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ABSTRACT 

One of the mostly used methods for estimating the 
false discovery rate (FDR) is the permutation based 
method. The permutation based method has the 
well-known granularity problem due to the discrete 
nature of the permuted null scores. The granularity 
problem may produce very unstable FDR estimates. 
Such instability may cause scientists to over- or 
under-estimate the number of false positives among 
the genes declared as significant, and hence result in 
inaccurate interpretation of biological data. In this 
paper, we propose a new model based method as an 
improvement of the permutation based FDR estimation 
method of SAM [1] The new method uses the 
t-mixture model which can model the microarray 
data better than the currently used normal mixture 
model. We will show that our proposed method 
provides more accurate FDR estimates than the 
permutation based method and is free of the 
problems of the permutation based FDR estimators. 
Finally, the proposed method is evaluated using 
extensive simulation and real microarray data. 
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1. INTRODUCTION 

Genome-wide expression data generated from the mi-
croarray experiments are widely used to uncover the 
functional roles of different genes, and how these genes 
interact with each other. A key step to achieve this is to 
identify the differentially expressed (DE) genes under 
different experimental conditions. Such information can 
be used to identify disease biomarkers that may be im-
portant in the diagnoses of different types of diseases. 
Earlier statistical approaches for detecting DE genes 
focused mostly on parametric methods which are easily 
subject to model misspecification problems. Some of the 
well-known parametric methods for detecting DE genes 
include the two sample t-test [2], the analysis of variance 
approach [3], a regression approach [4], the regularized 

t-statistic method (Bayes-t test) [5,6]), the semi- 
parametric hierarchical mixture method [7], and the pa-
rametric EB method [8]. Recently, the availability of 
replicated microarrays has made it possible to use the 
nonparametric methods to detect the DE genes. The 
nonparametric methods require much less stringent 
dis-tributional assumptions, and thus can provide more 
robust results than the parametric methods. Some of the 
well-known nonparametric methods for analyzing mi- 
croarrays include the Significance Analysis of Mi-
croar-ray (SAM) of [1], the nonparametric EB method 
[9,10], the non-parametric t-test with adjusted p-value 
[11], the Wilcoxon Rank Sum test [12], samroc [13] and 
the normal mixture model method (MMM) of [14]. 

In this paper, we will focus our attention on SAM, one 
of the most popular methods in microarray data analysis. 
SAM indentifies DE genes by computing a modified 
t-statistic as the test score of a gene and finding the 
genes with test scores exceeding an adjustable threshold. 
The false discovery rate (FDR) was then estimated by a 
permutation based method. More specifically, the num-
ber of false positive (FP) genes among the significant 
genes is estimated as the median of the numbers of scores 
exceeding the cutoffs in each permuted set of null scores. 

Since the permutation based approach estimates the 
FDR by counting the number of FP genes exceeding 
some cutoffs, we will call it the empirical method in this 
paper. Due to its nature, there are two drawbacks with 
the empirical method: 1) the granularity problem – the 
FDR estimates based on the counted number of FP genes 
tend to be unstable when the actual number of FP genes 
is small; 2) the zero FDR problem – the estimated FDR 
may be zero when the range of the permuted null scores 
is smaller than that of test scores and when the cutoffs 
are more extreme than the endpoints of permuted null 
scores. These two drawbacks are illustrated in the Fig-
ures 1, 2 and 3. 

In this paper, we will propose a t-mixture model based 
approach as an improvement of the empirical FDR esti-
mation method of SAM. Our method aims to solve the 
two aforementioned drawbacks of the current empirical  
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Figure 1. Comparison of true FDR, the empirical FDR estimator 
FDR  and the model based FDR estimator 1FDR  for two sample 

microarray data. 5 replicates are listed. Total number of significant 
genes is decreasing from 100 to 1 (left to right) for each replicate. 
 

 

Figure 2. Comparison of true FDR, the empirical FDR estimator 
FDR  and the model based FDR estimator 1FDR  for two sample 

microarray data. 5 replicates are listed. Total number of significant 
genes is decreasing from 150 to 1 (left to right) for each replicate. 
 
FDR estimation method: The granularity and the zero 
FDR problems. The performance of our method is as-
sessed by applying them to simulated and real microar-
ray data. 

2. METHODS 

2.1. SAM 

2.1.1. SAM algorithm 
Let  be the expression levels of genes i under array j  ijY

 

Figure 3. Comparison of the empirical FDR estimator FDR  

and the model based FDR estimator 1FDR  for Leukemia 
microarray data. 
 
(i=1,…,n; j=1,… , +1,…, ), and the 

first  and last  arrays are obtained under two 

conditions. We need to test if gene i has differential ex-
pressions under the two conditions. 
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where ,  are the sample means under two con-

ditions; 
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s  is the pooled sample variance; 0s  is the 

fudge factor. The null score  is then computed by 

applying the test statistic to the b-th set of permuted data. 
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In the SAM manual [15], the following algorithm is 
given to detect DE genes. First, all genes are ranked by 
the magnitude of their test scores iZ  so that (1)Z  is 

the largest test score and ( )iZ  is the i-th largest test 

score. For the b-th set of null scores, the same procedure 
is applied so that  is the i-th largest null score in the 

b-th set of null scores. The expected relative difference 

is then defined as . After that, a scatter 

plot of 

( )
b
iz

( ) ( )
1

/z
B

E b
i i

b

z


  B

( )iZ  vs. ( )
E
iz  is plotted. In the scatter plot, some 

points are displaced from the ( )iZ = ( )
E
iz  line with a 

distance greater than  , a pre-specified threshold. In 
[16], the author pointed out that the estimated total 
number of significant (TS) genes and FP genes obtained 
using the SAM algorithm can be written as: 


( ) ( )#{ ;  or }i U i LTS i Z Z    , and      (1) 
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where U  and L  are the upper and lower cutoffs 

decided by the pre-specified threshold . For simplic-
ity, we only consider symmetric cutoffs ( | | |


|U L  ) in 

this paper though extensions to asymmetric cutoffs are 
straightforward. Under symmetric cutoffs, (1) and (2) 
can be written as: 
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2.1.2. Empirical FDR Estimator of SAM 
Given a gene-specific significance level (0,  1]   and 

assume that we have obtained the p-values for all the 
genes under consideration, the FDR of [17] is defined as: 

( )
[

( )

N
FDR E

TS
]




 ,              (5) 

where ( )N   is the number of genes among the EE 

genes whose p-values are less than or equal to  , and 
(TS )  is the number of genes among all the genes 

whose p-values are less than or equal to   (or it is the 
total number of significant genes). Instead of controlling 
gene-specific significance level  , SAM usually con-
trols the total number of significant genes by setting a 
corresponding cutoff  , hence (5) can be re-written as: 

( )
[
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

 ,             (6)  

where ( )N   is the number of EE genes with absolute value 

of iZ  greater than  , and ( )TS   is the total number of 

genes with absolute value of iZ  greater than  . 

It was shown in [18] that the FDR can be approxi-
mated by 

[ ( )]
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Since ( )N   is the number of false positive among 

the EE genes, denote the proportion of EE genes by 0 , 
(7) becomes 
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where ( )FP   is the number of FP if all the genes are 

EE. ( )FP  and ( )TS   can be estimated by  ( )FP   

and ( )TS   in (3) and (4), respectively. As a result, the 
empirical FDR estimator of SAM is 
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As mentioned before, this empirical FDR estimator of 
SAM has the granularity problem and the zero FDR 
problem. In the following sections, we solve these prob-
lems by proposing a model based FDR estimation 
method. 

2.2. The T-mixture Model (TMM) Based FDR 
Eestimation Approach 

Let  be the probability density of the test score f iZ  

and  be the density of null score . In TMM, it is 

assumed that the data are from several components with 
distinguished t-distributions. In other words, both  

and  are considered to be a mixture of the t-distribu- 
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where ( ; , , )i i iz    denotes the t-distribution density 

function with mean i , variance , and degrees of 

freedom 
i

i . The coefficients i  
are the mixing pro-

portions and g is the number of components, which can 
be selected adaptively. g  denotes all the unknown 

parameters ( i , i , i , i ) |  in (5). The 

mixture model is fitted by maximum likelihood using an 
expectation conditional maximization (ECM) algorithm 
[19]. The final model is selected based on Bayesian In-
formation Criterion (BIC). More details on how to fit the 
TMM to microarray data can be found in [20]. It was 
reported in their paper that not only does the TMM ap-
proach provide more accurate estimates of the densities, 
but also it enjoys computational efficiency since it was 
demonstrated in [20] that one only needs to use one set 
of permuted null scores to fit the t-mixture model. More 

specifically, instead of using all ’s (size=n*B) to fit 

the t-mixture model, a random sample with size n can be 

drawn from  and used as the null statistics. 

1,.i 

b
i

..g

z

1 1

B n
b
i

b i

z
 


Since the test statistic iZ  and the null statistic  

(because only one set of null score is used now, we will 
denote the null statistic as  instead of ) have the 

densities 
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where   is chosen such that a given number of sig-
nificant genes is detected. Equation (11) can be viewed 
as the model based formula of FDR. 

Assume that we have available the estimators  and f̂


0f  of  and  from the TMM, respectively, then 

the corresponding model based FDR estimator for (11) is 
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The model based FDR estimator (12) has the follow-
ing advantages compared to the empirical FDR estimator 
of SAM: 

1) It does not have the granularity problem of the em-
pirical FDR estimator (9); 

2) It provides non-zero FDR estimate for any  , 
while (9) only provides non-zero FDR when cutoffs are 
within the two endpoints of the range of the permuted 
null scores; 

3) Unlike (9), the numerator and the denominator of 
(12) are not subject to the sampling variability. 

3. RESULTS 

3.1. Simulated Data 

In the simulation,  replicates and n = 5,000 

genes are generated while 200 of them are assumed to be 
differentially expressed. For the DE genes, the data un-
der condition 1 are generated from N(2,1) and the data 
under condition 2 are generated from N(0,1). The EE 
genes are generated from N(0,1) regardless of the condi-
tions. For the generated data, we calculate the true FDR 
and estimated FDR for a grid of total number of signifi-
cant genes ranging from 100 to 1 (in decreasing order). 
This procedure is repeated for five times. Figure 1 
shows comparisons of true FDR, empirical FDR estima-

tor 

1 2 4j j 

FDR  defined by (9), and the model based FDR 

estimator 1FDR  defined by (12). 

As we can see, the instability of empirical FDR  in-
creases significantly as it decreases to 0, which shows its 
granularity problem. Another fact worth noticing is that 

FDR  tends go to zero faster than the true FDR, which 
is the zero FDR problem. It can be seen that the true 
FDR strictly decreases as the total number of significant 

genes decreases. However, the empirical FDR  does 

not show this characteristic. In contrast, 1FDR  captures 
the decreasing trend very well and does not have the 

erratic jumps of FDR . To check how well these two 
FDR estimators approximate the true FDR, we calculate 

the mean squared error for both of them. MSE for FDR  

is 0.00045 and MSE for 1FDR

2 )i i

 is 0.00021, which 
shows that our method outperforms the empirical 
method. 

Next, we compare the performances of the two meth-
ods when the two populations for the DE and EE genes 
are not so well separated. For this purpose, we conduct an-
other simulation which tries to mimic the real data. The 
expression levels for the EE genes under the two conditions 
are generated from 1( ,N    and 2

1( , )i iN    with 

1 2i i 
 

 . The expres-

sion levels for the DE genes are generated similarly as 
the EE genes, except that 

~ (N 0, 2) i
2 ~ (4, 2)Gamma

1i  and 2i  are generated 

from  separately. In this case, the grid of total 

number of significant genes ranges from 150 to 1 (in 
decreasing order). Comparison results are displayed in 
Figure 2. 

(0N , 2)

It is seen from Figure 2 that FDR  is very unstable 
and approximates true FDR poorly, which makes the 

estimates highly inaccurate. On the other hand, 1FDR  

has a much smoother curve than FDR  and seems to be 
able to capture the decreasing trend of the true FDR very 

well. In addition, the fact that MSE for FDR  is 0.025 

and for 1FDR  is 0.015 shows that our method gives a 
significantly better fit to the true FDR. 

3.2. Real Data 

The Leukemia data of [21] is one of the most studied 
gene expression data sets. This data set includes 27 acute 
lymphoblastic leukemia (ALL) samples and 11 acute 
myeloid leukemia (AML) samples for 7129 genes. In 
Figure 3, we estimate the FDRs for different number of 
significant genes using both our proposed model based 
FDR estimator and the empirical FDR estimator. As we 
expect, the model based FDR estimator gives a more 
stable estimate. 

4. DISCUSSION 

In this paper, we have proposed a t-mixture model based 
approach to improve the performance of SAM’s empiri-
cal FDR estimator. We demonstrate that our method does 
not have the granularity and zero FDR problems as the 
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empirical method. The results also show that our esti-
mator provides more stable and accurate estimates of the 
FDR. The advantage of our method is more evident in 
the case when DE genes are not well separated with EE 
genes and the variances of expression levels for every 
gene are different. This is due to the fact that the permu-
tation FDR estimator is more easily affected by the sam-
pling variability. 
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