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ABSTRACT 

This study presents an estimation approach to non-life insurance claim counts relating to a specified time. The objective 
of this study is to estimate the parameters in non-life insurance claim counting process, including the homogeneous 
Poisson process (HPP) and the non-homogeneous Poisson process (NHPP) with a bell-shaped intensity. We use the 
estimating function, the zero mean martingale (ZMM) as a procedure of parameter estimation in the insurance claim 
counting process. Then, Λ (t), the compensator of N (t) is proposed for the number of claims in the time interval (0, t]. 
We present situations through a simulation study of both processes on the time interval (0, t]. Some examples of the 
situations in the simulation study are depicted by a sample path relating N (t) to its compensator Λ (t). In addition, an 
example of the claim counting process illustrates the result of the compensator estimate misspecification. 
 
Keywords: Estimating Function; Zero Mean Martingale; Non-Life Insurance Claim Counting Process; Poisson Process; 

Bell-Shaped Intensity 

1. Introduction 

Nowadays, insurance is a common way of managing 
risks and the insurance industry has grown rapidly over 
time. Insurance industry owners, especially, consider the 
components of risk management, such as the premiums 
which are the main income of insurance businesses, re- 
serves, underwriting, investment planning, reinsurance 
planning, etc. Also, estimating claims play an important 
part in each component in the non-life insurance field. In 
the past four decades, a few researchers have studied the 
claim counts model for non-life insurance. Klugman et al. 
[1] and Denuit et al. [2] were interested in studying the 
frequency distribution of insurance claims, including the 
parameter estimation methods. Bühlmann [3,4] presented 
the credibility approach in the form of a linear function 
to estimate and predict the expected claim counts in up- 
coming periods, using past experience of claims as a risk 
class or related risk classes. Bühlmann’s credibility ap- 
proach is interesting and can be extended to other ap- 
proaches, such as the Bühlmann-Straub model, Jewell’s 
model or the Exact credibility approach, etc., (see Klug- 
man et al. [1]). Calculating the expected claim counts 
using the credibility approach only depends on the in- 
formation from prior experience of claim counts, and 
does not consider the occurrence behavior of claim 
counts over time. Some authors have found an alternative 

approach to claim counts relating to a specified time or 
their behavior over time, for example, Mikosch [5] viewed 
the claim counting process as a homogeneous Poisson 
process (HPP) in the Cramér-Lundberg model, one of the 
most popular and useful risk models in non-life insurance, 
and Matsui and Mikosch [6] also considered a Poisson 
cluster model for the modeling of a total claims amount 
by a point of claim counts as an HPP with a constant rate 
of occurrence called the constant intensity. For some 
non-life insurance portfolios, the claim counts during a 
time period are caused by periodic phenomena or sea- 
sonality. These claim counts are modeled in terms of a 
non-homogeneous Poisson process (NHPP) with a period 
time-dependent intensity rate. Morales [7] presented the 
periodic risk model consisting of the claim counting 
process with a bell-shaped intensity function (called the 
Gaussian intensity) of the form 
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t , where s is an initial season, s 

= 0, 1, 2, ···, σ and   are parameters, and   is the 
standard normal distribution function. He estimated the 
unknown parameters of the periodic model intensity by 
using the maximum likelihood estimation (MLE), and he 
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also considered evaluating the ruin probability through a 
simulation study. Furthermore, Lu and Garrido [8] ex- 
plored the periodic NHPP model with a Beta-shaped in- 
tensity function. 

The precision of claim count estimation is a key to 
running the insurance business successfully. In this study, 
we will present an estimation approach to non-life insur- 
ance claim counts related to a specification of the two 
different claim counting processes, i.e., HPP, and NHPP 
with a bell-shaped intensity function, through a simula- 
tion study. Our purpose is to estimate the parameters in 
the non-life insurance claim counting process. The pa- 
rameters in the insurance claim counting process, inten- 
sity function ( ) in terms of mean value function   t

   
0

d
t

t u   u

N

u

, makes a complicated distribution func-  

tion of insurance claim counts. An estimating function, 
such as the zero mean martingale (ZMM), is used here as 
a procedure of parameter estimation of an insurance 
claim counts model, and the parameters of model inten- 
sity are estimated by the MLE method. 

2. A Definition of the Non-Life Insurance  
Claim Counting Process 

We define the insurance claim counting process  
; , and the insurance claim 

counts which have occurred in the time interval (0,t] 
where 1n n ;  is a claim arrival time 
and i  is independent and identically distributed (iid) 
Exponential with the parameter , called the inten- 
sity rate,  is a counting process which 
is non-decreasing,  can be written as  
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dN t N u   where  is an increment of    dN t

in a small fraction period. The Poisson distribution is 
often considered as a common distribution modeling of 
insurance claim counts, and our main interest in the 
process of insurance claim counts is the Poisson process, 
i.e., HPP, and NHPP with the bell-shaped intensity func- 
tion. This interest lies in the intensity rate, in which the 
insurance claim counts occur, and whether these change 
over time. In an HPP, the intensity rate is constant for a 
given time, and the process is called an NHPP, if it 
changes as a function of time [2,5,9].  

On a probability space ,  is Poisson   , , P    N t
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tensity, where  and  t  k t  are defined as the in- 
tensity rate and the exposure risk, respectively. We con- 

sider  as a non-decreasing right continuous step func- 
tion 0 at time t = 0 and jumps of size 1, and  
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In this study we consider the insurance claim counting 

process which are the HPP with  t  , a constant 
intensity, and the NHPP with a bell-shaped intensity 
function as an initial season, s = 0 [7], 
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where *  (an average number of claims over a period) 
and   are the parameters, * , 0  . 

3. Parameter Estimation in the Non-Life  
Insurance Claim Counting Process 

In this section, we introduce the methods which are use- 
ful for parameter estimation in the non-life insurance 
claim counting process, including the estimating function, 
the martingale method, and the MLE. 

3.1. Estimating Function 

On a probability space  , , P  ,Ω where   ,    
an open interval on the real line, P p  - 
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estimating function for 
ation in the insurance claim counting process is pro- 

vided by the martingale method. 

The martingales are random proc
On a probability space  Ω, , P , we suppose the in- 
creasing family  ; 0tt   , a filtration or history 

t , which is the available data at the time t . The proc-  

ess   ; 0M M t t   is a martingale with respect to  
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for a ZMM [11,12]. 
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structing an estimating function for a parameter estima- 

Copyright © 2012 SciRes.                                                                                  AM 



U. JAROENGERATIKUN  ET  AL. 

Copyright © 2012 SciRes.                                                                                  AM 

102 

tion in the insurance claim counting process. The process 
takes place over a small time interval ( , d ]t t t ,  

    d dE N t t t   and as a res e meaning 
he martingale can be written as 
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3.3. A Maximum Likelihood Estimation of the  
Model Intensity 

In order to get the estimate of the compensator of  N t , 
 ˆ t , on the modeling of the non-life insurance claim 

counting process, both the HPP and NHPP, the parame- 
ters of the intensity function are estimated by the MLE 
method. Given   ,N t n we suppose that 1 2 3  
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in other words,  t  is called th pensator of 

 N t , and this estimate is useful for predicting the times 
currence of insurance claim counts [12]. We can 

depict the systematic part of the process of insurance 
claim counts,  N t , related to its compensator, 
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Figures 1(a) and (b), respectively  of 
15 independent random times of claims occurrence in the 
NHPP with an intensity of  
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where  is a vector of the parameters of the model in- 
tensity, 
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  denotes the set of arrival times, the intensity 

 t  in the HPP is   as θ  and the intensity  t
 * ,

 
in the NHPP is given in Equation (1) as   θ . 
The estimate of  can be simply found if we take the 
logarithm of the likelihood function and we seek a value 
of  that maximizes the log likelihood function. The 
following parameter estimate of the HPP model is:  
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(a)                                                           (b) 

Figure 1. In a sample of 15 independent random times of claims occurrence with the intensity  
      
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(a) Non-life insurance claim counting process related to its compensator  N t   t ; and (b) Martingale  

     M t N t t  . 
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MLE estimator of the model intensity, which is a com-

dure, i.e. the Newton-Raphson algorithm, to solve these 

. Simulation Study 

sity  or in term

plicated system of equations, requires an iterative proce- 

equations [2]. 

4

In this study, a simulation study is used to investigate 
how the observation of the non-life insurance claim 
counting process can be used to estimate its model pa- 
rameter, i.e. inten  t   t

artingal
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, using the 
d by the m e method 

HPP of the ins nce claim 
estimating function provid
with ZMM. In particular, t

e
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counts, with  t   as a constant intensity and the 
NHPP of the insurance claim counts, with  t  given 
in Equation (1) as a bell-shaped intensity, we must first 
consider the simulation study of the HPP e insurance 
claim counts in the time interval (0,t] in which the ob- 
servation involves the claim arrival times, 1 2 3, ,  , ,t t t   
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d by app
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The second simulation study of the insurance claim 
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bell-shaped intensity function, or as the general form of 
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Table 1. MSE of the compensator estimate  ˆ t  of  N t  
in the HPP of non-life insurance claim counts. 
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compensator estimate 

, th E of
 ˆ t  of  N t  h r 

than the other one.  
Some examples in these situations of both the HPP and 

the NHPP with a bell-shaped inte f n nsur- 
im ts based on a sample of 5, 10, 15 and 20 

times of claims occurrence are illu in res 2 
and 3, including the 

is muc lowe

on-life i
ance cla  coun

 Figu

nsity o

strated
 N t  and its compensator  t . 

Figure 2 shows a sample path of t

stanthe HPP with a con  

intensity 10  . The  N t  and its compensator  t  
are characterized by the intensity  , i.e. 10  , the 
compensator  t  fits well with  N t , as the obser- 
vation number is 15 and 20 (slightly larger than the in- 
tensity 10  ). Simi the  N t  and its com - 
sator 

larly, pen
 t  in the NHPP are characterized by the pa- 

rameters  mode -shaped intensity *of the l bell 10 , 
5   in Figure 3. The compensa r  with to t  fits 

 N t , as the o vation number is nd 20 (slightly 
larger than the parameter of model intensity * 10

bser  15 a
 ). 

Figure 4 rates a sample path HPP, and we can 
see th erence with the compensator estimate which  

 illust  of N
e diff

 

 
(a)                                                           (b) 

 

 
(c)                                                           (d) 

Figure 2. and its compensator  N t   t  in the HPP with the intensity λ = 10 based on a sample of (a) 5 claims; (b) 10 

claims; (c) 15 claims; and (d) 20 claims. 
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(a)                                                           (b) 

 

 
(c)                                                           (d) 

igure 3. and its compensator F  N t   t  in the NHPP with the parameters of a bell-shaped intensity *  = 10, σ = 5 

based on a sample of (a) 5 claims; (b) 10 claims; (c) 15 claims; and (d) 20 claims. 
 

 

Figure 4.  N t ,  HPP
̂ t , and  NHPP

̂ t  in the NHPP of 

non-life insurance claim counts. 

uses the estimation method of NHPP with a period time- 
dependent intensity,  NHPP

ˆ t , fits well with  N t
SE = 5.35

nstead, th

NHPP
 is 

hod of HPP 
r estim

 by 
MSE = 1.48 shown wi ine and the M  
along 5000 sample p table that if, i e 
compensator estima cal- 
culated more easily b ati
with a constant inten he com ate 
misspecification 

th a dashed l
aths. It is no

te misspecification 
y using the estim
sity, and t

 ˆ t
on met
pensato

 HPP
t  ̂ fluctuates a lot from   , 

g
N t

E of fittinshown on the do Figure 4. T  
the compensato ecific

tted lin
r esti

e in 
mate missp

he MS
ation  HPP

t̂  to 
 N t  

path
is 2.72, an 5.53  

s are larger th of th
d the MSE = 
an the fitting 

 along 5
e comp

000 sam
ensator e

ple
sti- 

mate  NHPP
 to ˆ t  N t . 

5. Conclusion 

This simulation study of the non-life insurance claim 
counting process, of both the HPP and the NHPP with a 
bell-shaped intensity, demonstrates that the fitting of the  
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compensator estimate  to in the time inter- 
val depends on t param f model intensity 
as in e following arding the HPP 
with all intens with st no claim occur- 
ren ile the num ob ns is very small, 
the c ensator estim

 ˆ t
he 

de
ity rate, 

ber of 
ate 

 N t  
eters o

tails, firstly, reg
 almo
servatio

(0, ]t  
 th

 a sm
ces, wh

omp  t̂  is a good fit to  N t  
nstant 
 num- 
nstant 

with less of a MSE. In with a co
inten ity rate, the claim nce rate, when the
ber servations i han the co
inten e MSE of t r estimate 

 the sa
s o

s slight
he co

me
ccurre

ly l
m

 process 

arger t
pensato

s
of ob
sity, th  ˆ t  

o the 
ity, a *

of  is much  regards t
with the param l intens
 N t

NHPP 
less. Sec
eters of th

ondly, as
e mode   

a period, 
ny 

has a ve
o

ry small avera s over 
alm st no claim occurre od, and a

ge num
nces

ber of claim
 over a peri  , 

e com- as th mber of ob small, th
pen stimate 

e nu
sator e

servations is very 
 ̂

ity, with

t  is 
e same pr

a g
o

 an av

ood fit to
cess with

erage 

  with
of Using th rame
th l intens nu

iod 

 N t
 the pa

mber 

 less 
ters o  

of claim  
 a MSE. 
e mode

f
s

over a per *  is no less than nd any  one a  , while 
the number of observations is slightly larger than the 
value of * , the MSE of the compensator estimate 
 ˆ t  of  N t  is m . Some examples of the 

situations in the simulation study are also depicted by a 
sample path relating  N t  and its compensator 

uch less

 t . 
Furthermore, the result of the compensa te mis- 
specification  ˆ t  of  N t  is illustrated by a sample 
path of the NHPP so that the MSE of fitting the compen-
sator estimate misspecification  ˆ t  to  N t  is  
larger than the fitting of the compensator 

tor estima

much
 t  to 

 N t . 
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