
J. Software Engineering & Applications, 2008, 1: 38-43
Published Online December 2008 in SciRes (www.SciRP.org/journal/jsea)

Copyright © 2008 SciRes JSEA

1

Development of an Improved GUI Automation Test
System Based on Event-Flow Graph

Yongzhong Lu1, Danping Yan2, Songlin Nie3, Chun Wang1

1School of Software Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China, 2School of Public
Administration, Huazhong University of Science & Technology, Wuhan 430074, P. R. China, 3School of Mechanical Science and
Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China

Email: hotmailuser@163.com

Received November 24th, 2008; revised November 30th, 2008; accepted December 1st, 2008.

ABSTRACT

A more automated graphic user interface (GUI) test model, which is based on the event-flow graph, is proposed. In the
model, a user interface automation API tool is first used to carry out reverse engineering for a GUI test sample so as to
obtain the event-flow graph. Then two approaches are adopted to create GUI test sample cases. That is to say, an
improved ant colony optimization (ACO) algorithm is employed to establish a sequence of testing cases in the course of the
daily smoke test. The sequence goes through all object event points in the event-flow graph. On the other hand, the
spanning tree obtained by deep breadth-first search (BFS) approach is utilized to obtain the testing cases from goal point
to outset point in the course of the deep regression test. Finally, these cases are applied to test the new GUI. Moreover,
according to the above-mentioned model, a corresponding prototype system based on Microsoft UI automation framework
is developed, thus giving a more effective way to improve the GUI automation test in Windows OS.

Keywords: Automated Software Testing, Graphic User Interface, Event-Flow Graph, Regression Testing, Ant Colony
Optimization, UI Automation

1. Introduction

Testing GUI is a hard and monotonous labor. So far, a
large number of scholars and experts have been
addressing themselves to the study of related fields. In
the 1970s, some scholars suggested that testing software
design be modeled by finite-state machines and testing
software errors be found [1]. Thereafter another
researchers applied the approach to the domain of testing
GUI. It was called an improved model of finite-state
machines, i.e. complete interaction sequence (CIS) [2].
After having come to recognize the fact that it
increasingly did not satisfy the modeling requirements of
GUI automation test, experts proposed an event-flow
model based on event-flow graph. They investigated a
variety of automatic generation approaches to GUI test
cases, which were closely connected with the adopted
GUI model like above-mentioned CIS. Besides, they
simultaneously presented an algorithm to check the
complete testing cases [4]. And an AI planning-based
approach to GUI test was employed [5,6], which utilized
the partial ordering planning in the field of AI Planning
and attained test cases by the goal-driven method of
searching state point. During the process of generating
test cases by an AI planning-based approach, hierarchical
GUI test case generation is derived [7]. In addition, other
contribution like Memon and his colleagues at the
University of Maryland are worth attention and they have
made great progress in the theories of coverage criteria

for GUI testing [8] and test oracles for GUI-based
software applications [9-11]. In recent years, McMaster
together with Memon presented call stack coverage for
GUI test-suite reduction [12]. Moreover, AI and data
mining have been applied to the relevant study of the
deep regression test. Ye et al. investigated an approach to
select a better way of the deep regression test by training
neural network [13]. White suggested a method to use the
mathematical model of Latin square to reduce case
quantities [14]. Memon et al. put forward a proposal that
the adaptability to software variation was improved
through choosing event relationships in the deep
regression test [15].

However, these approaches have not yet fully been put
into practice in GUI automation test systems of industry
fields for the time being, which are roughly classified
into three categories: capture and replay mode,
scripts-driven mode, and data-driven mode. There exists
several distinct defects among them such as heavily
depending on manual work, being characteristic of low
adaptability to software variation, and lacking systematic
management for testing cases and their coverage.
Accordingly, in an effort to enhance the automation test,
a more highly automated GUI testing model, which is
based on the event-flow graphs, is proposed. In the model,
an automation tool is first used to carry out reverse
engineering for testing GUI sample so as to obtain the

Development of an Improved GUI Automation Test System Based on Event-Flow Graph 39

Copyright © 2008 SciRes JSEA

event-flow graph. Then two approaches are adopted to
create testing GUI sample cases. That is to say, an
improved ACO algorithm is employed to establish a
sequence of testing cases in the course of the daily smoke
test. The sequence goes through all object event points in
the event-flow graph. On the other hand, the spanning
tree obtained by deep BFS approach is utilized to obtain
the testing cases from goal point to outset point in the
course of the deep regression test. Finally these cases are
applied to test the new GUI. Moreover, according to the
above-mentioned model, a corresponding prototype
system based on Microsoft UI automation framework is
developed, thus giving a more effective way of
improving the GUI automation test in Windows OS.

Section 2 gives a brief description of GUI automation
test model based on event-flow graph and also describes
two types of algorithms of generating automation test
cases. Section 3 depicts the development of a
corresponding prototype system based on Microsoft UI
automation framework. Finally, the conclusions and
future work are given in Section 4.

2. A GUI Automation Test Model Based on
Event-Flow Graph

In References [8,9,10,11], Memon et al. presented an
event-flow graph model when deeply studying the
coverage criteria for GUI testing, whose purpose was to
describe the mutual relationship among the object events
more clearly. Thus a model, which was equipped with the
most complete functions for GUI test, came into
existence. But our event-flow graph model is obtained by
simplifying the above model. It is actually a
two-dimension vector <V , E >, where V denotes event
sets in GUI and E represents order relationships of event
execution in GUI. Their definitions are the same as the
origin. In this model, non hierarchy modeling means
neglecting the process of constructing components for
GUI objects, thus enhancing the automation level for
GUI test. What we have to do is to find out the GUI
events which are executed immediately after previous
events occur in terms of GUI states. In the course of
reverse engineering, every GUI event has been gone
through to discover the GUI events. Based on these GUI
execution events, the vector event-flow graph is
established. Then aiming at the requirements of GUI
automation test, an improved ant colony optimization
algorithm is employed to establish a sequence of testing
cases in the course of the daily smoke test. In addition,
the spanning tree obtained by deep BFS approach is
utilized to obtain the testing cases from goal point to
outset point in the course of the deep regression test.
These cases are applied to test the new GUI. These
algorithms are elaborated as follows.

The improved ACO algorithm for the daily smoke test
suggested in the paper defines elicitation variables and a
tabuk list and takes into consideration the consanguineous
combination of a max-min ant system (MMAS), an ant

colony algorithm based on an adaptive pheromone, and a
type of rewards and penalty mechanism of pheromone
volatilization. Its concrete formulae are concisely
expressed below as subsection functions (1)-(3) and
equations (4)-(6).

others

if

0

][)]([

][)]([

)(k

tabut
ijij

ijij

k
ij

tabujt

t

tP
k

∉

= ∑
∉

βα

βα

ητ
ητ

 (1)

others

if}][)]({[maxarg
0qq

J

t
j

ijij
tabuj

<

= ∉

βα ητ
 (2)

others

pathson worst bordersvector

paths optimalon bordersvector

)(

)(')(

)()(

)1(

⋅

∆−⋅

∆+⋅

=+

t

tt

tt

t

ij

ijij

ijij

ij

τρ
ττρ
ττρ

τ
 (3)

)1()1(++= jiij ωλη (4)
µτ /)(Qtij =∆ (5)

'/)(' Qtij µτ =∆ (6)

where the number of crunodes is the rank, the number of
ants is M.)(tijτ is pheromone density of vector border

(i, j). ijη is a elicitation variable which denotes the

elicitation factor during the solution process. iλ is the

total number of crunodes which are not accessed from the
crunode i while jω is the total number of crunodes

which are accessed from the crunode j. βα , are

corresponding to a pheromone elicitation factor and a
self-elicitation factor. ktabu is an accessed crunode list

when next crunode is searched. q is a stochastic

variable of average distribution among [0,1] while 0q is

a given constant beforehand. ρ is the coefficient of

pheromone volatilization.)('),(tt ijij ττ ∆∆ are pheromone

increments. Q and Q’ are both constants. µ is the

number of repetitive crunodes, J is the result of
subsection functions (1). At the beginning, initial
pheromone density)(tijτ in the MMAS is equally set to

maximum. When ant k moves from the crunode i at t,

)(tPk
ij is the probability of choosing the crunode j.

According to MMAS, each pheromone density of
vector border is situated in between maxτ and minτ

which are set in advance. If the value is bigger than maxτ ,

it is set to be equal to maxτ ; Vice versa. Such disposal is

beneficial to sufficient search and getting the optimal
solution. Furthermore, if the goal crunode is not accessed
and its λ is equal to 1, it should be preferentially
considered when another goal crunode is selected. If the
algorithm is convergent, the generated event crunode
sequences are the desired GUI sample test cases for
testing new GUI.

40 Development of an Improved GUI Automation Test System Based on Event-Flow Graph

Copyright © 2008 SciRes JSEA

The algorithm based on the spanning tree obtained by
deep breadth-first search (BFS) approach for the deep
regression test is described as follows.

ALGORITHM: BFS(G,s){
 FOR ALL u V[G]∈ -{s} { /*the initial crunode*/
 color[u] = White;
 }
 color[s] = Gray; /*deal with the initial
crunode*/
 π[s] = Ø;
 Q = Ø;
Enqueue(Q, s);
 WHILE Q ≠ Ø {
 u←Dequeue(Q);
 FOR ALL v Adj[u] {∈
 IF color[v] = White { /*(u,v) is the
tree border*/
 color[v] = Gray;
 π[v].Add(u,v);
 Enqueue(Q,v);
 }
 color[u] = Black;
 }
}

According to the theory of the spanning tree which shows
simple path is corresponding to the shortest distance [16],
GUI sample event cases can be gained as follows.

ALGORITHM:GetTestCaseOfEvent(Vertex v ∈ V){
 TestCase = Ø;
FOR ALL InEdge ∈ v.InEdges{
 u = BFSTree.Find(InEdge.SourceVertex)
 TestCase[u].Add(v);
TestCase[u].Add(u);
 WHILE u.Parent != StartVertex{
 TestCase[u].Add(u.Parent);
 u = u.Parent;
}
TestCase[u].Add(StartVertex);
 }
}

3. Developing the GUI Automation Test System

In the above-mentioned model, GUI hierarchy modeling
is not taken into consideration and the process of
components construction is neglected. Because GUI
hierarchy modeling relies on the GUI logic relationships
and needs manual operation, it inevitably influences the
process of GUI automation test. Furthermore, with regard
to GUI test case generation, an adaptive max-min ACO
above based GUI test case generation algorithm is used
for GUI daily smoke test, and a deep BFS based GUI test
case generation algorithm is exploited for GUI deep
regression test. The developing flow of GUI automation
test system is shown below in Figure 1.

Figure 1. Developing flow of GUI automation test system

To end

To create a report about the tests that have been done

To generate test cases for GUI daily smoke regression test

Is there a new testing GUI sample ?

To carry out GUI daily smoke regression tests

To begin

To establish an event-flow graph model

To pick up and build up test oracles

Manual verification of event-flow graph and test
oracles

Yes

No

Development of an Improved GUI Automation Test System Based on Event-Flow Graph 41

Copyright © 2008 SciRes JSEA

The GUI automation test prototype system is

developed by taking advantage of Microsoft UI
Automation frame, Visual Studio 2005, and advanced
language C#. The Microsoft UI Automation frame can
provide the developers with more uniform and
convenient access to GUI in Windows OS than before. In
the past, GUI automation operation usually requires
indirect or direct usage of Windows API. Microsoft UI
Automation acts as a part of Windows Presentation
Foundation (WPF) in Windows SDK v6.0. It completely
supports Windows Vista, Microsoft Windows XP and
Windows Server 2003. It is deemed as a uniform access
frame for the development of the systems based on WPF,
standard Win32, Windows Form and Web UI.

The prototype system is divided into three main
functional modules as follows. 1) one includes event-
flow graph modeling based on reverse engineering and
test oracles pick-up, 2) another one is for test case
generation, 3) the last one is to finish testing execution
and report. The output of three parts is documentary
format so as to facilitate the interaction with each other
and partially manual verification. Their interaction is
presented in Figure 2. The hollow arrow points to the data
flow direction. As Figure 2 shows, the sub-module of test
oracles pick-up and another sub-module of event-flow
graph modeling are used to acquire the relevant
information from GUI sample, and then output test
oracles and event-flow graph. Thereafter, partially

manual verification module is also exploited to inquire
about whether there are some faults about GUI objects or
not. After the performance, test case generation module is
transferred to generate test cases for GUI daily smoke
regression test. Then these cases are used for testing new
GUI. Finally, testing results are passed into test report
module to work out an ultimate testing document.

The first module is the most difficult one in the system
because Microsoft UI Automation frame is needed to
perform a dynamic automatic analysis to GUI sample.
The analysis is dynamic, that is to say, the GUI
information is constantly changing and there exists a
extremely complex relationship between the analytic tool
and GUI. This module is based on reverse engineering of
GUI event-flow graph. As a result, the documentary files
about vector information in event-flow graph are
obtained. Figure 3 shows the interface of test oracles
pick-up sub-module and event-flow graph modeling
sub-module.

In test case generation module, the documentary files
above are called, and then are parsed to attain hash codes
of crunodes and their vector borders, and establish a
vector graph objects. The above mentioned GUI test case
generation algorithms are utilized to generate test cases.
In particular, the function of event-flow graph plotting is
designed in this module. In the process, the generally
professional plotting software Graphviz is used. Figure 4
shows the interface of GUI test case generation.

Figure 2. Interaction among three modules of GUI automation test system

Upcoming tested GUI

GUI sample for modeling

Test oracles

Test cases

Event-flow graph

GUI automation test system

Test case generation
module

Test execution
sub-module

Test report sub-module

Even-flow graph
modeling sub-module

Test oracles pick-up
sub-module

Test report

Manual
verification
sub-module

42 Development of an Improved GUI Automation Test System Based on Event-Flow Graph

Copyright © 2008 SciRes JSEA

In the last module of test execution and report, the

required test event information can be obtained by the
hash codes of new GUI. Microsoft UI Automation is used
to acquire the controllers and their control modes of new
GUI. The test types are selected and GUI daily smoke
regression test are done. If the test is a daily smoke one,
the test result is evaluated after each event is finished. If
the test is a deep regression one, the test result is
evaluated after the goal event is finished. Figure 5 shows
the interface of GUI test execution and report.

Figure 3. The interface of dealing with test oracles pick-
up and event-flow graph modeling

Figure 4. The interface of GUI test case generation

Figure 5. The interface of GUI test execution and report

4. Conclusions

Based on the event-flow graph modeling, a new GUI
automation test model is presented. In the model, an
improved ACO is put forward to generate test cases in
the daily smoke test and a spanning tree is utilized to
create test cases in the deep regression test. These test
cases are generally applied in new GUI test. Moreover, a
prototype system is developed on the basis of Microsoft
UI Automation frame, thus giving a more effective way
of improving the GUI automation test in Windows OS.

In the future, the systematic function test and contrast
test with traditional GUI automation test software should
be done in order to verify the validation of the model.
And the adaptability of the studied system to the various
GUI in other OS should be facilitated. In addition, the
event-flow graph needs improving so as to solve the
complex logic problem and reduce the involvement of
manual verification.

5. Acknowledgement

The support from the Natural Science Foundation at
Huazhong University of Science and Technology, the
Natural Science Foundation in Hubei Province, and the
National Natural Science Foundation in P. R. China,
grant numbers 2007Q006B, 2006ABA085, 50775081,
and 50675074 respectively, is gratefully acknowledged
for this work by the authors.

REFERENCES

[1] T. Chow, “Testing Software Design Modeled by Finite-State
Machines,” IEEE Transactions on Software Engineering,
Vol. 4, No. 3, pp. 178-187, May 1978.

[2] L. White and H. Almezen, “Generating test cases for GUI
responsibilities using complete interaction sequences,” in
Proceedings of the International Symposium on Software
Reliability Engineering, San Jose, California, USA, pp.
110-121, October 2000.

[3] A. M. Memon, “An event-flow model of GUI-based
applications for testing,” Software Testing, Verification
and Reliability, Vol. 17, No. 3, pp. 137-157, September
2007.

[4] L. White, H. Almezen, and N. Alzeidi, “User-based testing of
GUI sequences and their interaction,” in Proceedings of
the International Symposium on Software Reliability
Engineering, Annapolis, Maryland, USA, pp. 54-63,
November 2001.

[5] A. M. Memon, M. E. Pollack, and M. L. Soffa, “A
planning-based approach to GUI testing,” in Proceedings
of The 13th International Software/Internet Quality Week,
San. Francisco, California, USA, May 2000.

[6] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Plan
Generation for GUI Testing,” in Proceedings of the Fifth
International Conference on Artificial Intelligence
Planning and Scheduling, Menlo Park, California, USA,
pp. 226-235, April 2000.

[7] A. M. Memon, M. E. Pollack, and M. L. Soffa,
“Hierarchical GUI test case generation using automated

Development of an Improved GUI Automation Test System Based on Event-Flow Graph 43

Copyright © 2008 SciRes JSEA

planning,” IEEE Transactions on Software, Vol. 27, No. 2,
pp. 144-155, May 2001.

[8] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage
criteria for GUI testing,” in Proceedings of the 8th
European software engineering conference held jointly
with 9th ACM SIGSOFT international symposium on
Foundations of software engineering, New York, USA, pp.
256-267, September 2001.

[9] Q. Xie and A. M. Memon, “Designing and comparing
automated test oracles for GUI-based software applications,”
ACM Transactions on Software Engineering and
Methodology, Vol. 16, No. 1, pp. 4-es, February 2007.

[10] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Automated
test oracles for GUIs,” in Proceedings of the 8th ACM
SIGSOFT international symposium on Foundations of
software engineering: twenty-first century applications,
San Diego, California, USA, pp. 30-39, November 2000.

[11] A. M. Memon, I. Banerjee, and A. Nagarajan, “What test
Oracle should I use for effective GUI testing,” in
Proceedings of the IEEE International Conference on
Automated Software Engineering, Montreal, Quebec,
Canada, pp. 164-173, October 2003.

[12] S. McMaster and A. M. Memon, “Call stack coverage for
GUI test-suite reduction,” in Proceedings of the 17th

IEEE International Symposium on Software Reliability
Engineering, Raleigh, North Carolina, USA, pp. 33-44,
November 2006.

[13] M. Ye, B.Q. Feng, and Y. Lin, “Neural networks based
test cases selection strategy for GUI testing”, in
Proceedings of the 6th World Congress on Intelligent
Control and Automation, Dalian, China, pp. 5773-5776,
June 2006.

[14] L. White, “Regression testing of GUI event interactions,” in
Proceedings of the International Conference on Software
Maintenance, Monterey, California, USA, pp. 350-358,
November 1996.

[15] A. M. Memon and M. L Soffa, “Regression testing of
GUIs,” in Proceedings of the 9th European software
engineering conference held jointly with 11th ACM
SIGSOFT international symposium on Foundations of
software engineering, New York, USA, pp. 118-127,
September 2003.

[16] A. M. Memon, I. Banerjee, and A. Nagarajan, “GUI
ripping: reverse Engineering of graphical user interfaces
for testing,” in Proceedings of the 10th Working
Conference on Reverse Engineering, Victoria, B.C., Canada,
pp. 260-269, November 2003.

