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Abstract 

The average consensus in undirected networks of multi-agent with both fixed and switching topology cou-
pling multiple time-varying delays is studied. By using orthogonal transformation techniques, the original 
system can be turned into a reduced dimensional system and then LMI-based method can be applied con-
veniently. Convergence analysis is conducted by constructing Lyapunov-Krasovskii function. Sufficient con-
ditions on average consensus problem with multiple time-varying delays in undirected networks are obtained 
via linear matrix inequality (LMI) techniques. In particular, the maximal admissible upper bound of 
time-varying delays can be easily obtained by solving several simple and feasible LMIs. Finally, simulation 
examples are given to demonstrate the effectiveness of the theoretical results. 
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1. Introduction 

Recently, more and more researchers have paid a great 
deal of attention on distributed coordinated control of 
networks of dynamic agents within the control com-
munity. Especially the consensus problem was dis-
cussed widely, which can be attributed to the broad 
applications of multi-agent systems in many areas, 
including cooperative control of unmanned air vehicles, 
formation control of multi-robot, flocking, swarming, 
distribution sensor fusion, attitude alignment and con-
gestion control in communication networks, etc. In 
cooperative control of multi-agent system, a critical 
issue is to design appropriate protocol and algorithms 
such that all agents can reach a common consensus 
value. This problem is called consensus problem. 

In the past decades, some theoretical results have 
been established in [1–11], to name a few. In [1], 
Vicsek et al. proposed a simple model but interesting 
discrete-time model of autonomous agents all moving 
in the plane with the same speed but with different 
headings. Simulation results provided in [1] show that 
all agents can eventually move in the same direction 
without centralized coordination. The first paper pro-
viding a theoretical explanation for these observed be-
haviors in Vicsek model is [2]. The theoretical results 

in [2] are extended to the case of directed graph by Ren 
et al. [3], in which matrix analysis and algebraic graph 
theory were used. Moreau [4] used a set-valued 
Lyapunov approach to study consensus problem with 
unidirectional time-dependent communication links. 
Saber et al. [5] discussed average consensus problem. 
When network communication is affected by time de-
lay, the consensus problem is investigated in [5–7]. In 
[8], Saber provided a theoretical framework for analy-
sis of consensus algorithms for multi-agent networked 
systems with an emphasis on the role of directed in-
formation flow, robustness to changes in network to-
pology due to link/node failures, time-delays, and per-
formance guarantees. Ren et al. provided a tutorial 
overview of information consensus in multivehicle 
cooperative control in [9]. Yu et al. [10] proposed 
weighted average consensus in direction networks and 
unidirectional networks with time-delay. Multi-vehicle 
consensus with time-varying reference state was dis-
cussed in [11]. Some other issues on consensus prob-
lem can be found in [12–16]. 

Currently, consensus problem for multi-agent net-
works with time delay was studied using linear matrix 
inequality method, for example [17–19] and [20]. In 
time delay systems of multi-agent, the network topol-
ogy of multi-agent is a key factor in the analysis of 
stability of multi-agent system. Average consensus 
problem for multi-agent networks with both constant Identify applicable sponsor/s here. (sponsors) 
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and time-varying delay has been extensively consid-
ered for the cases of multi-agent undirected and/or di-
rection networks with fixed and/or switching topology 
[17,18] and [19]. However, the studies on consensus 
problem of multi-agent networks with multiple time- 
varying delays are still sparse. In this case, theoretical 
analysis is more challenging. In [20], the authors pro-
posed a consensus protocol for multi-agent undirected 
network with multiple time-varying delays based on 
LMI method.  

In this paper, we study the average consensus prob-
lem for continuous time undirected networks of multi- 
agent, coupling multiple time-varying delays. Because 
the closed-loop system matrix is singular and tradi-
tional LMI-based control theory is invalid. Therefore, 
theoretical analysis for this case is a challenging task. 
By using orthogonal transformation techniques, suffi-
cient conditions based on LMI for multi-agent achiev-
ing average consensus is obtained. Compared to [20], a 
different approach is used in this paper. First of all, the 
original system is turned into a reduced dimensional 
system by orthogonal transformation; Secondly, via 
constructing a different Lyapunov-Krasovskii function, 
a sufficient condition expressed as LMI is proposed to 
guarantee all agents reach average consensus in fixed 
and switching network. Finally, the maximal admissi-
ble upper bound of multiple time-varying delays can be 
easily obtained by solving several simple and feasible 
LMIs. 

This paper is organized as follows. Section 2 is the 
notation and formally states the problem. Section 3 
contains our main results. Simulation results are pre-
sented in Section 4. The concluding remarks are made 
in Section 5.  

2. Problem Statement and Preliminaries 

In this section, we provide a brief introduction about 
algebraic graph theory [24] and state the problem. 

2.1. Algebraic Graph Theory 

Let  be a weighted undirected graph of or-

der , where is the set of 

nodes, is the set of edges, and 

 is a weighted adjacency matrix. The 

node indexes belong to a finite index set 

 , ,G V E A

 2n n 
E V

n n
ijA a    

 1 2 3, , , nV v v v v 
V 

1, 2, ,I n  . 

In undirected graph, .  if and only if 

. Moreover, we assume  for all i
ij jie e ije E

0ij 0ija  a I . A 

undirected graph is always connected. The set of 
neighbors of nodes  is denoted by  iv

  : ,i j i jN v V v v E   . 

The out-degree of node  is defined as follows: iv

1

deg ( )
n

out i ij
i

v a


  . The degree matrix of graph  is a 

diagonal matrix 

G

ijD d    , where  for all 0ijd  i j  

and deg (ii out id )v . The Laplacian matrix associated 

with the graph is defined as 

1,

,    ,

   ,      .

n

ij
j j iij

ij

a j i
L l D A

a j

 

       
  


i

ar

 

An important fact of L is that all the row sums of L  

e zero and thus  1n

 

1,1, ,1
T n   is an eigenvector 

of L  associated with the eigenvalue 0  .  
Lemma 1 [5]. If the undirected graph G  is con-

nected, then its Laplacian matrix  satisfies:  L
1)  is symmetric and rank ( ) ; L 1L n 

2) zero is one eigenvalue of , and  and  are 

the corresponding left and right eigenvector respectively, 
then, 

L 1 T
n 1n

1 0T
n L   and 1 0nL  ;  

3) the rest 1n   eigenvalues are all positive and real.  

2.2. Consensus Problem on Network 

Consider a group of  agents with dynamics given by n

  ( )i ix t u t ,             (1) i I

where n
ix  is the state of the th agent at time , 

which might represent physical quantities such as atti-
tude, position, temperature, voltage, and so on, and 

i t

( )iu t   is the control input (or protocol) at time .  t
We say protocol  asymptotically solves the con-

sensus problem, if and only if the states of agents satisfy 
iu

lim ( ) ( ) 0x t x t
i jt

 


 , for all ,i Furthermore, if  j I .

 
1

1
lim ( ) 0 ( (0))

n

i it
i

x t x Ave x
n



  , 

We say protocol asymptotically solves the aver-

ag

2.3. Control Protocol for Time Delay 

Let 

 iu  

e consensus problem.  

ij notes the time delay for information communi-

s

cated from agent j to agent i . Because of time delay, two 

difficult consensu  protocols have been studied. One is  

[ ( ( )) ( ( ))]u a x t t x t t    
j i

i ij j ij i ij
v N
 , i I    (2)  

and the other is  
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t i I .     (3)  

Literature [5] have taken the protocol in (2) 
w

[ ( ( )) ( )]
j i

ij j ij i
v N

a x t t x


  , iu   In the undirected network with switching topology, we 
ad

ith ij   into account, and obtained that it can as-

ymptotically solves the average consensus problem in the 
fixed and undirected network topology if and only if 

 max0, 2 L      . Some conclusions also were inves-

For consensus pr
tigated in [16-18].  

otocol in (3), communication delay 
on

er, we are interested in discussing the aver-

ly affects the agents who are transmitted. Literature [4] 
has established the consensus results in the directed and 
dynamically switching graph. Some results also appeared 
in [21–23].  

In this pap
age consensus problem in network of dynamic agents 
with fixed and switching topology coupling multiple 
time-varying delays, where the information passes 
through different edge with different time-varying delays. 
To solve such a problem, we assume the time delay sat-
isfies ij ji   in undirected graph, i.e., the delays in 

transm rom iission f x  to jx  and jx  to ix  coincide. 

So we use the follow g pro col:  

[ ( ( )) (u a x t t x t   
in to

( ))]
j i

i ij j k i k
v N

t


, i I   (4) 

With (4), (1) can be written in matrix form: 

k  ))
N

1

( (i k
k

x t L x t


   t ,           (5) 

where         1 2( ) , , , , 1 2
T

nx t x t x t x t N n n    , 

is the matrix defined by 

t

and L



k kijl     

1

       ,  ( ) ( ),

0           ,  ( ) ( ),

    .

ij k ij

kij k ij

N

ij
j

a i j t t

l i j t

a i j

 

 



    

 



 

Because of A is symmetric and ij ji 
is a sy

in the undi-

re

The tim ing dela

cted network we can obtain kL  mmetric and 
N

L L . 

e-vary

, 

1
k

k 

y ( )k t , 1,2, ,k N  is assumed 

to tion   satisfy the follow inequa s: 

0 ( ) ,k kt d  ( ) 1,k kt h h    1,2, ,k N      (6) 

where  and  are constants.  and kd
bou

kh

kd

d h  are the 

upper nd of  and 
kh , nam ly,e  ax kd d , 

 max kh h . 
1
m
 k N

1 k N 

dress the follow hybrid system:  

  ( ( ))
N

ks k
1k

x t L x t t   , 


( )s t I   .     (7) 

where the map M is a ( ) : [0, ) 1,2, ,t I    
at determines the network toposwitching signal th logy, 

and M  denotes the total number of all possible 

switc directed graphs. ( )
N

ks s sL L G is the 

Laplacian matrix of the graph 

hing un
1k

, ,s s s sV E A that bG elongs 

to a set  :kG k I   , which finite.  

Lemm mplement [25]). Let 11S , 

 is obviously 

a 2 (Schur co 12S , 

022  be given symmetric matrices such that 22 , 

 11 12 0
S S 

S

then

S

12 22
TS S

   1 0TS S S S

 
11 12 22 12  

Le n

. 

nL 
s an orth

mma 3. For any Laplacian matrix  of un-
directed connected network, there exist ogonal 
matrix W such that  

  

 

1 1

1 1

0

0 0

n

n

L  

 


TW LW  

  
 

where the last column of matrix is W 1n n  , 
( 1) ( 1)n nL    .  

use Proof: Beca and are the corresponding left 

an tor respec

rovide the convergence analysis of 

 is 

1 T
n 1n  

d right eigenvec tively. The proof of this 
lemma is straightforward. 

3. Main Results 

In this section, we p
the average consensus problem in undirected network 
with fixed and switching topology coupling multiple 
time-varying delays. Sufficient conditions expressed as 
LMI are presented for undirected networks of multi- 
agent with fixed and switching topology, respectively.  

3.1. Networks with Fixed Topology  

If the fixed communication topology  , ,G V E A

nd 1 0k nLkept connected, we have 1 0T
n kL  , a  , 

which imply 0
n n

i ix u
1 1i i 

   Ave. Then, ( (0))x   

an invariant we have t sed 

equation ( ) 1 ( )n

 is

quantity. Thus he decompo

x t t   , where  1 2 3, , ,
T

n       
n , sat  ii

tisfies 0 , i.e., s 1 0T   . Then (5) i

equivalent to  
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By Lemma 3, we have 
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. Then 
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k
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
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N
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 1 10 0
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k
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 

 
 
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Lemma 4. If  li
t

m 0t  , then  lim 0
t

t


 .  

 Proof: From     ,0 TT TW t t    
T

  . Therefore, when 

, we e hav
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, t 
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t
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In the following secti he conver-
dynamical sy .  

u e 
tim

on, we will discuss t
gence of stem (9), that is  lim 0

t
t


 

Theorem 1. Consider an undirected network of 
multi-agent with fixed topology coupling m ltipl

e-varying delays satisfies (6). Assume the communi-
cation topology G  is kept connected. Then, system (5) 
asymptotically solves the average consensus problem, if 
there exist positive definite matrices , ,k kP Q R   

   1 1n n   , satisfying  

1

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N
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
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Proof: Define a Lyapunov-Krasovskii fun n for 
system (9) as follows: 
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N
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
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0
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k
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


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
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where  andP , kQ    1 1n n
kR     are positive definite 

matrix. Along the trajectory of system (9), we have 

1
1

) 2 ( ( ))k k
k
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

   , ( ( )
N
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2
1
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N

T
k

k
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

    
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1
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N

T
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k
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
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(1 ) ( ( )) ( ( ))}T
k k k kh t t Q t t       , 

3
1
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k

V t d t t L R L t t 


      

( ) ( ) }
k

t T
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s R s ds


     . 

By Newton-Leibniz formula 

s
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( ( )) ( ) )
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t

k t t
t t t s d





        (

d note that 12 T T Tx y x F x  y Fy  

definite matrix F , we

hold for any ap-

propriate positive  have: 

1

( ))
k

t
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 2 ( ) (
N

T
k kt PL t    

( )
1

{ 2 ( ) ( ) 2[ ( )] ( ) }
k

N tT T T
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k
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          T

1

1
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N
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k
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

T      

( )
( ) ( ) }.
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s R s ds


      

Consequently, 

1

1k

( ) { 2 ( ) ( ) ( ) ( )
N

T T T T
k k k k kV t t PL t d t PL R L P t      

( ( )) ( ( )) ( ) ( )T T
k k k k k k kd t R L t t t Q tT t L        
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k k k kh t t Q t t        

 1

1

{ ( ) ( )
N

T T T
k k k k k k k

k

t PL L P Q d PL R L P t



      
( ( ))( (1 ) ) ( ( ))}.T T

k k k k k k k kt t d L R L h Q t t        

Then, a sufficient condition for  is ( ) 0V t 
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As a result, the matrix inequalities (11) hold, if and
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 
 

            (14)  

where is defined in (10).   
Therefore, from Lemma 4, average consensus can be 

achieved if the matrix inequality (6) holds. This com-
he 

witching communication topology 
following 

disagreement switching system:  

1  

pletes t proof. 

3.2. Networks with Switching Topology 

Considering the s
( )sG s I with system (7), we can obtain the 

 
1

( ( )),  ( )
N

ks k
k

L t t s t I  


     ,       (15) 

where 

t 

ksL  satisfies 

 

 

1 1

1 1

0

0 0

ks nT
ks

n

L
W L W

 

 

 
 
  

. 

Theorem 2. Consider a undirected network of 
multi-agent with switching topology coupling multiple 
time-varying delays satisfies (6). Assume the communi-
ca

 

tion topology ( )sG s I  is kept connected. Then, 

system (7) asymptotically solves the average consensus 
problem, if there exist positive definite matrices 

   1, , n
k kP Q R   ing 1n , satisfy

1 ( 1) ( 1)
1

0
N

ks n n
k

PL

R

  


  

( 1)
1 1

( 1) ( 1) ( 1) ( 1) 2

0 0

0 0

N N
T k

ks n n
k k k

n n n n

L P
d  

 

     

 
 

  
 
 
 
 

  ,    (16) 

where  1
1

N
T

ks ks k
k

PL L P Q


     ,  

 2 1 1 1 1 1 1[ ( ) 1 ,T
s sdiag t L R L h Q    ,  

 ( ) 1 ].T
N Ns N Ns N Nt L R L h Q    

Proof: The proof of theorem 2 is similar to that of 
theorem 1, so it is omitted here.  

ark: When Rem 1h   
can obtai

1 3( )t V

of the condition (6) is replaced 
with , we n corresponding results if 
choosi

1h 
ng ( ) ( )V t V t  . 

4.

n. Con
 1 shows four examples of undirected graph, 

which are all connected, and the corresponding adja-
e limited to 0-1 matrices. Let the or-

 is 



 Simulation 

In ulatthis section, sim ion examples will be given to 
validate the theoretical results obtained in the previous 
sectio sider a group of 10 agents labeled 1 through 
10. Figure

cency matrices ar
thogonal matrix W

0.0275 0.0303 0.3594 0.1500 0.4082

0.0275 0.0303 0.3594 0.1500 0.4082

0.0275 0.0303 0.3594 0.1500 0.8165

0.0594 0.0294 0.3782 0.1390 0.0000

0.0594 0.0294

  
  
  
  
   










0.2404 0.1390 0.0000

0.1323 0.5742 0.2482 0.5742 0.0000   
0.4914 0.6506 0.2653 0.2557 0.0000

0.8162 0.3793 0.2234 0.1447 0.0000

0.2559 0.3149 0.4793 0.6714 0.0000

0.0000 0.0000 0.0000 0.1615 0.0000


   
  
    
   

 

0.7071 0.0809 0.1749 0.2062 0.3162

0.7071 0.0809 0.1749 0.2062 0.3162

0.0000 0.0809 0.1749 0.2062 0.3162

0.0000 0.1310 0.6023 0.5946 0.3162

0.0000 0.1310 0.6694 0.5946 0.3162

0.0000 0.2061 0.1207 0.3231 0.3162

0.0000

 
 
 
 
 
  


10 10

.

0.1511 0.1290 0.2450 0.3162

0.0000 0.0820 0.1087 0.0230 0.3162

0.0000 0.0090 0.0206 0.0206 0.3162

0.0000 0.9348 0.0000 0.0000 0.3162











 


   
   
   

where the last column of matrix W  is 1 10n . For 

simplicity, we assume 1N   in undirected networks of 
multi-agent with both fixed and switching topology. 
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4.1. Examples of Networks with Fixed Topology 

Consider an undirected network with fixed topology 
in Figure 1. Employing Theorem 1, we have: 

1) for , i.e., 
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 time(s) 

 e
rr

or
 o

f s
ys
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m

 

 Time−Delay=0.17 |cos 0.51234t| 

1G  

1 0h  1 1d  , . Figure 2 
shows the corresponding error system converges zero 
asymptotically. 

2) for Figure 3 shows the corre-
sponding error system converges zero asymptotically. 

1 0.25d 

1 0.5h  , 1 0.17d  . 

G1

21 3 4 5

678910

G2

G3

G4

21 3 4 5

678910

21 3 4 5

678910

21 3 4 5

678910

 
Figure 1. Examples of connected undirected graph. 
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Figure 2. Error system with fixed topology and cons nta t 
time-delay 1 0.25d s  with 1 0h   converges to zero as-
ymptotically. 

 

Figure 3. E tem wit ed topology and time- 
varying delay

rror sys h fix
 

1( ) 0.17 cos0.51234t t s 1 0.5h   with   

converges to zero asymptotically. 

4.2. Examples of Networks with Switching  
Topology 

A finite automation with set of states  , ,G G G  is 

shown in Figure 4, which represents the of 
a network with switching topology an  
hybrid system. It starts at the disc  and 

switches every simulation time step to t
cording to the state machine in Figure 
system with time-varying communication ti we 
take the derivative of delay 1 0.5h  . Fr  2, 

the feasible maximum  is 

2 3 4

discrete states 
d time delay as a

rete state 2G

he next state ac-
4. For multi-agent 

me delay, 
om theorem

of the system delay bound 

1 0.12d s . And the corresponding feasible solution P , 

e obtained by employing1Q and 1R  can b  the LM  
box in Matlab.  

Assume the time-varying dela

I To

e error system

ol

 isy of th  

1( ) 0.12 cos 0.51234t t s  . Figure 5 shows the corre-

spon stem converges zero asymptotically. ding error sy

G2

G3G4

t=0

 

F ure 4. A finite automation with three states. ig
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 Time−Delay=0.12 |cos 0.51234t| 

 
Figure 5. Error system with switching topology and time-
varying delay 

 

1( ) 0.12 cos0.51234t t   s converges to z

asymptotically. 

5. Conclusions 

This paper addresses an average consensus problem of
multiagent systems. Undirected networks with fixed
switching network topology coupling multiple tim
varying communication delays are considered in this
paper. An orthogonal matrix is introduced and the origi-
nal system is turned into a reduced dimensional sy
At the same time, a Lyapunov-Krasovskii function is
constructed in the stable analysis. Sufficient conditions
in terms of LMI are given to guarantee the system reach 
average consensus. Moreover, numerical simulation
amples are shown to verify the theoretical analysis.  
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