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ABSTRACT 

The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the 
canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riemannian manifold 
M with Ricci curvature decay to zero, if there is a line in M, then the isometrically splitting M = R × N is true. 
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1. Introduction 
   

In 1971, J. Cheeger and D. Gromoll [1] proved the fol-
lowing classical:  

Cheeger-Gromoll Splitting Theorem: Let M be a 
complete Riemannian manifold with  

0RicM  . 

If there is a line in M, then the isometrically splitting 
M R N 

 : 0,

 is true. 
The proof of Cheeger-Gromoll Splitting Theorem is 

based on the sub-harmonicity of the Busemann functions, 
we will give some details in what follows. Let M be a 
noncompact complete Riemannian manifold and 

M  

B

 

be a ray of M. Busemann function   is defined as 

  li
t

  m ,B x t d x t 

0t 


r 
          (1) 

For a given point x in M and an arbitrary , let 
: 0, l M 

 t
 be the normal shortest geodesic from x to 

 . Supposed that the ball  and the ex-
ponential mapping  

 0B  xT M

exp : 0x B M 

   exp : 0 exp 0x xB U B  

   

is embedding, so 

 

is a differential homeomorphic mapping. Thus for any 
y U  0Y B, there is   such that  expxy Y . Let 

 be the parallel vector field along  Y s  ,  0Y Y , 
and 

 1
exp 1 .y ss Y s

s    
 

 

  Thus : 0,1y s M   is a smooth curve which 
connects y with  t . Moreover,  . Now let x

  g y Lt y  and t tg t g . Then t g  is a smooth 
function defined in U. It is easily to know that tg  sup-
ports 

    , ,tB y t d y t y U     

at x, which means that 

       , ,t t
t tg y B y y U g x B x   

 

. 

By [2], one has 

    
2

1

20

1
1 , dt

n s
g x Ric s s s

ll
 

         
   

   . (2) 

The outline of the proof of Cheeger-Gromoll Theorem: 
1) It is able to show that 

     lim lim 0t
t

t t
SB x SB x g x  

   

B

, 

then,   is subharmonic function, where S is a operator 
generalized from Laplace operator , one can refer to 
[2] for details. 



L2) Since there is a line    
B

, by 1), one is able  
Bto prove that 

 
 and 

 
 are harmonic functions on 

M. 
dB df


3) Let  . By   

 2 21
, ,

2iX
i

D Ric          

 *

,    (3) 

*The paper is supported by NSF of Fujian province and Pan Jinlong’s 
SF of Jimei University, China. grad f df  is a unite parallel it can be proved that 

Copyright © 2012 SciRes.                                                                                 APM 



H. S. ZHAN 37

vector field on M, where  is the couple tangential 
vector field of 


  induced by the Riemannian metric. 

4) By de Rham Partition Theorem, one has that 
M R N  . 

Cheeger-Gromoll Splitting Theorem and its proof are 
so excellent that there is few generalization can be found, 
the only result we known is in Cai’s paper [3], in which a 
local splitting theorem was got. In order to narrate our 
main result, we quote the following. 

Definition 1: Let M be a noncompact complete Rie-
mannian manifold. Suppose that there are two continuous 
functions ,  h s  f s ,  0,s  , satisfying 

   
0

d ,f s s
0

d 0h s s


   



,        (4) 

such that for any normal shortest geodesic : 0, l M 


, 
for any 0,s l  

        , ,Ric s s f s Ric s        , ,s h s 

   , 0s s   

 h s

 (5) 

then we say M is with Ricci curvature decay to zero. 
From the definition, according to (4), (5), it is clear of 

that 

lim
s

Ric


. 

A simple example of  satisfying (4) is defined as  

 
 

 2

sin s
, 2 π, 2 2 π , 0,1,2,

1
h s s k k k

k
     

  Then 

we have: 
Theorem 1: Let M be with Ricci curvature decay to 

zero. If there is a line included in M, then isometrically 
splitting M R N 

: 0.

is still true. 
By the way, when one discusses the relationship be-

tween a kind of curvature and topology of a Riemannian 
manifold, he generally assume that the sign of the kind of 
curvature is fixed, for examples, in [1] and [5], the au-
thors assumed that the manifolds is with nonnegative 
Ricci curvature. If without this assumption, the corre-
sponding problem seems more difficult, this is the reason 
we write out this short paper, though it is not easy to 
construct a manifold with Ricci curvature decay to zero 
for the time being. 

2. The Proof of Theorem 1 

Our argument follows closely that of Cheeger-Gromoll 
Splitting Theorem, but we should overcome some diffi-
culties, especially in how to prove grad f is a unite paral-
lel vector field of M. 

Lemma 1: Let M be a complete noncompact Rieman-
nian manifold with Ricci curvature decay to zero. Then 
the Busemann functions on M are subharmonic. 

Proof: Let  M  
t

 be a ray in M. Just like 
above discussion, we can construct a smooth g  sup-
ports 

    , ,tB y t d y t y U     

at x. So 

      

 

2
1

20

2

0

1
1 , d

1
1 d

t

l

n s
g x Ric s s s

ll

n s
h s s

l l

 
         

   

      
 





 

．

 (6) 

By the assumption (4) and L’Hospital Rule, it is obvi-
ous that 

 
0

lim 1 d 0
l

l

s
h s s

l

 
2

  
  ,         (7) 

By (6) and (7), we have 

  limSB x S    lim 0t
t

t t
B x g x 

    ,    (8) 

which means that B  is subharmonic. 
a complete non-


The proof of Theorem 1: Let M be 

compact Riemannian manifold with Ricci curvature de-
cay to zero. Then the Busemann functions on M are sub-
harmonic. If there is a line 

 : , M    , 

then  0,| 
  and    , 0,t t       are rays 
y t  that in M. It is easil o know

 B x B
     0,x   

      0.B t B t
 

     

By maximum principle, B
 

 and B
 

are harmonic  

fu he

 

nctions on M. By canonical Weyl T orem (c.f. [2]), 
we know that they are all smooth in M. In simplicity, we  
set B B

 
 . It is well known that 

dB gradB 1.             (9) 

Let  

     : , , ,tM x x M B x t t      . 

By (9), B has not critical point, this means Mt is 
smooth hypersurface of M. 

Supposed that X and Y are tangential vector fields on 
M, the Hessian of B satisfies 

 2 .D B X Y   2 ,D B Y X  

   2 2, . ,

,

X

Y

D gradB Y D B X Y D Y X

D gradB X

 


 

In particular, by (9), 

B

0 2 ,XD gradB g 2 ,gradBradB D gradB X . 

Since X is an arbitrary tangential vector field on e M, w
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ha

0gradBD gradB  . 

This means the integral curves of grad B are the ge-
od

ve 

esics in M. It is clear that grad B is unit normal vector 
field of Mt. By reviewing the definition of mean curva-
ture of the horizontal hypersurface Mt, we have 

21 1
0

1
H tracD B B

n n
   


.       (10) 

N gradB , by 1.5.8 of [4], Setting 

  2,
1

1
H Ric N N H

n
   


, 

which means that 

 , 0c N N  ,             (11) 

Let  l

Ri

s   be the shortest geodesic from x to 
 t  a where l is the length of  s before, s , without 

of the generality, we can assume that  

lim l x

loss 

l
 


  

is a ray emanating from x, which is asymptotic to  . By 
[2,5], we know that 

  B t  x B x   , 0,t t   , 

whic eans that h m x  is a inte radBgral curve of N g  
and x N  . 

No 4),w by (  (5) and (6), 

 

    

   

 

2

0

2

0

0

0

0 lim 1 )

lim 1

lim ,

lim d .

d

, d

d

l

l

l l
l

l

l l
l

l

l

h s s
l

s
Ric s s s

l

Ric s s s

f s s

 

 









  
 

   
 



  









 

 

      (13)

by Lebesgue Control Convergent Theorem, by (4), (5) 
and (13), we have 

 
0

, d 0Ric N N s


 ,           (14) 

By (11), (14), we have 

 , 0Ric N N  . 

By (3), it is easily know that N gradB  is a unit 
parallel vector field of M. By de Rham Partition Theorem, 
we have M R N  . Thus we get Theorem 1. 
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