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ABSTRACT

The different methods used to classify rational homotopy types of manifolds are in general fascinating and various (see
[1,7,8]). In this paper we are interested to a particular case, that of simply connected elliptic spaces, denoted X, by dis-

cussing its cohomological dimension. Here we will the discuss the case when dimH” (X ;Q) =8 and ;((X ) =0.
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1. Introduction

Let us first recall some basic definitions of rational homo-
topy theory. A simply connected space X is called elliptic,
if both of H"(X;Q) and m.(X)®Q are finite dimen-
sion, and that its cohomological Euler- Pomcar charac-
teristic is given as y, (X)=2, (- ) dimH*(X;Q).
We will fix this throughout this paper. The space is
called rational if . (X) is a Q -vector space. If it is
not, by [4], we can associate a rational simply connected
space, denoted X, , verifying

H'(X4;Q) QH'(X,Q)

. (Xq)

The rational homotopy type of X is defined as the
homotopy type of its rationalization X . Our purpose

in this paper to give a complete classification this rational
homotopy type when dimH”(X;Q) and z,(X)=0.

asalgebras,

Q. (X)®Q asvectorspaces.

2. Preliminaries

The rational homotopy theory was founded in the the end
of the sixties by Daniel Quillen and Denis Sullivan. One
of the technical gadget of this theory is the minimal
model of Sullivan, it is a free Q -commutative differen-
tial graded algebra (AV,d) associated to any simply
connected CW complex X of finite type [3]. Here
V=@,V is Q-graded vector space with dimV' <o
and d a decomposable differential; that means

dv' ( >2V) (d does not have a linear part) and that

"Corresponding author.
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d* =0. It is well known that the minimal model (AV,d)
determines the rational homotopy type of X, in the sense that

H™(X;Q) =H"(AV,d) asalgebras
n(X)®Q =V

asvectorspaces.

For example, the minimal model of an even sphere
S™ is of the form (A{X,y},d) with |X|=2n, |y|=4n—1,
dx=0, dy=x" and H"(S;Q)=Q[x]/x’, while the

minimal model of an odd sphere S*"*' is of the form
(A{x,y},d) with |y|=2n+1, dy=0. It will be utile
for our proofs, to recall the reader this simple properties.
For a homogeneous element x of AV, |X| denotes its
degree, which verifies the following:
. Xy (- 1)\ ] yX;
e d(xy)= (dx)y+( )‘X‘ xdy (Leibniz formula).

In particular x* =0, when |X| is odd and Xy = yx
when |X| is even.

2. (X)=3,.,(-1) dimV* is called the homotopic

Euler Poincar characteristic of X. In [5], S. Halperin
have shown the following:

X =0 and X, <0

1
>0 <o 2. =0 M
< H*(AV.,d)=0

One other notion that we will use throughout this pa-
per is the formal dimension of X, given as
fd(X):= max{n,H” (X;Q) = 0} . We know from [5]
that, when a,,---,a, are the elements of an homogene-
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16 M.R.HILAL ET AL.

ous basis of V,

fd(x)= > [a]- 3 (jal-1)- &)

\ai ‘odd \ai ‘even

Our proofs are essentialy based on this equality com-
bined with an other equality established by J. Friedlander
and S. Halperin in [2], that

> [a]< fd(x)

[aj|even

2

\ai ‘odd

)

a|<2fd(X)-1.

Finally, let us recall that H"(X;Q) satisfies the
Poincar duality, that means that the multiplication
H*(X;Q)xH"™ (X;Q) > H"(X;Q)=Qu is a non
degenerate bilinear form (here n=fd(X) and u
denotes the so called fundamental class of H"(X;Q)).
For the reader interested by more details about the rational
homotopy theory, we recommend the basic reference [3].

3. The Main Theorem

In all the remainder of this paper, X denotes a simply
connected elliptic space with dimH"(X;Q)=8, , =0
and (AV,d) will denotes it minimal model. Put
{LLa,, a1} abasis for H (X;Q) with the condi-
tion that || <|e;,,| and that & e AV with [a]=gq;.
The following table summarizes the classification of its
rational homotopy type.

Rational homotopy type of X

(s™) fd(X)=3(2k+1)
S"xS"x§* fd(X)=4n andnisodd
(S"xS" xS )4t fd(X)=4n andnisodd
G 5 Gk 5 GAP) fd(X)=2(2k+1)+2(k+p)
5" ®, S xS xS fd(X)=4n+2(n+p)+1

S % §2" x S fd(X)=4n+2(n+p)+1

s X(SZ(n+p)+l )2

S xS* xS* k>2n+2
g ><Yl dle Q*
Szn x Szk+1 x Sz(mk)q

2041 2(n+k )41 2k
S™M xS @ S

S'H]) x SZK +1
Slkl +1 x SZI(;,M x SZKJH
E E : the total space of the fiber bundle

with S*™' xS as base space

Copyright © 2012 SciRes.

Legend: 1) In [6], I. M. James has introduced the
concept of reduced product when X is a based space. He
put X(1) =X and

X (g = X xeex X/(Xlﬂu'ﬂ*ﬂu'7xp—l) N(*’Xl"nﬂxp—l)'

2) From this construction applied to an even sphere
S" arises the James sphere S?p), satisfying
H*(S(“p);(@): Q[a]/(ap“). The use of the denotation

(”p) means implicitly that n is supposed to be even.

As the most of our proofs will be by contradiction, we
will mark such proofs by (by contradiction) in its begin-
ning and by (QED) when its end. In the spirit and desire
to simplify the lecture of this paper, we will subdivide it
on many propositions, lemmas and theorems. The first
one is that:

Lemma 1 There exists ie{l,---,5} such that |o;|<

i+1] "

Proof. Suppose that |ai| = |a
2o =1+(-1)"

o
|:n,then

i+1

+5%(=1)" 0.

3.1. The Case Where
| = || =ers | <[ = |ers| =]

Proposition 2 If |o;| =|a,| =|a| <|a,| =|as| =|a| , then

X has the rational homotopy type (r.h.t) of (S**! )3 , with

3(2k+1)=fd(X) and keN".

Proof. Since |a1| :|a2| :|a3| ,then a,,a,,a, eV . We
distinguish two cases:
1) |a1| is odd. Then a =a; =a; =0. Let E be the

vector space spanned by o a,, o0, 05 .

e If dimE =3, we can take {a,,0;,0,0;} as a
basis of E. Let {b,---,b,} an homogeneous basis of a
complement of Q{a,a,,a,} inV with [b|<---<[b,|
and dbeA**{a,a,,a,}, therefore db =0 and
Aa].[a,].[a,]}@Q[b ] H"(AV.d), what im-

plies that dimH"(AV,d)>9 . So the minimal model
of Xis (A{a,a,,a,},d) withda;=0and |a|=2k+1.

This is exactly the minimal model of (SZ"“ )3 )

e If 1<dimE<2, the there exist 4,4, €Q such
that Ao a, + Loya3+a,a; =0, and then
da, = A4,aa, + L,aa3+a,a,. According to the Poin-
car duality, we have oo, =u, so d(aa,)=
aa,a, and [aa,a,|= 4 =0. This is impossible.
2) |a| is even. Then fd(X) and |a,| are odd, be-
cause that y, = 1+(—1)fd(x) +3+(—1)‘a4‘ =0. Therefore

o =i =ai =aa, =0, = a,a, =0, and there exist
tree generators b, of AV with even degrees such that
do. =a’, i=1---3. Then

Z‘a_‘m a|>3|a,|+3b,|>3|a,|+6|a|-3>2fd(X)-1.
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This is impossible.

3.2. The Case Where
|| = ey <as| = ety | <5 | = o]

Lemma 3 If |g|=|a,] <|a3|:|a4|<|a5|:|a6| , then
fd(X) and |a;| areeven, || isodd,and a, #0.

Proof. First, because of the Poincar duality, we have
fd (X):|a,|+|a6| = 2|a3| is even, and |al| , |a6| have
the same parity. Hence 0=y, = 2+4(—1)‘a“ +2(—1)‘a3‘,
|a1| is odd and |a3| is even.

(By contradiction) Suppose now that a,a, =0, since
a’ =a; =0 then {a,i=1--4}cV . Otherwise, the
Poincar duality let us to suppose that oo = a,a5 = 1
and to conclude that aj,a, ¢ A{a,i=1---4} and that
a;,a, are also generators of (AV,d). So

Z\ai\odd
=4fd(X)>2fd(X)-1.
This is impossible (QED).

Lemma 4 If |0(1|:|0(2|<|053|:|054|<|015|:|a6 , then
there exists an homogeneous generator b of AV, satis-
fying db=a; - Aa,a,a,, where 1eQ".

Proof. Since «,a, #0, we can assume that aa, = a,
and that a, €V, then [a,a,]=aa,a, = 1. Otherwise
[af] =A[aa,a,], then there exists an homogeneous
genérator b of AV, such db=a; -1aa,a,.

Lemma 5 If |al|:|a2|<|a3|:|a4|<|a5|:|a6|, then
(AV,d) = (A(X.%,.%,,y),D) with:

e Dx =Dx,=Dy=0,
e Dy=y’-AxXy where 1e€Q",
o [x[=[x|=[a] et |y|=|a].

Proof. We have H (AV,d)=H"(AW,D) where
AW = A(X;,%,,X;,Y). We define the algebra homomorph-
ism W:(AW,D)—>(AV,d) as ¥(x)=a, ¥(x,)=a,
¥(x;)=b and ¥(y)=a, V¥ is into because it trans-
forms the basis {X,X,,X;,y} of W on a the linearly
independent family {a,,a,,a,,b}. Let V, =¥ (W) and
V=V,®V, , since H (AV,d)=H"(AV,,d) then
dV, = AV, ® AV, \{0} . Assume that V, #0 and con-
sider ceV, such that |C| = min {|X ,XeV,X# 0} , then
dc=wb+w, where o, cA(a,a,,a,).As
0=d’c=wmdb=w, (aj —/1a1a2a4) , then @ =0 . We
have to discuss two cases:

e dc=(4a +4a,)a;;n>2. In this case
|C| =(2n+ 1)|a1 | —1 and therefore

Z‘ai‘m a|2|b|+|c|> 4]a |+ (2n+1) | -2

| 2 o[ +a | +las |+

>9a|-2> fd(X).
This is impossible.
e dc=4aa,a;, m>1. In this case, |c|=(2m+3)|a|-1
and d(a,)=0, then [a,¢|>5a|-1> fd(X), and so
[alc] =0. Let f=4+-+f, €AV, such df=ac

Copyright © 2012 SciRes.

where B €AV and |B|=(2m+3)|a|-2 is odd,
in particular. But f, # 0, because if not we will have

Sl 2la+ ol lc 442 (4m + 7)a -3

>11a|-3>2fd(X)-1.

This is impossible.
Proposition 6 If |a|=|a,| <|as| =|a,| <|as| =|a ,

then X have one of the following r.h.t:

o S"xS"xS™, wherenisoddand fd(X)=4n.

o (S” xS" x§*")#S[,, where nis odd and fd (X )= 4n.

Proof. Let us recalf that fd(X) and |a,| are even,
and that || and |eg| are odd.

e First case: a; =0. Since u=Aaa,a, and 1, #0,
then ¢, #0 and a,a, #0 . Hence
{La,a,,a,a0,,a0,,0,0,,a00,2,} is a basis for
H™(X;Q), and therefore
H'(X;Q)=Q[ab.c]/(a’,b’,c’) , ie, X has the
rhtof S"xS"xS™.

e Second case: a; #0. Here o, and a,a, are
both non null, because in the opposite case we will
have aa, =db or a,a, =db where b is a genera-
tor of AV, and in this cases
3l 2l 1 la =210 (x) 1. This
impossible. Recap «; =a; =0, o, #0, «, %20,
oo, #0, a,a, #0, this leads us to conclude that X

have the r.h.t of (S” xS" xS )#S(zzn) .

3.3. The Case Where
CAR AN AN ANAREA

Proposition 7 If |a,|=|a, | <|es| <|a,| <|as|=|a,| and
if fd (X? is even, then X have the r.h.t of S**x
¥ xS Plwith fd(X)=2(k+1)+2(k+p).

Proof. Because of the parity of fd (X ), the duality of
Poincar and the fact that y, =0, then |a1| and |a3|
are respectively odd and even, so o =a; =0. Assume
that a,a, =0 and that a5, € A(a,a,,a5,2,), then
there exist P',P; € A(a;,,,05,a,) such that
o, =P'a,+Pja, for i=5,6. This implies the impossi-
ble situation that u = = a,a; =0, but also that our
second assumption is false. Thus necessarily a,,a, are
both generators of AV and that

2 ajoaa| 3] = [a1] [, ]+ [as | +[ag = 2fd (X ) > 2d (X ) - 1.

This another impossible situation implies that our first
assumption is also false. Put oo #0, in this case
{a,,a,} " Q{a,a,} #J, in particular a; are genera-
tors of AV for j=3,4. The Poincar duality let us to
write oo, = [alazaj]: u and to conclude that
oao;#0 and that a,a; #0 and finally to write
as =aa;, ag=a,a;. Recall that a; =0, because of
the parity of the degree, then (AV,d)=A(a,b,c,x),d)
with da=db=dc=0 and dx=c’. This is the mini-
mal model of S xS x§**P)
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18 M.R.HILAL ET AL.

Proposition 8 If |o|=|a,|<|as| <|a,| <|os|=|a)
and if fd(X) isodd, then X has one of following r.h.t:
. SQkH XSZk-H ><SZ(ker) with
fd(X)=2(k+1)+2(k+p),

(8™ ®,, 87 )%™ with

fd(X)=4n+2(n+p)+1,
(SZn XSZn)>< Sz(n+p)+l with

fd(X)=4n+2(n+p)+1,
Proof. We will discuss three cases:

e First case: |oz1 is odd, then |a5| is even. Suppose
that a5| eV then
Do a| > [a;|+]a| > |a,| +|as| = fd(X) . This is
impossible. So {a;,a,}NQ{e,a,} with aa, #0
and a; is an odd degree generator of AV for
j=3 or j=4. A same justification as in the last
proof let us to conclude that a5 =a,;, o, =a,q;
and that X have the r.h.t of S xSk §*P)

e Second case: |al| isevenand o,a, =0. Since |a5|
is odd, then dim@{alz,azz,alaz}ﬁl. Assume for
example that o #0, then p=ofa; with j=3
or 4 and |aj| is odd. Therefore aa; #0. Let sup-
pose that o, a,a; are collinear and write a,a; =

Aaya;, then aja; =Aa,aa; =0, so a; eV,

Since that ey, =0 and that o = Ba; , then there

exist two odd degree generators of AV , b and ¢, such

that do=aa, and dc=a’ - fa; . We conclude that

Z‘ai Jodd

a | |a;|+[as|+|b|+[c| > [a;| +[as| +2(2[a ] -1)
>2fd(X)-1+|a|-1>2fd(X)-1

(impossible). Put oa; =@, and a,a; =a;,, then
p=ala;=a,a; and o #0,a; #0. The minimal
model of X will be of the form
(AV.d)=(A(a,a,,b.b,,b),d) with da, =da, =0,
db =aa,, db,=a;—4a’, db, =0 and |a|=2n,
_ : 2 2 2(n+p)+l
lb|=2(n+p)+1,ie, X~(S”®d28“)x8 .

e Third case: |al| is even and o, #0. As in the
first case, we can write s = a;,0, = ,a;. Since
dimQ{af,af,alaz} <1, then o = Aa,a, and a; =
Aa,a, . Suppose that 4 #0 and write a’ =da,

a’-4aa, (& =0), then d[%(a—alb)], i.e.,

a,a, =0 . That contradicts the main hypothesis in our
third case. Hence the minimal model of X will be of
the form (AV,d)=(A(a,,a,,b,b.b,).d) with

da, =da, =db=0, db =a’, db, =al,ie,

X ~ SZn XSZn XSZ(n+p)+1.

3.4. The Case Where
AN AR AR ARI AR

Proposition 9 If || <|a,|=|a;| <|a,| =|as| <|a,| and

Copyright © 2012 SciRes.

fd(X) iseven, then x have one the r.h.t of
g2n X(Sz(n+p)+1 )2 '

Proof. As fd(X) isevenand g, =0, then || and
|a2| are respectively even and odd. Suppose (by contra-
diction) that o, or ¢, is null (for example o, = 0).
The duality of Poincar insures that {a,,a;} =V, then
_Z\ai\odd .ai| 2 [a,|+|a[+[a,] +[as| > 2fd (X) 1. This is
impossible (QED). Put o, =aa,, a;=oa,, then
a,a, #0, because that u=aa,a,. This leads us to
take @, =a,a, and to conclude that o =0. Hence
(AV,d)=(A(XY,.Y,,Y).d) with dx=dy, =dy, =0,
dy=x> and |[x=2n, |y|=|y,|]=2(n+p)+1, i.e.,

X ~S§2" X(Sz(n+p)+1 )2 .

Lemma 10 If || <|a,] :|a3| <le,| =|a5| <|a6| and

fd(X) isodd, then {a,,a,}nV =9.

Let us suppose a, €V (for example) and discuss two
cases:

. |a4| is even, then a; =0 and there exists a gen-
erator &, of AV suchthat da, =a;.If |a] isodd,
then Z{ai‘odd ai|z|a,|+o|a2|+|a3|+|a7|> 2fd (X)-1,
impossible. Then |a]| is even and necessary
dim@{alz,%%} <1, i.e, there exists a generator &,
of AV verifying da, = 4a’ +Laa, with 4 =0
or A, =0. Consequently

Z\ai\odd ai|2|a2|+|a3|+|a7|+|a8|
2[a,|+[as] +[as[ +[ay]
>2a,|+2[a,|-1+2[a]-1

>2(|a,|+]a,[)-1=2fd(X)-1,

what is, once again, an impossible situation.

e |a,| is odd, because of the Poincar duality, we must
have |a,| be even and dimQ{a,a;,aya,}=1. Let
a, € AV suchthat da, = 4a,a, —4,a,a,, then

Z‘al ‘even

a| > [a,] +|ay| +|ay| = 2|a, | +|a, | +]a,| -1

>|az|+|a4|= fd (X).

This is impossible.

Lemma 11 If |a1|<|a2|:|a3|<|a4|:|a5|<|a6| and
fd(X) isodd, then o, #0 and o a; 0.

Proof. (By contradiction) Assume, for example, that
a,a, =0. By the precedent lemma and the duality of
Poincar, we have {a,,a;} = A{a,a,,a,} and a,a %0,
a,a, # 0. Therefore ;e Q{a2 ,af,az%} ,but fd(X)
is odd, then a; € Qa,a; and ueQa,o, = Qaja, =0.
This is a contradiction (QED).

Proposition 12 If |a|<|a,|=|as| <|a,| =|as| <|a)
and fd(X) is odd, then x have one of the following
r.h.t
o S™IxS*xS* with k>2n+2,

e S™'xY,, where 1eQ" and Y, have a minimal
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model of the form (A(a, b,u,v),d) with da=db=0,

du=ab, dv=b*-1a’.

Proof. By the two last lemmas, we have |al| is odd
and (AV,d)=(Aa,0)®(AV',d) with {a,,a,}eV’.
But dimH"(AV',d)=4 (case classified by the first au-
thor in his thesis), then X ~S" xY where Y ~S" xS™
and n,>n+1 or Y ~Y, where
(AV',d)=(A(a,b,u,v),d) and da=db=0, du=ab,
dv=>b>-4a’.

3.5. Case Where
| <] < |ers| = |ens| < |es | < |exe]

Lemma 13 If |al|<|a2|<|a3|:|a4|<|a5|<|aé|, then

a,eA(a,a,) or a,eA(a,a,).

Proof. Suppose that {a;,a,} €V, then there exist two
generators a, and a; of AV satisfying
da, =a,a, —da,a,+® and da, = 4a,a, +4,aa, with
e AV . We distinguish two cases:

o First case: |a3| is even, then |a; is odd. As fd(X)
is even and y, =0, then |0¢8 is even and conse-
quently Z‘a_‘cvn a| = |a;|+|a,|+|as| > fd (X).

e Second case: Ta3| is odd. As fd(X) is even and
X. =0, then |a8| is even and
S ekl 3 o+ o) > ().

The two cases are both impossible.

Lemma 14 If o] <|a,| <|as| =|a,| < |as| <]

1) o =0,

2) {a3,a4}m(@{ala2} 9,

3) {a,a,{nV =D,

4) a,eQaa, and o, cQa,a,.

Proof. 1) suppose that & =0, then || is even. Since
fd(X) is even and y, =0, then |a,|, |os| and |as]
are both odd. Put «;=¢, then {a,,a,,a,,a,}cV
and Z‘ai‘odd a| > [a,|+|a;|+|a,|+]as| > 2fd (X ) -1 (con-

tradiction).

2) We have {ag,a4}m(@{ala2,a22}¢®. If |a2| is
even, then |a;| is odd and {a;,a,} "Q{aa,}=@. If
|a2| is 0dd, the result is evident because that a; = 0.

3) It is an immediate consequence of 2). Hence we can
take g =a and {a,,8;,a,,a;} V.

4) Since 0:32 = alz a22 =0, then there exists 1eQ
such that oy, =Ax . So o, #0, a,a, #0 and
a,eQaa,, a,cQaa,.

Proposition 15 If |a,| <|a,| <|as| =|a,| <|es| <|al ,
then X have the h.rt of S xS xS§*™ " or that of
Szml ><Sz(nﬁ-k)ﬂ ®d2 Szk )

Proof. Put o, =a,a,, a,=a,a, and o = La,a,,
a; = La,a,a, , then the minimal model of X have one
of the following forms:

o (AV.d)=(A(x, yl,yz,y3),d) with
dx, =dy, =dy, =0, dy=x and |x|=2n,

, then:

Copyright © 2012 SciRes.

=2y e+t e
o (AV.d)=(A(X.Y,5Y,.Y;).d) with
dx, =dy, =dy, =0, dy, = x? —-Ay,y, and |X1| =2k,
lyi|=2n+1, |y,[=2(k+n)+1,ie,
X ~ §2n+! ><Sz(n+k)+1 ®d SZk .
2

3.6. Case Where
AN AN LA AN AN

Lemma 16 If |051 <|a2| <|a3| <|a4| <|a5| <|a6| , then
a, €A(a,a,,a,,3,).

Proof. Let a; €V and discuss many cases:

1) a; €V, then there exist two generators X and y
of AV suchthat dx=a,a;—a,a, and dy=a’

a) |a,| isodd, then

Z‘al ‘even

b) |a,| iseven. As fd(X) isevenand z, =0, then
|a1 isodd, a eV®™™" and

ol 2 D[y > 210 (%) -1.

2) a, eV,

a) |a,| is odd, then necessary a, €V and a,a; =
a,a, = p . Hence there exists a generator X of AV such
that dx=a,a, —a,a,.

i) a V™", then |a3| and |a2 are both odd since
2. =0. Since aya, #0 then a; eV for j=3 or
j=4 with a,a; =0. Hence there exists a generator y

j
of AV suchthat dy=a;a; andso

Z‘ai‘odd ai|2|x|+|y|>2fd(x)—1.
i) a eV, then xeV° and
Z‘ai‘odd a|>a|+|a,|+|a; |+ x[>2fd (X)-1.

b) |a2| is even.
i) a, eV, thennecessary xeV™" and

Z‘ai‘even ai|2|a2|+|x| > fd (X)

ii) a,=a;, then & a, #0 (because of the Poincar
duality) and s #0. Put a;=aas, then a; eV
for j=3 or j=4 (. =0) and a;a,=0 (Poincar
duality). Let x be a generator of AV such that
dx = a;a;, then

Z\ai |odd

ai|2|al|+|a2|+|a6|+|a9|> fd(X).

ai|2|aj|+|a5|+|x|
>2(|ay|+[as])-1> 2fd (X )-1.
Lemma 17 If |a,|<|a,| <|a3|<|a4| <|a5|<|a6|, then
a, €A(a,a,,a,,a,).

Proof. Let a, €V and discuss many cases:
1) a, eV . Then there exist generators a,, a; of
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AV suchthat da, =aa,—a,a, and da, =a;.
a) |al| is even, then

Sl 2o a2 10 %) -1+ 2 -1

>2fd(X)-1+a,|-1>2fd (X)-1.
b) |a1| is odd, then
Z\a,.\cvcn a| 2[a[+[a;|> fd (X).

2) a, eV,
a) a, eV, then

Dgfevnl 1= [Ba] +[a| > 1 (X)
b) a, eV°Y, then
Z\ai\odd

Lemma 18 If |a,| <|ar,| <|as| <|e,| <|as| <|a,
2s|{al,a2,a3,a4}mv| <3

ai|2|a1|+|a2|+|a6|+|39|>2fd(x)—1.

, then

Proof. Put N =|\{a,a,,a,,a,}NV]|.

1) If N=1,then a eA(a) forall i=1-,6, this
implies the contradiction y, #0.

2)If N=4.Wehave o, =0, = 1.

a) |a3| and |a4| are both even, then fd(X) is even
and a; =0.Let a, and a, be some generators of AV
with da, =aa,—a,a, and da, =a;, therefore

Z\ai\odd a|>a,|+|a]>2fd(X)-1.

b) |a,| and |a,| are both odd, then fd(X) is odd
and y, :2((_1)\a1\+(_1)\a2\):O’ s0 || (for example)
is odd and

Z\ai\odd

c) |a3| is even and |a4| is odd (for example), then

S el 2l > f(X).

Lemma 19 If | <|a2|<|a3|<|a4|<|a5|<|a6| and
if |{a,,a2,a3,a4}mv =2, then a, and a; have dif-
ferent parities where ‘a; ={a,,a;,a,} NV .

Proof. Suppose that a and a; have the same par-

al> | o[+ fa far| > 210 (X)-1.

1ty.
1) If |al| and |aj| are both even, then all |ai| are
even for i=1,---,6 and y, #0.

2) If |a1| and |ajJD are odd, then necessary a; =a, and
{ay,a,} = Qaya, (because that {a,,a,} = A(a,a,)), but
this is impossible.

Proposition 20 If |a | <|a,| <|as| <|ay| <|es| < |a]
and if |{a,,a,,a,,a,} "V|=2,then X ~ S}, xS,

Proof. Put {a.a,.a,,a,} NV ={a.a;}. Because the
duality of Poincar, the fact that |a1|, |aj| have different

parities and the fact that a, A(al,a j) for all
i=1---,6.Let a, e{al,aj} such that |a£| is odd and
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a, e{al, j}—a[, it is evident that |ak| is even. As
H (AV,d)= Q{a?aﬁ,n eN,m= O,l} , then o, , =
a,a, , = p . This allows us to take
{a77£,a77k}:{af,a/akp"} with p=3, because if not
dimH"(AV,d)#8. Hence & =0 and ,a; #0. Con-
clude that (AV,d);A(af,O)®(AW,d), that dimV “*" =1
and that dimH"(AW,d)=4. In [?], (AW,d? is the
minimal model of Sfy , then X ~SfxS*™" where
n=la,| and 2m+1=|a,|.

Lemma 21 If |al|<|a2|<|a3|<|a4|<|a5|<|a6| and
if |{a1,a2,a3,a4}mv|:3, then only one among a, or
a, isinV.

Proof. Assume that {a;,a,} €V, then |a1| and |a2|
are both even, because that necessary a, € Qa, . There-

fore 7, = (1+(=1) ") (3+(-1)*) = 0. e, fa(x) is

odd, and there exists a generator a, of AV, such that
da, = a,a, —a,a, with

Z\ai\even 3| [a[+[ay|> fd (X).

Lemma 22 If al|<|a2|<|a3|<|a4|<|a5|<|a6| and
if |{a,.a,.8,,3,}"V|=3,then a; =aa, where
a; ={a;,a,}NV.

Proof. Suppose o, =0, we know, from the duality
of Poincar, that a0y = a,ay = 1 and by the Lemmas
16 and 17 that {a;,a,} < A(al,a2,aj) . We deduce that
a;eA(a,.a;), a eA(a.a,) and that
a eQla’,a;,aa;,8,3;} where k={3,4}-].

If a eQa/,then a =aa; and
a, e@{azz,azaj} . As |aj|<|a,|, then a; eQa;, and so
|ai| is even for all i=1,---,6, but this implies that
2. %0.

2)If a, e Qaj, then necessary o =0 and
ajo = Aayo; = A'u . Hence fd(X)= 2|a2|+|aj| and
a; €Qa,a;, a; €Qa;. Since |aj and |[a,| are both even,
then fd(X)=|a|+[a,| and |a6|:2|aj|. So |a| is even
for all i=1---,6, but this leads to the contradiction
2. 70.

3) If a, eQaa, then o =0 and & = Au. Sup-
pose that @ =0 and discuss two cases.

a) a; €Qaa,, then |a|, |a,| and [a;| are even
and y, #0.

b) a; eQa;, then fd(X)=3la,| is even, but also
fd (X)=|a|+|a| = |a1|+2|aj|, then |a| is even. There-
fore |a;| isevenforall i=1---,6 and g, #0.

4)If a eQaa,,then o’ =a; =0 and
a;a = Aaya; = A'u (Poincar duality). Hence a, € Qaj,
a, €Qa; and fd(X):|a2|+2|aj|:|al|+3|aj|.So
|a1|+|aj|:|a2|<|aj|.

Proposition 23 If || <|a,|<|as| <|e,| <|as| <|a]
and if [{a,a,,a,,3,} "V[=3, then X have one of the
following r.h.t:

e E: the total space of the fiber bundle with S***'x
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S**! as base space,
e S"xS™xS™ where n, n, and n, are both even.

Proof. We know by the precedent lemmas and by the
Poincar duality that X = OG0 = [ Put a; =aa,
and a; =a,a;, then a =0 and o =Aqa; . We
distinguish two cases:

1) 2#0, then |a| and |a| are both odd because
that y, #0. Replace Aa, by a and put A=1, then
the minimal model of X is of the form
(A(XY),Y,.y).d ) with |y,|=2p+1<|x|=2n<|y,|=
2q+1 and dy=x’-vy,y,. Hence X ~ E where S*" —

E - S*®"'xS***" s a fibration of the KS-complex

(A(¥1:Y,):0) > (A(Y,,Y,)®A(xy).d)
—>(A(x,y),5).
2) A =0, then X have the minimal model

(A(XY),,,Y),d) with dy, =dy, =0 and dy =", i.e
X ~S"xS™ xS™ with n, n, and n, are both even.
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