } x, y \in X, \tag{2.1}
\end{gather*}
$$

then $(X ; \leq)$ is partially ordered set and $(X ; *, 1)$ is an algebra of partially ordered relation.

Corollary 2.1. Let every $x \in X$. Then 1 (one) is maximal element in a BCL^{+}-algebra $(X ; *, 1)$ such that

$$
\begin{equation*}
1 \leq x \text { imply } x=1 \tag{2.2}
\end{equation*}
$$

Definition 2.3. A BCL^{+}-algebra X is called proper BCL^{+}-algebra if X is not a BCL-algebra.

Example 2.1. Let $X=\{0, a, b, c, 1\}$. We define an operation * on X by Table 2.
In fact, it is not difficult to verify that $(X ; *, 1)$ is a BCL^{+}-algebra.

Table 2. BCL^{+}operation.

$\boldsymbol{*}$	$\mathbf{0}$	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	$\mathbf{1}$
$\mathbf{0}$	1	0	0	0	0
\boldsymbol{a}	a	1	1	c	1
\boldsymbol{b}	b	a	1	c	1
\boldsymbol{c}	c	b	c	1	1
$\mathbf{1}$	0	1	1	1	1

Theorem 2.2. Assume that $(X ; *, 1)$ is any a BCL^{+}algebra. Then the following hold: for any $x, y, z \in X$,

1) $(x *(x * y)) * y=1$;
2) $x * 1=x$ imply $x=1$;
3) $((x * y) *(x * z)) *(z * y)=1$;
4) $\mathrm{BCL}^{+}-2: x * y=1$ and $y * x=1$ imply $x=y$.

Proof. Necessity. By $\mathrm{BCL}^{+}-1$ and 3), we obtain

$$
\begin{equation*}
(x *(x * y)) * y=((x * 1) *(x * y)) *(y * 1)=1 \tag{2.3}
\end{equation*}
$$

So, 1) holding.
By the same reasons, we derive

$$
\begin{equation*}
x * 1=(x * 1) * 1=((x * 1) *(x * 1)) *(1 * 1)=1 \tag{2.4}
\end{equation*}
$$

Hence, 2) holding.
Sufficiency. It only needs to show $\mathrm{BCL}^{+}-1$. Substituting y for 1(one) in 1), we have

$$
\begin{equation*}
(x *(x * 1)) * 1=1 \tag{2.5}
\end{equation*}
$$

Replacing $x * 1$ by y and x by z in 3), it follows

$$
\begin{equation*}
((x *(x * 1)) *(x * x)) *(x *(x * 1))=1 \tag{2.6}
\end{equation*}
$$

Using 2) and $\mathrm{BCL}^{+}-1$, we get

$$
\begin{equation*}
((x *(x * 1)) * 1) *(x *(x * 1))=1 \tag{2.7}
\end{equation*}
$$

Clearly, an application of (2.5) to (2.7) can give

$$
\begin{equation*}
1 *(x *(x * 1))=1 \tag{2.8}
\end{equation*}
$$

Comparing (2.4) with (2.7) and using $\mathrm{BCL}^{+}-2$, we get

$$
\begin{equation*}
x *(x * 1)=1 \tag{2.9}
\end{equation*}
$$

Also, by 2) and 1), the following holds:

$$
\begin{equation*}
(x * 1) * x=(x *(x * x)) * x=1 . \tag{2.10}
\end{equation*}
$$

Combining (2.9) and (2.10) with 4) create $x * 1=x$. So Theorem 2.2 is valid.

Theorem 2.3. An algebra $(X ; *, 1)$ is a BCL^{+}-algebra if and only if it satisfies the following conditions: for all $x, y, z \in X$,

1) $\mathrm{BCL}^{+}-1: \quad x * x=1$;
2) $\mathrm{BCL}^{+}-2: x * y=1$ and $y * x=1$ imply $x=y$;
3) $(((x * y) * z) *((x * z) * y)) *((z * y) * x)=1$;
4) $x *(1 * y)=x$.

Proof. The proof is routine. Necessity. To prove 1). By $\mathrm{BCL}^{+}-3$.

$$
\begin{align*}
x * x & =(x * x) * 1 \\
& =((1 * x) * x) *((1 * x) * x)=1 \tag{2.11}
\end{align*}
$$

Then 1) holding.
Sufficiency. Substituting $x * 1$ for y and x for z in 3), by $\mathrm{BCL}^{+}-3$ and 1$)$, it follows

$$
\begin{align*}
& (((x *(x * 1)) * x) *((x * x) *(x * 1))) *((x *(x * 1)) * x) \\
& =((1 * x) *(1 * x)) *(1 * x) \tag{2.12}
\end{align*}
$$

Also, substituting $1 * x$ for x in (2.11), by $\mathrm{BCL}^{+}-3$ and 1), we have

$$
\begin{align*}
& ((1 * x) *(1 * x)) *(1 * x) \\
& =((x * x) * x) *((x * x) * x) \tag{2.13}\\
& =(1 * x) *(1 * x)=x * x=1 .
\end{align*}
$$

Algebras," "Advances in Pure Mathematics, Vol. 1, No 52011, pp. 297-299. doi:10.4236/apm.2011.15054

