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ABSTRACT

This study presents an estimation approach to non-life insurance claim counts relating to a specified time. The objective
of this study is to estimate the parameters in non-life insurance claim counting process, including the homogeneous
Poisson process (HPP) and the non-homogeneous Poisson process (NHPP) with a bell-shaped intensity. We use the
estimating function, the zero mean martingale (ZMM) as a procedure of parameter estimation in the insurance claim
counting process. Then, A (f), the compensator of N (¢) is proposed for the number of claims in the time interval (0, ¢].
We present situations through a simulation study of both processes on the time interval (0, f]. Some examples of the
situations in the simulation study are depicted by a sample path relating N (¢) to its compensator A (7). In addition, an
example of the claim counting process illustrates the result of the compensator estimate misspecification.

Keywords: Estimating Function; Zero Mean Martingale; Non-Life Insurance Claim Counting Process; Poisson Process;
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1. Introduction

Nowadays, insurance is a common way of managing
risks and the insurance industry has grown rapidly over
time. Insurance industry owners, especially, consider the
components of risk management, such as the premiums
which are the main income of insurance businesses, re-
serves, underwriting, investment planning, reinsurance
planning, etc. Also, estimating claims play an important
part in each component in the non-life insurance field. In
the past four decades, a few researchers have studied the

claim counts model for non-life insurance. Klugman et al.

[1] and Denuit ef al. [2] were interested in studying the
frequency distribution of insurance claims, including the
parameter estimation methods. Bithlmann [3,4] presented
the credibility approach in the form of a linear function
to estimate and predict the expected claim counts in up-
coming periods, using past experience of claims as a risk
class or related risk classes. Biihlmann’s credibility ap-
proach is interesting and can be extended to other ap-
proaches, such as the Biihlmann-Straub model, Jewell’s
model or the Exact credibility approach, etc., (see Klug-
man et al. [1]). Calculating the expected claim counts
using the credibility approach only depends on the in-
formation from prior experience of claim counts, and
does not consider the occurrence behavior of claim
counts over time. Some authors have found an alternative
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approach to claim counts relating to a specified time or
their behavior over time, for example, Mikosch [5] viewed
the claim counting process as a homogeneous Poisson
process (HPP) in the Cramér-Lundberg model, one of the
most popular and useful risk models in non-life insurance,
and Matsui and Mikosch [6] also considered a Poisson
cluster model for the modeling of a total claims amount
by a point of claim counts as an HPP with a constant rate
of occurrence called the constant intensity. For some
non-life insurance portfolios, the claim counts during a
time period are caused by periodic phenomena or sea-
sonality. These claim counts are modeled in terms of a
non-homogeneous Poisson process (NHPP) with a period
time-dependent intensity rate. Morales [7] presented the
periodic risk model consisting of the claim counting
process with a bell-shaped intensity function (called the
Gaussian intensity) of the form

* 2
At)= A expl— lz(t—lj };
(o5 -0l ap )= L2 2
20 20
te [0,1) , /1(s+t) = /I(t , wWhere s is an initial season, s
=0,1,2, -, 0and A are parameters, and ® is the
standard normal distribution function. He estimated the
unknown parameters of the periodic model intensity by
using the maximum likelihood estimation (MLE), and he
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also considered evaluating the ruin probability through a
simulation study. Furthermore, Lu and Garrido [8] ex-
plored the periodic NHPP model with a Beta-shaped in-
tensity function.

The precision of claim count estimation is a key to
running the insurance business successfully. In this study,
we will present an estimation approach to non-life insur-
ance claim counts related to a specification of the two
different claim counting processes, i.e., HPP, and NHPP
with a bell-shaped intensity function, through a simula-
tion study. Our purpose is to estimate the parameters in
the non-life insurance claim counting process. The pa-
rameters in the insurance claim counting process, inten-
sity function (l(t)) in terms of mean value function

A(t)= J A(u)du , makes a complicated distribution func-
0

tion of insurance claim counts. An estimating function,
such as the zero mean martingale (ZMM), is used here as
a procedure of parameter estimation of an insurance
claim counts model, and the parameters of model inten-
sity are estimated by the MLE method.

2. A Definition of the Non-Life Insurance
Claim Counting Process

We define the insurance claim counting process

N(Z) = #{i >21:T < t} ; t>0, and the insurance claim
counts which have occurred in the time interval (0,7]
where T, =W, +---+W_ ; n>1 is a claim arrival time
and W, is independent and identically distributed (iid)
Exponential with the parameter A(w, ), called the inten-
sity rate, N = {N () 52 O} is a counting process which
is non-decreasing, N (Z) can be written as

N(t)z_[dN(u) where dN(¢) is an increment of N
0

in a small fraction period. The Poisson distribution is
often considered as a common distribution modeling of
insurance claim counts, and our main interest in the
process of insurance claim counts is the Poisson process,
i.e., HPP, and NHPP with the bell-shaped intensity func-
tion. This interest lies in the intensity rate, in which the
insurance claim counts occur, and whether these change
over time. In an HPP, the intensity rate is constant for a
given time, and the process is called an NHPP, if it
changes as a function of time [2,5,9].

On a probability space (€, J,P,), N(t) is Poisson

distributed with the parameter A(¢)= Ii(u)du , with a
0

mean value function E(N(t)) = A(t) . As
{/1(1‘) =a(t)-k(1);t= 0} is called the multiplicative in-

tensity, where «(¢) and k() are defined as the in-
tensity rate and the exposure risk, respectively. We con-
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sider N as a non-decreasing right continuous step func-
tion 0 at time 7 = 0 and jumps of size 1, and
A(1) "exp(-A(1))
n!
and Pr{dN(r)=1}=A(r)dt=E{dN(r)}.
In this study we consider the insurance claim counting
process which are the HPP with A(f)=4, a constant

intensity, and the NHPP with a bell-shaped intensity
function as an initial season, s =0 [7],

2
A exp {— 2;2 (1 —;J }

PR

* . .
where A (an average number of claims over a period)
*
and o are the parameters, 1 , c>0.

P, =Pr{N(t)=n}= S n=0,1,2,--

(M

3. Parameter Estimation in the Non-Life
Insurance Claim Counting Process

In this section, we introduce the methods which are use-
ful for parameter estimation in the non-life insurance
claim counting process, including the estimating function,
the martingale method, and the MLE.

3.1. Estimating Function

On a probability space (Q,J,P, ), where AeA, A is
an open interval on the real line, P, = p(N (t):A). Sup-
pose that the observation N (t) = n , the estimating func-
tions, g(N(t);A), are functions of N(7) and the pa-
rameter A . By solving g(N(t);A) =0, a so-called es-
timating equation, an estimate of A is obtained. Then
g (N (t);A) is an unbiased estimating function if
E[g(N(t);A)] =0 forall AeA [10].

In this study, the estimating function for parameter es-
timation in the insurance claim counting process is pro-
vided by the martingale method.

3.2. The Martingale Method

The martingales are random processes relating to time.
On a probability space (Q,J,P), we suppose the in-
creasing family g ={, ;¢>0}, a filtration or history
§2, , which is the available data at the time ¢. The proc-

ess M = {M(t) it 0} is a martingale with respect to
o if E{M(t)} <o exist, and

E{M(t+s)|p,} =M(t) for all s>0. As a result of
the properties of the martingale, E{M(t)} = E{M(O)}

forall >0, then E{M(0)}=0 foraZMM [I1,12].

This study of the martingale method is useful for con-
structing an estimating function for a parameter estima-
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tion in the insurance claim counting process. The process
takes place over a small time interval (¢,¢ +d¢],
E{dN(t)L,@,_} =A(t)dr and as a result of the meaning
of martingale property, the martingale can be written as

dN ()= A(r)dr =dM (1) ()

which is a martingale-difference. Then, the following mar-
tingale is

t
{dN(u)—/l(u)du} = IdM(u) ,

0

S —

or it is rewritten in the form of N(¢#)—A(t)=M(t),isa
ZMM. Based on ZMM, we obtain

E{M (1)} =0=E{N(t)-A(2)}.

Thus, N(7)-A(7)=0 is an estimating equation for
the parameter estimation in the insurance claim counting
process. Also, as a result of the parameter estimate in the
process, this can be interpreted as an N (t) estimate or,
in other words, A(r) is called the compensator of
N(t), and this estimate is useful for predicting the times
of occurrence of insurance claim counts [12]. We can
depict the systematic part of the process of insurance
claim counts, N(t), related to its compensator, A(t),
and the associated martingale N(#)—A(t)=M (¢) in
Figures 1(a) and (b), respectively, based on a sample of
15 independent random times of claims occurrence in the
NHPP with an intensity of
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A(t)= 486xp{—10(i—%j2}.

3.3. A Maximum Likelihood Estimation of the
Model Intensity

In order to get the estimate of the compensator of N (t) ,
[\(t) , on the modeling of the non-life insurance claim
counting process, both the HPP and NHPP, the parame-
ters of the intensity function are estimated by the MLE
method. Given N (¢)=n, we suppose that #,1,, t;,---,
ty, are the arrival times of the claims in the time inter-
val (0,¢] with a cumulative distribution function (a ge-
neral order statistics model) F(r)=1-exp (—A (t)) . The
likelihood function [5,13] is given by

1(0:6) =TT (1 )exp (A1) ®)

where 0 is a vector of the parameters of the model in-
tensity, £ denotes the set of arrival times, the intensity
A(t) in the HPP is A as O and the intensity A(r)
in the NHPP is given in Equation (1) as 0 =(/1*,0') .
The estimate of @ can be simply found if we take the
logarithm of the likelihood function and we seek a value
of O that maximizes the log likelihood function. The
following parameter estimate of the HPP model is:

0=1= . For the NHPP, the calculation of the
ZLN(t)—n
1
0 -
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2
Figure 1. In a sample of 15 independent random times of claims occurrence with the intensity ﬂ(t) =48exp {—lﬁ(t—;] },

(a) Non-life insurance claim counting process N (t) related to its compensator A(t) ; and (b) Martingale

M(t)=N(t)-A(1).

Copyright © 2012 SciRes.
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MLE estimator of the model intensity, which is a com-
plicated system of equations, requires an iterative proce-
dure, i.e. the Newton-Raphson algorithm, to solve these
equations [2].

4. Simulation Study

In this study, a simulation study is used to investigate
how the observation of the non-life insurance claim
counting process can be used to estimate its model pa-
rameter, ie. intensity A(¢) or in term A(), using the
estimating function provided by the martingale method
with ZMM. In particular, the HPP of the insurance claim
counts, with A(¢)=A as a constant intensity and the
NHPP of the insurance claim counts, with A(7) given
in Equation (1) as a bell-shaped intensity, we must first
consider the simulation study of the HPP of the insurance
claim counts in the time interval (0,¢] in which the ob-
servation involves the claim arrival times, ¢.z,, ¢, -,
Iy » generated by applying an exponential law with the
intensity A, ie. with a mean 1/4 as A = 0.1 and 10.
The second simulation study of the insurance claim
counting process, in which we consider the NHPP with a
bell-shaped intensity function, or as the general form of
mean value function

A(t)=[12"+ A{CD (#j—@(—ij} ,

t>0, where [-] is the greatest integer function, the
claim arrival times, ¢,t,, t;,-+-, ty, , can be simulated
by using the mean value function A(z) as a claim arri-
val time of the HPP with mean one [7]. It implies that
E,, E,, E,,---, E, are independent and exponentially
distributed with mean one, where E, =A(f,)-A(t.,),
for all i=1,2,3,---,n. So, in this study, the »” claim
arrival time, 7, _, , is generated by

t =A"'(E +E,+E,++E,) 4)

N(t)=n

where A7 (a)= [;} o®'{D}+0.5 is the invertible

* (04
a—A [/1*} .
function of A(¢), D=——5=D, +® __J,
A 20
O, = CD(L) - CD[—LJ and @' is the quantile func-
20 20

tion of a standard normal distribution, with 1" =0.1,
c=025, A’ =01, 0=5, 2 =10, 0=025 and
A'=10, o=5.

In this simulation study of both the HPP and the NHPP
of the insurance claim counts in the time interval (0,],
the number of observations, N (t) =n, is composed of 5,
10, 15 and 20. The HPP and the NHPP are carried out
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with 5000 sample paths. In each sample path, the pa-
rameter estimate of the model intensity is computed us-
ing the MLE method and the estimating function, such as
the ZMM which is used to estimate the parameter A(7)
in the process (or the compensator A(z) of N(¢)), ie.
fitting the compensator estimate A(t) to N (t) Also,
the mean squared error (MSE) is provided to measure
things, fitting A(¢) to N(¢) as the following form,

, j(A, (u)-N, (u))zdu
MSE = Z}: . p ;

where p denotes the number of sample paths. Notice
that the MSE of the compensator estimate A(t) of
N(t) for both processes, as shown in Tables 1 and 2,
depends on the parameters of the model intensity as the
following details, for the HPP with a constant intensity
A =0.1, a small intensity rate, and the MSE of the com-
pensator estimate A(r) of N(t) increases exponen-
tially as the number of observations increases. On the
other hand, the same process with 4 =10, the MSE of
the compensator estimate A(t) of N(t) decreases ex-
ponentially, while the observation number increases until
the observed 15 times of claims occurrence, and then the
MSE value begins to increase as the observation number
increases. For the NHPP with a bell-shaped intensity, the

Table 1. MSE of the compensator estimate A(z) of N(t)

in the HPP of non-life insurance claim counts.

2 N() MSE ) N() MSE
5 1.003785 5 11.90220
10 1.834148 10 5.776900
0.1 10
15 2.665881 15 4.904133
20 3.528792 20 5.012547

Table 2. MSE of the compensator estimate A(z) of N(t)

in the NHPP of non-life insurance claim counts.

* *

2 ¢ N®  MSE ] ¢ N®  MSE

5 0.871903 5 75.96249
10 1.710731 10 7.631638
0.25 0.25
15 2.458339 15 5.351834
20 3.267897 20 5.378968
0.1 10
5 0.831601 5 23.74056
10 1.059291 10 7.602997
5 5
15 1.625630 15 4.758056
20 2.460626 20 4.738440
AM
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parameters of its model intensity A" =0.1, o =0.25
and A°'=0.1, o=5 (a small average number of a
claims over a period), the MSE of the compensator esti-
mate A(f) of N(¢) increases as the observation
number increases. When we consider the NHPP between
the parameters of the model intensity A" =0.1, o =0.25
and A" =0.1, o =5, we found that in the process with
the parameters of the model intensity 1" =0.1, =5,
the MSE of the compensator estimate f\(t) of N(1)
is much lower. In the same NHPP with the parameters of
model intensity A" =10, ¢ =025, the MSE of the
compensator estimate A () of N(t) decreases while
its observation number increases until the observed 15
times of claims occurrence, and then its MSE values be-
gins to increase as the observation number increases. The
MSE of the compensator estimate A(t) of N(r) in
the same NHPP with the parameters A" =10, o =35 de-

creases exponentially as its observation number increases.

When we consider the NHPP between the parameters of
the model intensity A" =10, ¢=0.25 and A =10,
o =5, we found that in the process with the parameters
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of the model intensity 1" =10, o =5, the MSE of the
compensator estimate A(Z) of N(t) is much lower
than the other one.

Some examples in these situations of both the HPP and
the NHPP with a bell-shaped intensity of non-life insur-
ance claim counts based on a sample of 5, 10, 15 and 20
times of claims occurrence are illustrated in Figures 2
and 3, including the N(¢) and its compensator A(r).
Figure 2 shows a sample path of the HPP with a constant
intensity A =10. The N(¢) and its compensator A(7)
are characterized by the intensity A, ie. A=10, the
compensator A(¢) fits well with N(¢), as the obser-
vation number is 15 and 20 (slightly larger than the in-
tensity A =10). Similarly, the N (Z) and its compen-
sator A(r) in the NHPP are characterized by the pa-
rameters of the model bell-shaped intensity A" =10,
o =5 in Figure 3. The compensator A(r) fits with
N(t), as the observation number is 15 and 20 (slightly
larger than the parameter of model intensity A" =10).
Figure 4 illustrates a sample path of NHPP, and we can
see the difference with the compensator estimate which
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Figure 2. N(t) and its compensator A(z) in the HPP with the intensity 2 = 10 based on a sample of (a) 5 claims; (b) 10

claims; (c¢) 15 claims; and (d) 20 claims.
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Figure 3. N(¢) and its compensator A(¢) in the NHPP with the parameters of a bell-shaped intensity A° =10, 6 =5

based on a sample of (a) S claims; (b) 10 claims; (c¢) 15 claims; and (d) 20 claims.
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Figure 4. N(t), A(t)m, and A(t)

non-life insurance claim counts.
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=== A

NHPP

in the NHPP of

uses the estimation method of NHPP with a period time-
dependent intensity, A(f),., . fits well with N(z) by
MSE = 1.48 shown with a dashed line and the MSE = 5.35
along 5000 sample paths. It is notable that if, instead, the
compensator estimate misspecification /A\(t)NHPP is cal-
culated more easily by using the estimation method of HPP
with a constant intensity, and the compensator estimate
misspecification A(t)HPP fluctuates a lot from N(r),
shown on the dotted line in Figure 4. The MSE of fitting
the compensator estimate misspecification f\(t)HPP to
N(t) is 2.72, and the MSE = 5.53 along 5000 sample
paths are larger than the fitting of the compensator esti-
mate A(¢) to N(t).

NHPP

5. Conclusion

This simulation study of the non-life insurance claim
counting process, of both the HPP and the NHPP with a
bell-shaped intensity, demonstrates that the fitting of the

AM



106 U. JAROENGERATIKUN ET AL.

compensator estimate A([) to N(¢) in the time inter-
val (0,¢] depends on the parameters of model intensity
as in the following details, firstly, regarding the HPP
with a small intensity rate, with almost no claim occur-
rences, while the number of observations is very small,
the compensator estimate A(¢) is a good fit to N(¢)
with less of a MSE. In the same process with a constant
intensity rate, the claims occurrence rate, when the num-
ber of observations is slightly larger than the constant
intensity, the MSE of the compensator estimate A([)
of N (t) is much less. Secondly, as regards to the
NHPP with the parameters of the model intensity, a A
has a very small average number of claims over a period,
almost no claim occurrences over a period, and any o,
as the number of observations is very small, the com-
pensator estimate A (¢) is a good fitto N(¢) with less
of a MSE. Using the same process with the parameters of
the model intensity, with an average number of claims
over a period A" is no less than one and any o , while
the number of observations is slightly larger than the
value of A", the MSE of the compensator estimate
A(t) of N(t) is much less. Some examples of the
situations in the simulation study are also depicted by a
sample path relating N (Z) and its compensator A(t).
Furthermore, the result of the compensator estimate mis-
specification A(t) of N(t) is illustrated by a sample
path of the NHPP so that the MSE of fitting the compen-
sator estimate misspecification A(t) to N() is much
larger than the fitting of the compensator A(t) to
N(t).
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