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m is to consider square function of the type (Zil

ally, define the following oscillation operator:

is nature to study the speed of convergence of the family {TE} . A classic method

2\¥2
f| ) , more gener-

T, f-T

&+l

12

o(ﬁ)(x):(i sup Tgiﬂf(x)—TEif(x)r),

i=1 i <61 <& <y

where {ti} is a fixed sequence decreasing to zero. Let p>2.The p -variation

operator is defined by

w » 1p
V(1)) =s0p ST (0T, F ) |

gN\0\i=1

where the sup is taken over all sequence {ei} of positive numbers decreasing to
zero. The variation inequalities play important roles in probability, ergodic
theory, and harmonic analysis. We refer the readers to [1]-[6] and the references

therein for more background information. Gillespie and Torrea [7] show that

DOI: 10.4236/apm.2021.1112063 Dec. 30, 2021 978 Advances in Pure Mathematics


https://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2021.1112063
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/apm.2021.1112063
http://creativecommons.org/licenses/by/4.0/

T.T. Juan, X. M. Hou

oscillation and variation of Hilbert transforms are bounded on L° (a)) for
1< p <. The weighted oscillation and variation boundedness of differential
operators and Calder6n-Zygmund singular integral are established in [8] [9]. This
paper is devoted to studying weighted boundedness of p -variational operator for
the families of commutator generated by one-sided Calderén-Zygmund singular
integral with Lipschitz functions. Recently, Liu and Wu [10] presented a crite-
rion on the weighted estimate of the oscillation and variation operators for the
commutators of Calderén-Zygmund singular integrals with BMO functions in
one dimension. Variation inequalities for the commutators one-sided singular
integrals with BMO functions were established in [11]. Zhang and Wu [12] gave
the oscillation and variation inequalities for the commutators of singular inte-
grals with Lipschitz functions.

Before stating our main results, we firstly recall some notations and defini-
tions. In [13], Aimar, Forzani and Martin-Reyes introduced the one-sided Cal-
der6n-Zygmund singular integrals defined by:

T f(x)=lim T;f(x)=£ILrB mK(x—y)f(y)dy (1.1)

£—>0"

and

T f(x)=limT, f(x)= lim X_“"K(x—y)f(y)dy,

£—0" £—0" 7®

where the kernel K is called the one-sided Calderén-Zygmund kernel (OCZK)

which satisfies

ja<‘x‘<b|<(x)dx <C, O<ax<hb, (1.2)
[K(x)|<C/]x|, x=0, (1.3)
[K(x=y)=K(x[<Cly|/pf'. [4>2]y|>0 (14

with supportin R™ = (—oo,O) or R = (0, +oo) , where (1.4) is named H6rmand-
er’s condition. Equation (1.3) is also called the size condition for K. An interest-
ing example is

- sin(log|x|)
X)= Wl(_w,o) (%),

where . denotes the characteristic function of a set E, for more details one
can refer to [13].
For O0<a <1,afunction f e Lip,, ifit satisfies

f(x+h)—f(x
], = sup M=)

x.heR,h=0 |h|“

< oo,

Let K be one-sided Calderén-Zygmund kernel (OCZK) with support in
R™ =(-,0). beLip,,we define the following one-sided operator

T, f ()= im T, (x),

where
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T f(x)= ], (b()-b(y))K (x=y) T (y)dy. (L5)

In this paper, we study variational inequalities for the commutators of
one-sided singular integrals with Lipschitz functions. Our result can be formu-
lated as follows:

Theorem 1.1. Let K be one-sided Calderon-Zygmund kernel (OCZK) with
support in R™ =(—0,0). Let 7, = {beg}bo and T = {T;}DO be given as in
(1.5) and (1.1), respectively. The operator V), (’T*) is bounded in L™ (R, dXx)
for some P, e(l,0). Let 0<a <1, belip,. Then, for all ®e A" (p,q),

l1<p<q<w, Yp-1Yq=a, we have
v (1)1

Lq(wq) S ”b"Lipa f”l_p(wp)'

The rest of this paper is organized as follows. In Section 2, we introduce and
recall some basic facts and auxiliary lemmas. The proof of main theorem will be
given in Sections 3.

Throughout this paper, the letter C, sometimes with additional parameters,
will stand for positive constants, not necessarily the same one at each occurrence,

but independent of the essential variables. We also denote f <g if f <Cg.

2. Preliminaries

In 1986, Sawyer [14] first introduced the one-sided Muckenhoupt weights A]

and A to treat the one-sided Hardy-Littlewood maximal operators
n 1 ex+ _ 1 cx
M f(x):=sup—J'X h|f(y)|dy, M~ f (x):=sup— |f(y)|dy.

h>0 h hs0 h<x-h

A positive function @ is said to belongto A; or A if it satisfies

A ()= asigc(c AL J':w(x)dx(.[:w(x)l*P' dx)"*1 < oo
A, (@)= su J.:a)(x)dx(j:w(x)l’p' dx)p_1 <o,

when 1< p<oo;also, for p=1,
A :Mw<Co A :Mw<Co,

for some constant C. If 1< p<o, then A G A’ and A G A . Notice that
the function @(X)=¢€" mentioned above is in A, butnotin A .
Similarly, the double weight classes A" ( p, q) and A ( P, q) are denoted by

A ( p,q):;(j:a)q )]/q (J';afp')l/p’ <C,

(C _ a)l—a

A ( p,q):ﬁ(ﬁwq )Vq (J-:w,pf)l/p' —c

forall a<b<ceR, O<a<l, 1<p<q and 1/p-1/q=a; also for p=1,
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1-1/9=a,
A(Lg) M@ S, A(LQ) :M*e" S o,

The one-sided A] classes not only control the boundedness of one-sided
Hardy-Littlewood maximal operators, but also serve as the right weight classes
for one-sided singular integral operators. Set 1< p <o and let K'be an OCZK
with supportin R™.Then T* isboundedon L"(@) if we A, see[13].

Lemma 2.1. [15] Suppose that @< A, then there exists & >0 such that,
forall 1<r<l+eg, o' €A .

Lemma 2.2. [16] Suppose we A" (p,q), then o€ A and " €A, for
all 1<p<q<omo.

Lemma 2.3. [17] Let 1< p, < and let T be sublinear operator defined in
CS(R) satistying

et], <C[te],

forevery XeR and a)eA+(p0,00);then, forevery 1< p<p,,
Yp-1q=1p,,and weA"(p,q), the inequality
|oTt], <C]f o,

Lemma 2.4. [18] For every p with p, < p <, assume that ® € A, and that
M*f el™(w) forsome p, with 0< p, <. Then

et <clme1]

|Lp LP(w) '

where

+ 1 (x+h 1 x+2n -
M**f (x)=sup= (f(y)—FL+h f(z)dz) dy

hso hJx

and 7" =max{z,0}.

3. The Proof of Theorem 1.1

According to [7], we denote by F, the mixed norm Banach space of two varia-
ble functions /4 defined on Nx® such that

||h||Fp :sgp[2|h(i,ﬂ)|p Jl/p Y

where © = { Bip={&} &R g\ O} . Given a family of operators
T = {Tf }t>0 defined on LP (R) , we consider the Fp -valued operator
V(T):f 5V(T)f on L°(R) defined by

VD))= (T (=T, (OO, = (T 0]

where {T[gi aalf (X)}

p={si}c0 ’

o] is an abbreviation for the element of F = given by
f=1¢i €O

(i.8) = (i{ai}) > Ty na T ().

This implies

DOI: 10.4236/apm.2021.1112063

981 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2021.1112063

T.T. Juan, X. M. Hou

X) :||V (T)f (x)”Fp :

This section is devoted to proving Theorem 1.1. To do this, we need establish
the following lemma.

Lemma 3.1. Let K be one-sided Calderon-Zygmund kernel (OCZK) with
support in R™ =(-,0). Let T, = { bg} o and T = { } . be given as in
(1.5) and (1.1), respectively. The operator V) (T ) is bounded in L™ (R,dx)
for some P, e(l,oo) . Let O<a<l, belip,. Then, for all we A*(p,q) ,
1<p<q<w, Yp-Yq=a, we have

M (m (%) 1))

Proof Let xeR,h>0 and | = [X, X+4h] . Suppose
f=f+f,=fx+fy.. Notice that

M0 () 1) S () £ (0)-, (T)(6-b) ) (9]

Lq(wq) 5 ”b

f||Lp(w,,). (3.1)

Lipg

It is easy to check

L (E ) )=V (T)(0-b) 1))y

__j*““yv( N EY) Il ||V(7;+)((b—b.)fz)(X)HF‘dy
ST ) )=V (5 (- 1), oy

<L) b (T) ey + [ (T7)(6-b) 1) (v)e
LT (0= £)(3) -V (T7)(6-b) £)(x), o

P

Consider the following three sublinear operators defined on C_ (R):

M 0= ()8 % () ()
M2 1= % (1) (08 ) oy
1 (x+2n

M, f (x):=sup=

Y MT)((b—b.)fz)(y)—V(T* ((o-b) 1) )] oy

For M f,let we A" (}/a,»), then @ Y- ¢ A1 By Lemma 2.1, there ex-
ists t>1 such that & /" e A". Take r —t/ 1-a) and 1/s-1/r =a . Using
Holder’s inequality and the L” boundedness for V (T +) we obtain

J

L) (T) (v s b(y)-b[ 5] o)
1 ¢x+2h r _r v
<ol 0 (2110 0(5) 0(y) "o

SIbl, ([ 00" o) (E1 " ly)" o)

<Jol, If ol 0(x)

1/s

fw

Lip,,
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By Lemma 2.3, we have that for 1/r-1/s=a and A"(p,q)
”Mff La(a,Q) 5||b||upa "f|

For M; f,by Holder’s inequality and the L" boundedness for V, (T +) , We
get

Lp(m”)'

[ (T) (6= R) ()

1 px+2n r e
(S0 ()0 ) o
<31 b -8) o) dy]ﬂr

< s b(y)-b)[F[ 7]

ye(x,x+2h

r

-1
Lip, e a)(X) ’

where @ =0 """ e A" forall meA® (1/a, ). Then
Joms ] <]

<|b

fo

f o)

Lipg e

For 1/r-1/s=a and A"(p.,q), it follows from Lemma 2.3 that
[m; Sl

Lq(wq Lip, f ”LP(M) .

It remains to deal with MJ f . For ye[x,x+2h], we get
Tl ((b-b)) fZ)(y)_T[;ﬂ,si] ((b=b)f,)(x)
= [ K(Y=2) Zyuayyee) (2)(b(2) b)) £, (2)dz
[ K(X=2) 2y ()(B(2)-) o (2)d2 62
K= 2)-k(-2) ) (2)(B(2) b)), (2)c2
[ K22y (D L) (1)) (0(2) by ) 1, (2) 2
In view of (3.2), we have

AT )(b=b) £)(v) =V (T7)(b-b1) £) ()]
{[.(k(y=2)=K(X=2)) Zy 11 (2) (0(2) =) T (2) 2}

<

ieN, p={&; }e® E
P

+

NI CE | PN RN 3)
x(b(2)=b, ) T, (z)de}

=J,+J,.

ieN,ﬂ:{Ei }e@

Fo
Since ze(x+8h,0) and ye(x,x+2h), we get |x—z|22|x—y|. Using
(1.4), we have |k(y—z)—k(x—z)|§h|x—z|72.Notethat

H{Z(erSiﬁversi] (Z)}ieN,y:{gi}ee . Sl, for vy eR.
P
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Then

h
=

o |<b(z?x‘_b'zfzf2(z)| .

= zen|(0(2) =Dy ) f(2)|
5h§fx+zkh T

(b(2)=b; ) £, (2)|dz

Fo

{Z(y+ei+1,y+£i] (Z)}ieN.y={€| Je®

dz

x+2k*1h|

= h* 1
o] _ f(z)dz
Po — X
5 " Li é 2k(1 a) 2k+lh,|. ( )|

< x  h“ 1 x+28h r r _r VT
Shly, X\ ol TN @(y) o(y)" dy

=1 x+2k+t a “ 1 x+2KH s Y
o STt o] [ o) e

k=3
-1

e a)(x) '

where 0 =0 " e A forall we A’ (Yo, ).
For {¢}e€®,let N,={ieZ:g-¢,>y-X} and
N,={ieZ:&-¢&, <y-x}.Then

{J-R(l(ywm,yﬂi) (Z) T Xxseigxta) (Z))

xk(x=2)(b(2)-b,) f, (z)de}

<lb

<ol [fe

Lipg,

J, <

ieNy, B={¢; }c®

Fp

N RN CI RN c3)
xk(x=2)(b(2)~b,) T, (z)dz}

=J, +J,.

ieN,,p={¢}® F,

Now we estimate J,,. It is easy to see

(KO0 20y (D0(2)D) G ()

J, <

Fo

{IJR k (X_ Z)z(xmxyﬂi) (Z)(b(Z)—b| ) f, (Z)dz}ieNl,ﬁ:{Si}E@

=L +L,.

+
Fp

For ie N,, using Holder’s inequality and (1.3), we have

r r l/r
HShw’ {[IR'b(Z)bJ |f2(z>| z(yﬂiuvyﬂi)(Z)dzJ }

x—2
ieNy, f={¢; }e® F
p/r Yp
, b(z)-b[ |, (z)
=h¥"| su z | 12 dz
,Bp i;l (I}R l(x+gi+1,x+gi) ( ) |X _ Z|r
984 Advances in Pure Mathematics

DOI: 10.4236/apm.2021.1112063


https://doi.org/10.4236/apm.2021.1112063

T.T. Juan, X. M. Hou

r r l/l’
ghl/r’ J‘ |b(z)_bl| |f2(z)| dz
C

ki h“ 1 x+2¥1h r yr
Sy, 3oy o I ) )

” i x+2¥h 1a “ 1 x+2¢h _s Y
<:§: Zéf (L(Z |f(z)w(zﬂ dz) (EF:Q;L ? () dz}

D) ya w(x)il ’

where 0" =" e A forall we A’ (}/a,). By a similar estimate of L,,

<[b

Lip,

we have
S[bll,, 1f @l e @(x)

Now we estimate J,, . It is easy to see

<1 K2 200y (D) 0(2) ) T (2) 2]

Fp
+ {,[Rk(x_Z)l(mm,mi)(Z)(b(z)_bl)fZ(Z)dZ}ieNz’ﬂ:{ﬁ‘ik@ .
=L +L,.
By noting that N,={ieZ:¢—¢,, <y—X}, we have ¢ —¢,, <y—-x<2h

with ye [X, X+ 2h] . Using Holder’s inequality and (1.3), we have

r r yr
L Sh | [, 2y +->(Z)|b(z)_b' :(2) dz
R M(Y+éiy+é |X—Z|r

Ib(z)-b,

r p/r
=h¥" supZ[I V+5|+1V+5|)(Z) |X—Z|r dz] J

B ieNy
r yr
dz
h 4 }

x+2K4 r
ipy kZ:32k Yr'-a) (2k+1hJ. | (Z)| dZ)
" " i X+2k+1h l/a * "b" i x+28h s v
S ) o) | [ o(a) e

N "b e w(x)_l’

where 0 =0 """ e A for all we A’ (1/a,®). By similar arguments, we

ieNz,ﬂ:{gi}EO 5

b(z)

Sh g,

r

fw

Lip,

have
Ly S oy, I @l @(x)

Following from the estimatesof L, L;, L; and L,,we get
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-1

J, <y +Jy <L +L +L+L, ,§||b||upa ||fa)||LW w(x

This together with the estimate of J, implies

IV (77)((b=by) £,) () -V (T )((b-By) fz)(x)“Fp

<+, 5 ”b"Lipa

e w(x)il'
where 0 =0 """ e A forall me A (1/a,0) . Then
oM ] < bl

Lipy

fca|

fco|

e
For I/r-1/s=a and A"(p,q), it follows from Lemma 2.3 that
| bl 1l

This completes the proof.

|_q mq N| Lip,

Now, we turn to the proof of theorem 1.1.
Proof. For we A"(p,q), by Lemma 2.2, we have @' € A;. Using Lemma
2.4 and Lemma 3.1, we obtain

p(Tt)+)f

Lq wq N“M TJr)f) Lq(a)q)
<[ (7))
<10l 1l

v, (’TbJr) fHLq (o) <. By the similar arguments in the

Lq(wq)

It remains to prove

proof of Theorem 1.3 in [10], we can get “Vp (TJ) f“Lq 0 < oo. Then Theorem

1.1 is proved.
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