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Abstract  
 
We present a novel approach for computing a shortest path in a mixed fuzzy network, network having vari-
ous fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path 
using α -cuts. Then, we present a dynamic programming method for finding a shortest path in the network. 
For this, we apply a recently proposed distance function for comparison of fuzzy numbers. Four examples 
are worked out to illustrate the applicability of the proposed approach as compared to two other methods in 
the literature as well as demonstrate the novel feature offered by our algorithm to find a fuzzy shortest path 
in mixed fuzzy networks with various settings for the fuzzy arc lengths. 
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1. Introduction 

Determination of shortest distance and shortest path be-
tween two vertices is one of the most fundamental prob-
lems in graph theory. Let G = (V, E) be a graph with V as 
the set of vertices and E as the set of edges. A path be-
tween two vertices is an alternating sequence of vertices 
and edges starting and ending with vertices, and no ver-
tices or no edges appear more than once in the sequence. 
The length of a path is the sum of the weights of the 
edges on the path. There may exist more than one path 
between a pair of vertices. The shortest path problem is 
to find the path with minimum length between a speci-
fied pair of vertices. In classical graph theory, the weight 
of each edge is taken as a crisp real number. But, practi-
cally weight of each edge of the network may not be a 
fixed real number and it may well be imprecise. 

The shortest path problem involves addition and com-
parison of the edge weights. Since, the addition and 
comparison between two interval numbers or between 
two triangular fuzzy numbers are not alike those between 
two precise real numbers, it is necessary to discuss them 
at first. Interval arithmetic was developed in Moore [1]. 
The case of optimization with interval valued and fuzzy 
constraints were discussed in Delgado et al., Ishibuchi 

and Tanaka, Sengupta, and Shaocheng [2–5]. Various 
ranking methods for interval numbers were introduced 
by several researchers. An extensive survey of the order 
relations along with a new proposal are given by Sen-
gupta and Pal [6]. There are also ranking methods for 
fuzzy numbers available in the literature. Dubois and 
Prade [7] introduced a ranking of fuzzy numbers in the 
setting of possibility theory, and Chen [8] ranked fuzzy 
numbers using maximizing and minimizing sets. Rank-
ing of fuzzy numbers was also studied by Bortolan and 
Degani, Cheng, and Delgado et al. [2,9,10]. 

Fuzzy graph problems were addressed in Blue et al. 
and Koczy, Klein, Li et al., Lin and Chen, Okada and 
Gen [11–17] paid special attention to fuzzy shortest paths. 
In a recent development, Okada and Soper [18] proposed 
an algorithm to find the shortest path in a network with 
fuzzy edge weights. The algorithm gives a family of 
non-dominated shortest paths for a specified satisfaction 
level, but it does provide any guideline to the decision- 
maker to choose the best amongst the paths according to 
his/her view; i.e., optimistic, pessimistic, etc. 

The shortest path (SP) problem has received lots of 
attention from researchers in the past decades, because it 
is important to many applications such as communication, 
transportation, scheduling and routing. In a network, the 
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arc length may represent time or cost. Conventionally, it 
is assumed to be crisp. However, it is difficult for deci-
sion makers to specify the arc lengths. For example, us-
ing the same modem to transmit the data from node a to 
b in a network, the data transmission time may not be the 
same every time. Therefore, in real world, the arc length 
could be uncertain. Fuzzy set theory, as proposed by 
Zadeh [19], is frequently utilized to deal with uncertainty. 
Zadeh presented the possibility theory using membership 
functions to describe uncertainties. 

Considering a directed network that is composed of a 
finite set of nodes and a set of directed arcs, we denote 
each arc by an ordered pair (i, j), where i and j are two 
different nodes. The arc length represents the distance 
needed to traverse (i, j) from node i to j. We denote it by 
l(i, j) or L(i, j), when it is crisp or fuzzy, respectively. We 
call L(i, j) as “fuzzy arc length”. 

The shortest path problem is the following: given a 
weighted, directed graph and two special vertices s and t, 
compute the weight of the shortest path between s and t. 
The shortest path problem is one of the most fundamen-
tal network optimization problems. This problem comes 
up in practice and arises as a subproblem in many net-
work optimization algorithms. Algorithms for this prob-
lem have been studied for a long time [20–22]. However, 
advances in the method and theory of shortest path algo-
rithms are still being made [23–25]. 

In the network we consider here, the lengths of the 
arcs are assumed to represent transportation times or 
costs rather than geographical distances. As time or cost 
fluctuate with traffic conditions, payload and so on, it is 
not practical to represent the arcs as crisp values. Thus, it 
is appropriate to utilize fuzzy numbers based on fuzzy set 
theory. In proposing an algorithm for solving the prob-
lem, we are first faced with the comparison or ordering 
of fuzzy numbers, a task not considered to be routine. 
For this reason, fuzzy shortest path problems have rarely 
been studied despite their potential application to many 
problems [18,26]. The problem turns out to be even more 
complicated in our more general case of allowing various 
fuzzy arc lengths. 

Here, we propose a new approach and an algorithm to 
find a shortest path in a mixed network having various 
fuzzy arc lengths. The remainder of the paper is organ-
ized as follows. In Section 2, basic concepts and defini-
tions are given. A dynamic programming algorithm for 
finding a fuzzy shortest path in a network is presented in 
Section 3. There, we make use of α -cuts for computing 
approximations for the addition of two different types of 
fuzzy numbers and apply a distance function for the 
comparison of fuzzy numbers. Comparative examples 
are given in Section 4. Section 5 works out an example 
to show the novel feature of our algorithm to find fuzzy 
shortest paths in mixed fuzzy networks with various set-
tings for the fuzzy arc lengths. We conclude in Section 6. 

2. Concepts and Definitions 

We start with basic definitions of some well-known 
fuzzy numbers. 

Definition 1. An LR fuzzy number is represented by 

LRmA ),,(~
βα= , with the membership function, )(~ xaµ , 

defined by the expression, 
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where L and R are non-increasing functions from R+ to 
[0,1], L(0)=R(0)=1, m is the center, α  is the left spread 
and β  is the right spread. 

Note that if  L(x)=R(x)=1-x with 0<x<1, then x is a 
triangular fuzzy number and is represented by the triplet 

),,(~
321 aaaa = , with the membership function, )(~ xaµ , 

defined by 
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A triangular fuzzy number is shown in Figure 1. 
Definition 2. A trapezoidal fuzzy number a~  is 

shown by ),,,(~
4321 aaaaa = , with the membership 

function as follows:  
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Figure 1. A triangular fuzzy number. 
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A general trapezoidal fuzzy number is shown in Fig-
ure 2. It is apparent that a triangular fuzzy number is a 
special trapezoidal fuzzy number with 32 aa = . 

Definition 3. If  L(x)=R(x)= ℜ∈− xe x with,
2 , 

then x is a normal fuzzy number that is shown by 
),( σm  and the corresponding membership function is 

defined to be: 

,,)(
2)(

~ ℜ∈=
−

−
xex

mx

a
σµ  

where m is the mean and σ is the standard deviation. A 
normal fuzzy number is shown in Figure 3. 

Definition 4. The α -cut and strong α -cut for a 
fuzzy set A~ are shown by αA~

 
and +

αA~ , respectively, 

and for ]1,0[∈α are defined to be: 

{ } ,,)(
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where X is the universal set. 
Upper and lower bounds for any α -cut )~( αA  are 

shown by αA~sup  and αA~inf , respectively. Here, we 
assume that the upper and lower bounds of α -cuts are 

 

 
Figure 2. A trapezoidal fuzzy number. 

 

 
Figure 3. A normal fuzzy number. 

finite values and for simplicity we show αA~sup  by 
+
αA and αA~inf by −

αA .
 

2.1. Computing α -Cuts for Fuzzy Numbers 

For an LR fuzzy number with L and R as invertible func-
tions, the α -cuts are: 
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For specific L and R functions, the following cases are 
discussed. Let ),,,(~

4321 aaaaa =  be a trapezoidal 
fuzzy number. The α -cut for a~ , )~( αa , is computed 
as: 
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Note that the α -cut for triangular fuzzy numbers is 
simply obtained by using the above equations consider-
ing 32 aa = : 
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For ),(~ σma = , a normal fuzzy number, αa~  , is 
computed as: 

( )2

( )2

ln( )

ln( )

m x

x m

m xe

x me

σ

σ

α α
σ

α α
σ

−
−

−
−

−
= ⇒ − =

−
= ⇒ − =

 

.10,
ln~

ln~
~









≤<

−+=

−−=
=⇒ α

ασ

ασ

α

α

α

ma

ma
a

R

L

  (3) 



A. TAJDIN  ET  AL.                                      
 

Copyright © 2010 SciRes.                                                                                 WSN 

151 

2.2. Fuzzy Sum Operators 

Here, we propose an approach for summing various 
fuzzy numbers approximately using α -cuts. The ap-
proximation is based on fitting an appropriate model for 
the sum using α -cuts of the addition by a set of iα  
values. Let us divide the α -interval [0,1] into n equal 
subintervals by letting 00 =α , iii ααα ∆+= −1 , 
i=1,…,n with 

ni
1

=∆α , i=1,…,n. This way, we have a 

set of n+1 equidistant iα  points. For addition of two 
different fuzzy numbers, we add the set of corresponding 

iα -cut points of the two numbers to yield the iα -cuts of 
the sum as an approximation for the fuzzy addition. 

3. An Algorithm for Fuzzy Shortest Path in a 
Network 

3.1. Distance between Fuzzy Numbers  

Knowing that we can obtain a good approximation of the 
addition of various fuzzy numbers by use of α -cuts, we 
compute the distance between two fuzzy numbers using 
the resulting points from the α -cuts. For a~  and b~ as 
two different fuzzy numbers, we use a new fuzzy ranking 
method for the fuzzy numbers. Let us consider the fuzzy 
min operation to be defined as follows 

MinMV =%  value( , )a b%%                            

1 1(min( , ),a b= 2 2min( , ),a b 3 3 4 4min( , ), min( , )).a b a b  
(4) 

It is evident that, for non-comparable fuzzy numbers 
a~  and b~ , the fuzzy min operation results in a fuzzy 
number different from both of them. For example, for 

)19,13,10,5(~ =a  and )20,15,9,6(
~

=b , we get from (4) a 

fuzzy )19,13,9,5(~
=VM  which is different from both 

a~  and b~ . To alleviate this drawback, we use a 
method based on the distance between fuzzy numbers. 
We use the distance function introduced by Sadegh- 
pour-Gildeh and Gien [27]. The main advantages of this 
distance function are the generality of its usage on 
various fuzzy numbers, and its reliability in distingui- 
shing unequal fuzzy numbers. Indeed, the use of this 
distance function worked out to be quite appropriate for 
our approach here as well as in a different context 
before where we considered the arc lengths in the 
network to be all of the same type (see Mahdavi et al. 
[28]). 

The proposed qpD , -distance, indexed by parameters 

1 p< < ∞  and 0 1q< < , between two fuzzy numbers 

a%  and b%  is a nonnegative function given by: 
The analytical properties of qpD , depend on the first 
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parameter p, while the second parameter q of 

qpD ,
characterizes the subjective weight attributed to 

the end points of the support; i.e., ( ,a aα α
+ − ) of the fuzzy 

numbers. If there is no reason for distinguishing any 
side of the fuzzy numbers, then 1,

2
p

D  is recommended. 

Having q close to 1 results in considering the right side 
of the support of the fuzzy numbers more favorably. 
Since the significance of the end points of the support 
of the fuzzy numbers is assumed to be the same, then 
we consider 1

2
q = .  

For two fuzzy numbers a~  and b~  with correspond-
ing iα -cuts, the ,p qD  distance is approximately pro-

portional to: 
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(7) 
To compare two fuzzy arc lengths a~  and b~  with 

iα -cuts as their approximations, since they are supposed 
to represent positive values, we compare them with 

)0....,,0,0(~
=VM . In fact, we use (7) to compute 

)0,~(
2
1,2

aD and )0,
~

(
2
1,2

bD  and use these values for 

comparison of the two numbers.
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3.2. An Algorithm for Computing s Shortest 
Fuzzy Path 

 
The following dynamic programming algorithm is for 
computing the shortest path in a network. The algorithm 
is based on Floyd’s dynamic programming method to 
find a shortest path, if it exists, between every pair of 
nodes i and j in the network (see Floyd [29]). 

We make use of the following optimal value function 
),( jifk and the corresponding labeling function ),( jiPk : 

),( jifk = length of the shortest path from node i to 
node j when the path is considered to use only the nodes 
from the set of nodes { }k....,,1 . 

),( jiPk = the last intermediate node on the shortest 
path from node i to node j using { }k....,,1  as intermediate 
node.  

The dynamic updating for the optimal path length and 
its corresponding labeling are: 

{ }),(),(,),(min),( 111 jkfkifjifjif kkkk −−− += , 

1

1

( , ) if k is not on shortest path from i to j using {1,...,k}   
( , )

( , ) otherwise.
k

k
k

P i j
P i j

P k j
−

−


= 


 

 
We are now ready to give the steps of the algorithm.  
Algorithm: A dynamic programming method for 

computing a shortest path in a fuzzy network ),( AVG = , 
where V  is the set of nodes with NV = , and A  is 
the set of arcs. 

Step 1: Let k=0 and ijk djif
~

),(
~

= , for all Aji ∈),( , 

( ) ∞== jifk ,
~

, for all Aji ∉),( . If an arc exists from 
node i to node j then let ijiPk =),( . 

Step 2: Let 1+= kk .  
Do the following steps for 

.,....,,3,2,1,....,,3,2,1 jiNjNi ≠==   

2.1 Compute the value of ( , ) minkf i j =  

[ ]1 1 1( , ), ( , ) ( , )k k kf i j f i k f k j− − −+  (for the addition, 
our proposed method discussed in Subection 2.2 and for 
comparison of fuzzy numbers the qpD ,  method of 
Subection 3.1 are applied).  

2.2 If node k is not on the shortest path using nodes 
{ }k...,,2,1  as intermediate nodes, then let ( , )kP i j =  

1( , )kP i j−  else let ),(),( 1 jkPjiP kk −=  
Step 3: If Nk <  then go to Step 2. 
Step 4: Obtain the shortest path using the ),( jiPk . If 

∞=),( jif N , then there is no path between i and j. The 
shortest path from node i to j, if it exists, is identified 
backwards and read by the nodes: j, kjiPN =),(  fol-
lowed by iliPkiP NN =),(....,),,( , where l is the node 
immediately after i in the path. 

3.3. Termination and Complexity of the  
Algorithm 

The proposed algorithm terminates after N outer itera-
tions corresponding to k. A total of N(N-1)2 additions and 
comparisons are needed for every k. For each addition, n 
fuzzy additions for the iα -cuts should be performed 

resulting in 2n(N)(N-1)2 additions. For comparisons, we 
have (2n+1)N(N-1)2 additions and (2n+1) N(N-1)2 mul-
tiplications using (7). Therefore, the total needed opera-
tions are (6n+2) N(N-1)2 additions and multiplications, 
with N(N-1)2 comparison 
 
4. Comparative Examples 
 
Here, we illustrate examples for a comparison of our 
proposed method and two other approaches. 
Example 1: 
Consider the following network Figure 4 considered by 
Chuang and Kung [30]. The triangular arc lengths are 
presented in Table 1. The results obtained by the ap-
proach (

6
~f and 6P ) of Chuang and Kung [30] are 

shown in Tables 2 and 3. 
The shortest path and the corresponding length using the 
proposed approach in Chuang and Kung [30] are re-
ported below: 

6421:6  to1 frompath Shortest →→→ . 
( )256195,177,:6  to1 fromlength path Shortest  

 

 
Figure 4. The network for Example 1. 

 
Table 1. The arc lengths for example 1. 

lengths Arc lengths Arc lengths Arc  

)50,52,61( )2,3( )42,57,61( )1,3( )33,45,50( )1,2( 

)43,55,60( )3,5( )51,79,85( )2,5( )56,58,72( )2,4( 

)75,110,114( )5,6( )88,92,134( )4,6( )32,40,46( )4,5( 
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Table 2. The 
6

~f  values obtained by the approach of Chuang and Kung. 

i/j 1 2 3 4 5 6 
1 - (33,45,50) (42,57,61) (89,103,122) (85,112,121) (177,195,256) 
2 - - (50,52,61) (56,58,72) (51,79,85) (144,150,206) 
3 - - - - (43,55,60) (118,165,174) 
4 - - - - (32,40,46) (88,92,134) 
5 - - - - - (75,110,114) 
6 - - - - - - 

 
Table 3. The 6P values obtained by the approach of 
Chuang and Kung. 

i/j 1 2 3 4 5 6 

1 - 1 1 2 3 4 

2 - - 2 2 2 4 
3 - - - - 3 5 
4 - - - - 4 4 
5 - - - - - 5 
6 - - - - - - 

 

Here, we solve the same problem using our proposed 
algorithm givenin Subection 3.2 using the ranking 
method of Sadeghpour-Gildeh and Gien [27]. The results 
of the proposed approach for 6

~f and 6P  are given in 
Tables 4 and 5. 

Here, the shortest path obtained and the corresponding 
length are exactly the same as the ones we obtained by 
the approach of Chuang and Kung [30].  

Example 2: 
Consider the following network Figure 5 considered

Table 4. The 6
~
f  values obtained by our proposed algorithm 

i/j 1 2 3 4 5 6 
1 - (33,45,50) (42,57,61) (89,103,122) (85,112,121) (177,195,256) 
2 - - (50,52,61) (56,58,72) (51,79,85) (144,150,206) 
3 - - - - (43,55,60) (118,165,174) 
4 - - - - (32,40,46) (88,92,134) 
5 - - - - - (75,110,114) 
6 - - - - - - 

  
by Hernandes et al. [32]. The fuzzy triangular arc lengths 

are given in Table 6. The results ( 6
~
f and 6P ) for the 

approach of Hernandes et al. [32] are given in Tables 7 
and 8. 

The shortest path and the corresponding length using 
the proposed approach of Hernandes et al. [32] are re-
ported below: 

11.791:11  to1 frompath Shortest →→→  
( )990902,860,:11  to1 fromlength path Shortest  

We solved the same problem using our proposed algo-
rithm of Subsection 3.2 using the ranking method of 
Sadeghpour-Gildeh and Gien [27]. The results of our 
proposed approach ( 11

~
f and 11P ) are given in Tables 9 

and 10. 
The shortest path and the corresponding length are re-

ported below: 
11791:11  to1 frompath Shortest →→→ . 

( )990882,840,:11  to1 fromlength path Shortest . 
Clearly, the proposed algorithm computes almost the 

same solution as obtained by Hernandes et al. [32]. 

Table 5. The 6P  values obtained by our proposed algo-
rithm. 

i/j 1 2 3 4 5 6 
1 - 1 1 2 3 4 
2 - - 2 2 2 4 
3 - - - - 3 5 
4 - - - - 4 4 
5 - - - - - 5 
6 - - - - - - 

 

1

7

9

4

6

8

3 5

2

1110

 
Figure 5. The network for Example 2. 



A. TAJDIN  ET  AL. 

Copyright © 2010 SciRes.                                                                                 WSN 

154

Table 6. The arc lengths for Example 2. 

lengths Arc lengths Arc lengths Arc  

)710,730,735( )8,4( )730,748,770( )3,5( )800,820,840( )1,2( 

)230,242,255( )8,7( )425,443,465( )3,8( )350,361,370( )1,3( 

)120,130,150( )9,7( )190,199,210( )4,5( )650,677,683( )1,6( 

)130,137,145( )9,8( )310,340,360( )4,6( )290,300,350( )1,9( 

)230,242,260( )9,10( )710,740,770( )4,11( )420,450,470( )1,10( 

)330,342,350( )10,7( )610,660,690( )5,6( )180,186,193( )2,3( 

)1250,1310,1440( )10,11( )230,242,260( )6,11( )495,510,525( )2,5( 

)650,667,883( )3,4( )390,410,440( )7,6( )900,930,960( )2,9( 

 )450,472,490( )7,11( 

 
Table 7. The ),(

~
11 jif  values obtained by Hernandes et al. 

Table 7. continued. 
i/j 8 9 10 11 

1 (420,437,495) (290,300,350) (420,450,470) (860,902,990) 

2 (605,629,658) (900,930,960) (1130,1172,1220) (1285,1343,1403) 

3 (425,443,465) - - (1105,1157,1210) 

4 - - - (540,582,620) 

5 - - - (840,902,950) 

6 - - - (230,242,260) 

7 - - - (450,472,490) 

8 - - - (680,714,745) 

9 (130,137,145) - (230,242,260) (570,602,640) 

10 - - - (780,814,840) 

11 - - - - 

 
Example 3: A wireless sensor network 
Consider a mobile service company which handles 23 

geographical centers. A configuration of a telecommuni-
cation network is presented in Figure 6. Assume that the 
distance between any two centers is a trapezoidal fuzzy 
number (the arc lengths are given in Table 11). The 
company wants to find a shortest path for an effective 

message flow amongst the centers. 
The results obtained by our approach ( 23

~f and 23P ) 
are given in Tables 12 and 13. 

The shortest path and the corresponding length are re-
ported below: 

2321171151:23  to1 frompath Shortest →→→→→ .
 

i/j 1 2 3 4 5 6 7 
1 - (800,820,840) (350,361,370) (1000,1028,1253) (1080,1109,1140) (650,677,683) (410,430,500) 
2 - - (180,186,193) (830,853,1076) (495,510,525) (1105,1170,1215) (835,871,913) 
3 - - - (650,667,883) (730,748,770) (960,1007,1243) (655,685,720) 
4 - - - - (190,199,210) (310,340,360) - 
5 - - - - - (610,660,690) - 
6 - - - - - - - 
7 - - - - - (390,410,440) - 
8 - - - (710,730,735) (900,929,945) (620,652,695) (230,242,255) 
9 - - - (840,867,880) (1030,1066,1090) (510,540,590) (120,130,150) 

10 - - - - - (720,752,790) (330,342,350) 
11 - - - - - - - 
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( )6558,49,38,:23  to1 fromlength path Shortest . 
 
5. Discussion 
 
We can also apply the proposed algorithm to networks 
having possibly a mixture of different fuzzy numbers as 
arc lengths. To see how the steps of the proposed algo-
rithm are carried out on such networks, a small sized  

mixed fuzzy network with 4 nodes as shown in Figure 7 
is considered, where the arc lengths are considered to be 
a mixture of trapezoidal and normal fuzzy numbers. 

Example 4: Consider the mixed fuzzy network in Fig-
ure 4 with four nodes and five arcs having two trapezoidal 
and three normal arc lengths as specified in Table 14. 

Step 1: We gain the ijk djif
~

),(
~

=  for k=0 as speci-
fied in Table 14.

 

Table 8. The ),(11 jiP  values obtained by Hernandes et al. 

i/j 1 2 3 4 5 6 7 8 9 10 11 
1 - 1 1 3 3 1 9 9 1 1 9 
2 - - 2 3 2 5 8 3 2 9 8 
3 - - - 3 3 4 8 3 - - 8 
4 - - - - 4 4 - - - - 6 
5 - - - - - 5 - - - - 6 
6 - - - - - - - - - - 6 
7 - - - - - 7 - - - - 7 
8 - - - 8 4 7 8 - - - 7 
9 - - - 8 8 7 9 9 - 9 7 

10 - - - - - 7 10 - - - 7 
11 - - - - - - - - - - - 

Table 9. The ),(
~
11 jif  values obtained by our proposed algorithm. 

i/j 1 2 3 4 5 6 7 
1 - (800,820,840) (350,361,370) (1000,1028,1253) (1080,1109,1140) (650,677,683) (410,430,500) 
2 - - (180,186,193) (830,853,1076) (495,510,525) (1105,1170,1215) (835,871,913) 
3 - - - (650,667,883) (730,748,770) (960,1007,1243) (655,685,720) 
4 - - - - (190,199,210) (310,340,360) - 
5 - - - - - (610,660,690) - 
6 - - - - - - - 
7 - - - - - (390,410,440) - 
8 - - - (710,730,735) (900,929,945) (620,652,695) (230,242,255) 
9 - - - (840,867,880) (1030,1066,1090) (510,540,590) (120,130,150) 

10 - - - - - (720,752,790) (330,342,350) 
11 - - - - - - - 

Table 9. continued. 
 

 
 
 
 
 
 
 
 
 
 

Table 10. The ),(11 jiP  values obtained by our proposed algorithm. 
i/j 1 2 3 4 5 6 7 8 9 10 11 
1 - 1 1 3 3 1 9 9 1 1 9 
2 - - 2 3 2 5 8 3 2 9 8 
3 - - - 3 3 4 8 3 - - 8 
4 - - - - 4 4 - - - - 6 
5 - - - - - 5 - - - - 6 
6 - - - - - - - - - - 6 
7 - - - - - 7 - - - - 7 
8 - - - 8 4 7 8 - - - 7 
9 - - - 8 8 7 9 9 - 9 7 

10 - - - - - 7 10 - - - 7 
11 - - - - - - - - - - - 

i/j 8 9 10 11 
1 (420,437,495) (290,300,350) (420,450,470) (840,882,990) 
2 (605,629,658) (900,930,960) (1130,1172,1220) (1265,1323,1403) 
3 (425,443,465) - - (1085,1137,1210) 
4 - - - (540,582,620) 
5 - - - (840,902,950) 
6 - - - (230,242,260) 
7 - - - (430,452,490) 
8 - - - (660,694,745) 
9 (130,137,145) - (230,242,260) (550,582,640) 
10 - - - (760,794,840) 
11 - - - - 
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Table 11. The arc lengths for Example 3. 

lengths Arc  lengths Arc  lengths Arc  

(8,10,12,13) (1,4) (9,11,13,15) (1,3) (12,13,15,17) (1,2) 
(6,11,11,13) (2,7) (5,10,15,16) (2,6) (7,8,9,10) (1,5) 
(6,10,13,14) (4,11) (17,20,22,24) (4,7) (10,11,16,17) (3,8) 

(10,13,15,17) (5,12) (7,10,13,14) (5,11) (6,9,11,13) (5,8) 
(9,10,12,13) (7,10) (10,11,14,15) (6,10) (6,8,10,11) (6,9) 
(3,5,8,10) (8,13) (5,8,9,10) (8,12) (6,7,8,9) (7,11) 

(15,19,20,21) (10,17) (12,13,16,17) (10,16) (6,7,9,10) (9,16) 
(13,14,16,18) (12,14) (6,9,11,13) (11,17) (8,9,11,13) (11,14) 
(17,18,19,20) (13,19) (10,12,14,15) (13,15) (12,14,15,16) (12,15) 

(5,7,10,12) (15,19) (8,9,11,13) (15,18) (11,12,13,14) (14,21) 
(6,7,8,10) (17,21) (7,10,11,12) (17,20) (9,12,14,16) (16,20) 
(5,7,9,11) (18,23) (3,5,7,9) (18,22) (15,17,18,19) (18,21) 

(12,15,17,18) (21,23) (13,14,16,17) (20,23) (15,16,17,19) (19,22) 
    (4,5,6,8) (22,23) 

 
Table 12. The ),(

~
23 jif  values obtained by our algorithm. 

i/j 1 2 3 4 5 6 7 8 
1 - (12,13,15,17) (9,11,13,15) (8,10,12,13) (7,8,9,10) (17,23,30,33) (18,24,26,30) (13,17,20,23) 
2 - - - - - (5,10,15,16) (6,11,11,13) - 
3 - - - - - - - (10,11,16,17) 
4 - - - - - - (17,20,22,24) - 
5 - - - - - - - (6,9,11,13) 
6 - - - - - - - - 
7 - - - - - - - - 
8 - - - - - - - - 
9 - - - - - - - - 

10 - - - - - - - - 
11 - - - - - - - - 
12 - - - - - - - - 
13 - - - - - - - - 
14 - - - - - - - - 
15 - - - - - - - - 
16 - - - - - - - - 
17 - - - - - - - - 
18 - - - - - - - - 
19 - - - - - - - - 
20 - - - - - - - - 
21 - - - - - - - - 
22 - - - - - - - - 
23 - - - - - - - - 

Table 12. continued. 
i/j 9 10 11 12 13 14 15 
1 (23,31,40,44) (27,34,38,43) (14,18,22,24) (17,21,24,27) (16,22,28,33) (22,27,33,37) (29,35,39,43) 
2 (11,18,25,27) (15,21,23,26) (12,18,19,22) - - (20,27,30,35) - 
3 - - - (15,19,25,27) (13,16,24,27) (28,33,41,45) (23,28,38,42) 
4 - (26,30,34,37) (6,10,13,14) - - (14,19,24,27) - 
5 - - (7,10,13,14) (10,13,15,17) (9,14,19,23) (15,19,24,27) (22,27,30,33) 
6 (6,8,10,11) (10,11,14,15) - - - - - 
7 - (9,10,12,13) (6,7,8,9) - - (14,16,19,22) - 
8 - - - (5,8,9,10) (3,5,8,10) (18,22,25,28) (13,17,22,25) 
9 - - - - - - - 

10 - - - - - - - 
11 - - - - - (8,9,11,13) - 
12 - - - - - (13,14,16,18) (12,14,15,16) 
13 - - - - - - (10,12,14,15) 
14 - - - - - - - 
15 - - - - - - - 
16 - - - - - - - 
17 - - - - - - - 
18 - - - - - - - 
19 - - - - - - - 
20 - - - - - - - 
21 - - - - - - - 
22 - - - - - - - 
23 - - - - - - - 
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Table 12. continued. 

i/j 16 17 18 19 20 21 22 23 

1 (29,38,49,54) (20,27,33,37) (37,44,50,56) (33,40,47,53) (27,37,44,49) (26,34,41,47) (40,49,57,65) (38,49,58,65) 
2 (17,25,34,37) (18,27,30,35) - - (25,37,41,47) (24,34,38,45) - (36,49,55,63) 
3 - - (31,37,49,55) (30,34,43,47) - (39,45,54,59) (34,42,56,64) (36,44,58,66) 
4 (38,43,50,54) (12,19,24,27) - - (19,29,35,39) (18,26,32,37) - (30,41,49,55) 
5 - (13,19,24,27) (30,36,41,46) (26,32,38,43) (20,29,35,39) (19,26,32,37) (33,41,48,55) (31,41,49,55) 
6 (12,15,19,21) (25,30,34,36) - - (21,27,33,37) (31,37,42,46) - (34,41,49,54) 
7 (21,23,28,30) (12,16,19,22) - - (19,26,30,34) (18,23,27,32) - (30,38,44,50) 
8 - - (21,26,33,38) (20,23,27,30) - (29,34,38,42) (24,31,40,47) (26,33,42,49) 
9 (6,7,9,10) - - - (15,19,23,26) - - (28,33,39,43) 
10 (12,13,16,17) (15,19,20,21) - - (21,25,30,33) (21,26,28,31) - (34,39,46,50) 
11 - (6,9,11,13) - - (13,19,22,25) (12,16,19,23) - (24,31,36,41) 
12 - - (20,23,26,29) (17,21,25,28) - (24,26,29,32) (23,28,33,38) (25,30,35,40) 
13 - - (18,21,25,28) (17,18,19,20) - (33,38,43,47) (21,26,32,37) (23,28,34,39) 
14 - - - - - (11,12,13,14) - (23,27,30,32) 
15 - - (8,9,11,13) (5,7,10,12) - (23,26,29,32) (11,14,18,22) (13,16,20,24) 
16 - - - - (9,12,14,16) - - (22,26,30,33) 
17 - - - - (7,10,11,12) (6,7,8,10) - (18,22,25,28) 
18 - - - - - (15,17,18,19) (3,5,7,9) (5,7,9,11) 
19 - - - - - - (15,16,17,19) (19,21,23,27) 
20 - - - - - - - (13,14,16,17) 
21 - - - - - - - (12,15,17,18) 
22 - - - - - - - (4,5,6,8) 
23 - - - - - - - - 

 

Table 13. The ),(23 jiP  values obtained by our algorithm. 

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1 - 1 1 1 1 2 2 5 6 7 5 5 8 11 12 9 11 15 13 17 17 18 21 

2 - - - - - 2 2 - 6 7 7 - - 11 - 9 11 - - 17 17 - 21 

3 - - - - - - - 3 - - - 8 8 12 13 - - 15 13 - 14 18 18 

4 - - - - - - 4 - - 7 4 - - 11 - 10 11 - - 17 17 - 21 

5 - - - - - - - 5 - - 5 5 8 11 12 - 11 15 13 17 17 18 21 

6 - - - - - - - - 6 6 - - - - - 9 10 - - 16 17 - 20 

7 - - - - - - - - - 7 7 - - 11 - 10 11 - - 17 17 - 21 

8 - - - - - - - - - - - 8 8 12 13 - - 15 13 - 14 18 18 

9 - - - - - - - - - - - - - - - 9 - - - 16 - - 20 

10 - - - - - - - - - - - - - - - 10 10 - - 16 17 - 20 

11 - - - - - - - - - - - - - 11 - - 11 - - 17 17 - 21 

12 - - - - - - - - - - - - - 12 12 - - 15 15 - 14 18 18 

13 - - - - - - - - - - - - - - 13 - - 15 13 - 18 18 18 

14 - - - - - - - - - - - - - - - - - - - - 14 - 21 

15 - - - - - - - - - - - - - - - - - 15 15 - 18 18 18 

16 - - - - - - - - - - - - - - - - - - - 16 - - 20 

17 - - - - - - - - - - - - - - - - - - - 17 17 - 21 

18 - - - - - - - - - - - - - - - - - - - - 18 18 18 

19 - - - - - - - - - - - - - - - - - - - - - 19 22 

20 - - - - - - - - - - - - - - - - - - - - - - 20 

21 - - - - - - - - - - - - - - - - - - - - - - 21 

22 - - - - - - - - - - - - - - - - - - - - - - 22 

23 - - - - - - - - - - - - - - - - - - - - - - - 
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Figure 6. The telecommunication network proposed for 
Example 3. 
 

 
Figure 7. A small sized network having various fuzzy arc 
lengths. 

Table 14. The ),(~
0 jif matrix for k=0. 

i/j 1 2 3 4 
1 - (2,3,4,5) (4,8,12,16) 2 
2 - - (4,1) (15,4) 
3 - - - (5,1) 
4 - - - - 

Therefore, with ijiPk =),( , we have Table 15. 
Step 2: Here, we consider k=1 and compute the value 

of [ ]),(),(),,(min),( 111 jkfkifjifjif kkkk −−− += . The 
result is shown in Table 16. 

Therefore, for ijiPk =),( , we have Table 17. 

Table 15. The ),(0 jiP  matrix for k=0. 
i/j 1 2 3 4 
1 - 1 1 - 
2 - - 2 2 
3 - - - 3 
4 - - - - 

Table 16. The ),(
~
1 jif  matrix for k=1. 

i/j 1 2 3 4 
1 - (2,3,4,5) (4,8,12,16) - 
2 - - (4,1) (15,4) 
3 - - - (5,1) 
4 - - - - 

Table 17. The ),(1 jiP  matrix for k=1. 

i/j 1 2 3 4 
1 - 1 1 - 
2 - - 2 2 
3 - - - 3 
4 - - - - 

If node k is not on the shortest path using { }k...,,2,1  as 
intermediate nodes, then we consider ),(),( 1 jiPjiP kk −= , 
otherwise we let ),(),( 1 kiPjiP kk −= . We now report the 
results obtained for other values of k in Tables 18-23. Note 
that, the sets Vi and Wi are the points obtained by α -cut 
additions, where the V and W values are obtained by the 

iα -cuts considering n=10. It includes 10 points for the 
−

i
aα  and 10 points for the +

i
aα

: 

V1={(4.58257,10.4174), (4.93136,10.0686), 
(5.20274,9.79726), (5.44277,9.55723), 
(5.66745,9.33255), (5.88528,9.11472), 
(6.10278,8.89722), (6.32762,8.67238), 
(6.57541,8.42459), (7,8)} 

W1={(11.0303,25.9697), (12.1255,24.8745), 
(12.911,24.089), (13.5711,23.4289), 
(14.1698,22.8302), (14.7411,22.2589), 
(15.3111,21.6889), (15.9105,21.0895), 
(16.6016,20.3984), (18,19)} 

V2={(4.58257,10.4174),(4.93136,10.0686), 
(5.20274,9.79726), (5.44277,9.55723), 
(5.66745,9.33255), (5.88528,9.11472), 
(6.10278,8.89722), (6.32762,8.67238), 
(6.57541,8.42459), (7,8)} 

W2={(8.06515,16.9349), (8.66273,16.3373), 
(9.10549,15.8945), (9.48554,15.5145), 
(9.83489,15.1651), (10.1706,14.8294), 
(10.5056,14.4944), (10.8552,14.1448),  
(11.2508,13.7492), (12,13)} 

Table 18. The ),(
~
2 jif  matrix for k= 2. 

i/j 1 2 3 4 
1 - (2,3,4,5) V1 W1 
2 - - (4,1) (15,4) 
3 - - - (5,1) 
4 - - - - 

Table 19. The ),(2 jiP  matrix for k= 2. 
i/j 1 2 3 4 
1 - 1 2 2 
2 - - 2 2 
3 - - - 3 
4 - - - - 

Table 20. The ),(
~
3 jif  matrix for k= 3 

i/j 1 2 3 4 
1 - (2,3,4,5) V2 W2 
2 - - (4,1) (9,2) 
3 - - - (5,1) 
4 - - - - 

 
Table 21. The ),(3 jiP  matrix for k= 3. 

i/j 1 2 3 4 
1 - 1 2 3 
2 - - 2 3 
3 - - - 3 
4 - - - - 
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Table 22. The ),(
~
4 jif  matrix for k= 4. 

i/j 1 2 3 4 
1 - (2,3,4,5) V3 W3 
2 - - (4,1) (9,2) 
3 - - - (5,1) 
4 - - - - 

 
Table 23. The ),(4 jiP  matrix for k= 4. 

i/j 1 2 3 4 
1 - 1 2 3 
2 - - 2 3 
3 - - - 3 
4 - - - - 

 
V3={(4.58257,10.4174), (4.93136,10.0686), 

(5.20274,9.79726), (5.44277,9.55723), 
(5.66745,9.33255), (5.88528,9.11472), 
(6.10278,8.89722), (6.32762,8.67238), 
(6.57541,8.42459), (7,8)} 

W3={(8.06515,16.9349), (8.66273,16.3373), 
(9.10549,15.8945), (9.48554,15.5145), 
(9.83489,15.1651), (10.1706,14.8294), 
(10.5056,14.4944), (10.8552,14.1448), 
(11.2508,13.7492), (12,13)} 

Finally, when Nk = , we identify the shortest path as 
follows: 

Shortest path from 1 to 4: 1-2-3-4. 
Shortest path length from 1 to 4:  
(8.06515,16.9349),(8.66273,16.3373),(9.10549,15.894

5),(9.48554,15.5145),(9.83489,15.1651),(10.1706,14.829
4),(10.5056,14.4944),(10.8552,14.1448),(11.2508,13.749
2),(12,13) 

 
6. Conclusions  

We presented a novel approach for computing a shortest 
path in a mixed network having various fuzzy arc lengths. 
First, we developed a new technique for the addition of 
various fuzzy numbers in a path using α -cuts. Then, 
we applied a dynamic programming method for finding a 
shortest path in the network, using a recently proposed 
distance function to compare fuzzy numbers in the pro-
posed algorithm. Four comparative examples were 
worked out to illustrate the applicability of our proposed 
approach as compared to two other methods in the lit-
erature as well as demonstrate the additional novel fea-
ture offered by our algorithm to find a fuzzy shortest 
path in mixed fuzzy networks having various settings for 
the fuzzy arc lengths. 
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