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Abstract 
 
The celebrated Weierstrass Approximation Theorem (1885) heralded intermittent interest in polynomial ap- 
proximation, which continues unabated even as of today. The great Russian mathematician Bernstein, in 
1912, not only provided an interesting proof of the Weierstrass’ theorem, but also displayed a sequence of 
the polynomials which approximate the given function ( ) [0,1]f x C . An efficient “Combinatorial-Probabili- 
stic Dual-Fusion” version of the modification of Bernstein’s Polynomial Operator is proposed. The potential 
of the aforesaid improvement is tried to be brought forth and illustrated through an empirical study, for 
which the function is assumed to be known in the sense of simulation. 
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1. Introduction 
 
The problem of approximation arises in many contexts of 
“Numerical Analyses and Computing” [1-4]. Weirstrass 
[5] proved his celebrated approximation theorem: “…If, 

 ,f C a b , then for every ,  a polynomial “p” 
such that “

δ 0 
f p δ  ”. In other words, result estab-

lished the existence of an algebraic polynomial in con-
cerned variable capable of approximating the unknown 
function in that variable, as closely as we please! 

This result was a big beginning of the Mathematicians’ 
interest in “Polynomial Approximation” [4,6-8] of an 
unknown function using its values generated, experi- 
mentally or otherwise, at certain equidistant knots in the 
impugned interval of the relevant variable. The Great 
Russian mathematician Bernstein proved the Weirstrass 
theorem in a style, which was very thought-provoking 
and curious in many ways. He first noted a simple though 
a very significant feature of this theorem, namely that if 
it holds for  0,1C , it does hold for  ,C a b  also vice- 
versa. In fact,  0,1C  and  ,C a b  are essentially iden-
tical, for all practical purposes, inasmuch as they are 
linearly “isometric” as normed spaces, order isomorphic 
as lattices, and isomorphic as algebras (rings) [9]. 

Also, the most important contribution in the Bern- 

stein’s proof of the Weirstrass’ theorem consisted in the 
fact that Bernstein actually displayed a sequence of poly- 
nomials that approximate a given function  0,1f C . 

If,  f x  is any bounded function on  0,1C , the 
sequence of “Bernstein Polynomials” [6] for  f x  is 
defined by:  

     

   

(   )
0

Bn .  . (1 ) . /
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x E f x
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 
  

 
   

 k n
  (1) 

The aim of this paper is to propose a more efficient 
polynomial approximation operator exploiting the “com- 
binatorial structure” of the “Bernstein’s Polynomial Ap- 
proximation operator”, and the fact that the unknown 
function might, without any loss of the generality, be 

assumed to be 
1

0,
2

f C
    

, as in [10-14]. 

 
2. The Proposition of the Variant of the 

Bernstein Polynomial Approximator 
 
In context of the aforementioned sequence of “Bernstein 
Polynomials” for  f x , a significant observation which 
must be taken note of is that the use is made of the values 
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of the unknown function “  f x ” at the equidistant- 

knots “ ; 0(1)
k

k
n

 n ”, assumed to be knowable through 

the experiment  in the relevant scientific field of in-
vestigation or known otherwise. 

(s)

In any approximating polynomial operator use is made 
of the “Knots” and of the corresponding “Weights”.  

In our proposition of a variant of the “Bernstein’s 
Polynomial” we propose to systematically introduce new 
corresponding weights, without essentially changing the 
location of the “equi-distant” “knots”, except for the fact 

that the impugned interval is 
1

0,C

 2


 

, rather than 

 0,1C , thanks to “isometric” spaces noted earlier. We 
propose a variant of the “Bernstein Polynomial” which is 
having a better combinatorial structure in favor of the in- 

terval for 
1

0,
2

f C
  


 , and that is the main strategy for 

making it better than the original/usual “Bernstein’s 
Polynomial”! We consider the following PRIMAL vari-
ant of the Bernstein’s Polynomial:  

Say, 

  
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3. The Combinatorial-Probability & 

Dual-Fusion Variant for Bernstein’s 
Polynomial 

 
The original interval  0,1C  isometric to the impugn- 

ned interval 
1

0,
2

C
 

 
 could be thought of in terms of 

its two parts, namely “0.33 x ” and “0.67 x ” for  

 0,1x C  with “k” and “ ” “knots” sitting in each, 

respectively. The expected number of points sitting these 

two parts. Respectively, would be 

n k

(0.33 )xn   and (0.67 )xn  . 
The “combinatorial probability” of description would be: 
binomial  

       
     

* 0.33 , binomial * , /binomial ,

binomialn 0.33 , bi ialn 0.67+ , 

n x k x n k n

x n x n k

 

 
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nom

n

k

 

n





Hence the PRIMAL-Variant of the “Bernstein’s Poly-
nomial” in (2.1) comes off to be as below. 

Say, 

   
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The correspondingly DUAL (-Weights) variant of Bern- 
stein Polynomial would be:  

Say,  

    
     
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We define the “PRIMAL-DUAL-Fusion-Weights” va- 
riant of the Bernstein Polynomial as  

Follows: Say,  

      P DPDFBV ; BV ; BV ; 2f x n f x f x     

To make comprehensive the combinatorial systema- 
ticness of PRIMAL-DUAL Fusion variant of Bernstein 
polynomial say   PDFBV ;f x n , we note that it will 
work for an approximation polynomial focusing interval 
 (1 3 ) 2, (1 3x ) 2x  around “0.33”, which will  
 ~ 0,1 3 for 1 3x  . 
Impugned interval will be wider, the greater the value 

of “ 1 3x  ”! For example, in the approximating poly- 
nomial in “x” for values of  0,1 3 ;x  interval will be 
symmetrically, centered on 
“0.165”,  e.g. ~ 0.035,0.295 for 0.26.x   

To balance the “Pull”, systematically, the weights 
“(1/2)” and “(1/2)” are assigned to the relevant weights 
in BP   ;f x n  & BD   ;f x n . These weights are also, 
respectively, “DUAL” to each-other, again!  

The aforesaid (PRIMAL-DUAL Fusion) variant of the 
Bernstein Polynomial, namely, PDFBV   ;f x n  will, 
apparently induce a “(Systematic)Bias” in the approxi-
mating “Polynomial”, which is amenable more system-
atically than that in the original “Bernstein’s Polyno-
mial”.  

Similar to what was noted in Sahai (2004) [10], in the 
absence of any conclusive analytical study [The deriv- 
able “Upper” bounds on the error of approximation (as 
noted in the paper by Sahai (2004) [8]) are not of much 
use. In fact, a smaller/lower “Upper Bound” does not 
guarantee a better approximation and the extent of the 
resultant “GAIN” is unavailable, too! Hence, we go for 
an empirical simulation study to illustrate the potential 
“GAIN” through our PRIMAL-DUAL Fusion variant of 
the Bernstein Polynomial, namely, PDFBV   ;f x n . 
 
4. The Empirical Simulation Study 
 
To illustrate gain in efficiency by using our proposed 
“Dual-Fusion” variant of Bernstein Polynomial Appro- 
ximation, we have carried an empirical study. We have 
taken example-cases of n = 3, 6, and 9 (i.e. n + 1 = 4, 7, 
and 10 knots) in the empirical study. 

To numerically illustrate the relative gain in efficiency 
in using “Dual-Fusion” variant of Bernstein Polynomial 
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proposed vis-à-vis the original (Primal) Bernstein’s poly- 
nomial operator in each example case of n-value.  

Essentially, the empirical study is a simulation one 
wherein we would assume that approximated function, 
namely “  f x ”, is known to us.  

We have confined to illustrations of relative gain in 
efficiency by Iterative Improvement for the following 
four illustrative-functions: 

       exp ; ln 2 ; sin 2 , and 10xf x x x x   . 

To illustrate the POTENTIAL of improvement with 
our proposed Dual-Fusion Operator   PDFBV ; 'f x n

 

, 
we have TWO numerical values of quantities ~ two per-
centage relative errors (PREs) corresponding to original 
(Primal) Bernstein’s Operator PB ;f x n : Say; 

  PRE_PFB ;f x n  verses that of the proposed Dual- 
Fusion Operator i.e.;   PRE_PDFBV ;f x n . We cal- 
culated Percentage Relative Gains (PRGs) in using our 
“Dual-Fusion” variant of Bernstein Polynomial in place 
of Original “Primal” variant of Bernstein Polynomial 

  PRG_UPDFB ;f x
 

n . These quantities are defined: 
PRE_PFB ;f x n 100 .  

       
0.33 0.33

0

abs. PFB ;   d   d
0

f x n f x x f x x
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





  
  

&PRE_PDFBV   ; 1f x n  00 . 

       
0.33 0.33

0

abs. PDFBV ;   d   d
0

f x n f x x f x x
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
 
    
  

. 

Hence, PRG_ PDFBV   ; 100f x n  . 

  
     

PRE_PFB ;

PRE_PDFBV ; PRE_PFB ;

f x n

f x n f x n

 



 

PREs for Original-Primal/Variant Primal-Dual Bern-
stein polynomial respectively for each of example # of 
approximation Knots/Intervals. 

PRGs by using Proposed Dual-Fusion Polynomials 
with the n intervals in  0,1 2  over using the Original 
Primal-Bernstein Polynomial for approximation of func-
tion, “  f x ” are tabulated in APPENDIX in Tables 1- 
4. 
 
5. Conclusions 
 
For all the FOUR illustrative functions, namely 
     exp9 ; ln 2 ; sin 2 , and 10xf x x x x   , the PRGs 

are above 99.9% for 3, 6, and 9n  . It is very signifi-
cant to note that the PRGs are (almost) 100% for 6n   
for all example-functions, i.e. for only SEVEN “Knots”! 
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APPENDIX 
 
Table 1. (Iterative) algorithmic (In %) relative (absolute) 
efficiency/gain for f(x) = exp(x). 

Items ↓ n→3 6 9 

PRE_PFB (f; x)[n] 7.7098 7.97506 8.0614 

PRE_PDFBV (f; x)[n] 0.0004 0.00000 0.0000 

PRG_PDFBV (f; x)[n] 99.994 100.000 99.999 

 
Table 2. (Iterative) algorithmic (In %) relative (absolute) 
efficiency/gain for f(x) = ln(2 + x). 

Items ↓ n→3 6 9 

PRE_PFB (f; x)[n] 5.0970 5.0217 4.9961 

PRE_PDFBV (f; x)[n] 0.0001 0.0000 0.0000 

PRG_PDFBV (f; x)[n] 99.996 100.00 99.999 

 

Table 3. (Iterative) algorithmic (In %) relative (absolute) 
efficiency/gain for f(x) = sin(2 + x).  

Items ↓ n→3 6 9 

PRE_PFB (f; x)[n] 5.0404 5.3105 5.4020 

PRE_PDFBV (f; x)[n] 0.0004 0.0000 0.0000 

PRG_PDFBV (f; x)[n] 99.991 99.999 99.999 

 
Table 4. (Iterative) algorithmic (In %) relative (absolute) 
efficiency/gain for f(x) = 10x. 

Items ↓ n→3 6 9 

PRE_PFB (f; x)[n] 16.112 17.498 17.935 

PRE_PDFBV (f; x)[n] 0.0120 0.0000 0.0000 

PRG_PDFBV (f; x)[n] 99.925 99.999 99.999 
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