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Abstract 
This study has provided a starting point for defining and working with Cox 
models in respect of multivariate modeling. In medical researches, there may 
be situations, where several risk factors potentially affect patient prognosis, 
howbeit, only one or two might predict patient’s predicament. In seeking to 
find out which of the risk factors contribute the most to the survival times of 
patients, there was the need for researchers to adjust the covariates to realize 
their impact on survival times of patients. Aside the multivariate nature of the 
covariates, some covariates might be categorical while others might be quan-
titative. Again, there might be cases where researchers need a model that has 
the capability of extending survival analysis methods to assessing simulta-
neously the effect of several risk factors on survival times. This study unveiled 
the Cox model as a robust technique which could accomplish the aforemen-
tioned cases. An investigation meant to evaluate the ITN-factor vis-à-vis its 
contribution towards death due to Malaria was exemplified with the Cox 
model. Data were taken from hospitals in Ghana. In doing so, we assessed 
hospital in-patients who reported cases of malaria (origin state) to time un-
til death or censoring (destination stage) as a result of predictive factors 
(exposure to the malaria parasites) and some socioeconomic variables. We 
purposefully used Cox models to quantify the effect of the ITN-factor in the 
presence of other risk factors to obtain some measures of effect that could 
describe the relationship between the exposure variable and time until death 
adjusting for other variables. PH assumption holds for all three covariates. Sex 
of patient was insignificant to deaths due to malaria. Age of patient and user 
status were both significant. The magnitude of the coefficient (0.384) of ITN 
user status depicts its high contribution to the variation in the dependent va-
riable. 
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1. Introduction 

Event history analysis is an omnibus term for the collection of statistical me-
thods that focuses on the timing and occurrence of events. Reference [1] posits 
that survival analysis techniques model the probability of a change in a depen-
dent variable Yt from an origin state j to a destination state k, as a result of pre-
dictive factors, and that the duration of time between states is referred to as 
event time. Survival analysis models are used to examine the survival and hazard 
rates for some events of interest which are probabilistic in nature. One of the 
goals of survival analysis is to obtain some measures of effect that can describe 
the relationship between a predictor variable of interest and time to failure, after 
adjusting for the other variables, we have identified in the study and included in 
the model, this measure of effect is the hazards ratio [2]. Reference [3] has ar-
gued that survival analysis examines the effect of changes in the covariates on 
the duration of time preceding the event as well as the probability that the event 
will occur. 

Standard procedures for survival and event history analysis involve modelling 
time to death or failure, often as a function of covariates, using either parametric 
or semiparametric approaches. Various parametric families of models are used 
in the analysis of lifetime data, including the exponential and the Weibull, with 
the latter being popular due to its flexibility. The Cox regression model is a cor-
nerstone of modern survival analysis and is widely used in many other fields as 
well. The model is used to investigate the impact of various explanatory or pre-
dictor variables on the outcome or response variable with the view of identify-
ing, salient and crucial variables which have telling effect on the study [4]. In 
mathematical terms, we can equally say that the Cox proportional hazards model 
is used to model survival data as a function of covariates. The purpose of the 
model is to evaluate simultaneously the effect of several factors on survival. In 
other words, it allows us to examine how specified factors influence the rate of a 
particular event happening at a particular point in time. This rate is commonly 
referred as the hazard rate [5]. Predictor variables (or factors) are usually termed 
covariates in the survival-analysis literature. The Cox model is expressed by the 
hazard function denoted by h(t). Briefly, the hazard function can be interpreted 
as the risk of dying at time t. The response variable is the hazard function h(t), 
which assesses the probability that the event of interest (in this case, death) oc-
curred before time t. The equation models this hazard as an exponential func-
tion (exp) of an arbitrary baseline hazard h0 when all covariates are null, and β is 
the regression coefficient of the covariate, x. 

Though ordinary regression analysis (ORA) could be used to achieve the same 
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purpose, statistician flown on its use due to the problem of incomplete data as-
sociated with most prospective studies. ORA cannot take into consideration par-
tial or incomplete information from the entire study group. The Cox’s propor-
tional hazards regression model has the ability of taking into consideration par-
tial information from censored data as well as full information from uncensored 
data and is therefore more appropriate in such situations. The Cox proportional 
hazard model is a statistical method that finds the cumulative probability of an 
event, it also accounts for impact of covariates on that probability. The model 
works for both quantitative predictor variables and for categorical variables. Fur-
thermore, the Cox regression model extends survival analysis methods to assess 
simultaneously the effect of several risk factors on survival time [6]. 

In the Cox model, we take cognizance of two types of covariates; those that 
depend on time, and those which are time-independent. In this paper, we limited 
our discussion on time-independent covariates. We also looked at some aspects 
of the Cox proportional hazards regression model. Special emphasis was placed 
on the following areas: how to develop the model; popularity of the model; hy-
pothesis testing for proportional hazards model; the stratified Cox model; mean-
ing of the proportional hazard (PH) model; failure of the PH model; testing of 
the proportional hazards model; alternative method for assessing the PH model; 
hazard ratio; the likelihood ratio test; and graphical approach to the lol-log plot. 
In order for researchers to apply the model to life and properties, it is deemed 
expedient to subject covariates to empirical survival analytic studies. Applying 
the theories behind Cox models is particularly useful in examining treatment 
comparisons based on the time to some events while adjusting for the effect of 
concomitant variables. It is useful for predictions to maintain optimal mainten-
ance policies in engineering, medical and biomedical studies. The Cox model has 
the advantage of preserving the variable in its original quantitative form, and of 
using a maximum of information [7] [8]. The paper is organized as follows; it 
provides: 

1) Theoretical framework which underpins the study. 
2) Theories by which Cox model could be laid out. 
3) Simulation study on the Cox model. 
4) Real case empirical studies with apt interpretation of the outcome. 
This study has the propensity of supporting enquirers in understanding and 

interpreting the hazard ratio as a measure of effect that describes the relationship 
between the predictor variables and time to failure (time to obtaining the event 
of interest). 

1.1. Theoretical Framework Underpinning the Study 

Reference [9] employed Cox proportional hazard regression as a less parametric 
alternative to generalized linear model (GLM) and ordinary least squares model 
(OLS) even when there was no need to correct for censoring. They examined 
how well the alternative estimators behaved econometrically in terms of bias 
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when the data were skewed to the right. Specifically, they provided evidence on 
the performance of the Cox model under a variety of data generating mechan-
isms and compared it to the estimators studied recently in [10]. They noted that 
the gamma regression model with a log link seemed to be more robust to alter-
native data generating mechanisms than either OLS on ln(y) or Cox proportion-
al hazards regression. In conclusion they found out that the proportional hazard 
assumption was an essential requirement to obtaining consistent estimate of the 
( )|E y x  using the Cox model. 
Reference [11] proposed the use of the Cox proportional hazard model (CPHM) 

for the analysis of early-failure data associated with power cables. They alluded 
to the fact that the CPHM analyses simultaneously a set of covariates and identi-
fies those which have significant effects on the cable failures. In order to demon-
strate the appropriateness of the model, they obtained relevant historical failure 
data related to medium voltage (MV, rated at 10 kV), distribution cables and 
high voltage (HV, 110 kV and 220 kV). The transmission cables’ data were col-
lected from a regional electricity company in China. It was revealed in the study 
that the model was more robust than the Weibull distribution, again, it was dem-
onstrated that the method provided could single out a case of poor manufactur-
ing quality with a particular cable joint by using a statistical hypothesis test. 
They proposed an approach which could potentially help resolve any legal dis-
pute that may arise between a manufacturer and a network operator. Reference 
[12] underscored the fact that the Cox proportional hazard model was one of the 
most common methods used in time to event data analysis. He disclosed that the 
model was based on several restrictive assumptions one of which concerned tied 
events, he presented and compared five ways for handling tied events. On the 
basis of the calculations performed, it could be stated that exact expression and 
the discrete model gave the best results in terms of fit statistics; even though they 
were the most time-consuming. Efron and Breslow approximations were much 
faster but had the worst model fit. They performed a simple method which was 
based on subtracting a tiny random value from each tied survival time. It was 
revealed that, if estimation precision was not as important as estimation time, 
then Breslow or—more preferably—Efron approximations might be used. But if 
time was of the essence, then one should consider choosing an exact method or 
discrete model that can provide better fit statistics and more efficient parameter 
estimates. 

Reference [13] posited that the survival of patients after surgery depended much 
on identifying risk factors through the use of appropriate tools and dealing with 
the risk factors. They obtained data from 330 gastric cancer patients diagnosed 
at the Iran cancer institute during the 1995-99 period, the patients were followed 
up to the end of 2011. The survival status of these patients in 2011 was deter-
mined by reopening the files as well as phone calls and the effect of various fac-
tors such as demographic, clinical, treatment, and post-surgical on patients’ sur-
vival were studied. Based on Cox-Snell Residuals and Akaike Information Crite-
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rion (AIC), it was revealed that the exponential (AIC = 969.14) and Gompertz 
(AIC = 970.70) models were more efficient than other accelerated failure-time 
models. The results of the Cox proportional hazard model as well as the analysis 
of accelerated failure-time models showed that variables such as age (at diagno-
sis), marital status, relapse, number of supplementary treatments, disease stage, 
and type of surgery were among factors affecting survival (p < 0.05). 

Reference [14] examined the interactive effects of Cyclooxygenase-2 (COX-2) 
expression, Federation of Gynecology and Obstetrics (FIGO) stage, Vascular En-
dothelial Growth Factor (VEGF) expression and histological grade prognostic 
factors using the multivariate Cox proportional hazards model. The result re-
vealed that the risk of death for the patients with COX-2 positive expression was 
2.8 times than that with COX-2 negative expression. For FIGO stage, VEGF ex-
pression and histological grade, their risk of death were 2.2, 2.1, and 1.84 times 
respectively. It was concluded that COX-2 expression, FIGO stage, VEGF ex-
pression and histological grade were the most important prognostic factors for 
Emergency Operations Center (EOC) after curative resection. Reference [15] uti-
lized data from the Bangladesh demographic and health survey (BDHS), 2014 to 
identify the determinants of neonatal, infant and under-five mortality in Ban-
gladesh. They performed Log-rank test for bivariate analysis and applied Cox 
proportional hazard model. The results revealed that maternal education, region, 
exposure to NGO activities were significant determinants of under-five and in-
fant mortality, whereas region of descent, gender of child, child’s size at birth 
played significant role in reducing neonatal mortality. It was concluded that po-
licymakers should give priority to maternal education, delve into regional issues 
that affect neonatal mortality, and consider issues about child’s size at birth as 
well as engage non-governmental organizations (NGO) to assist in reducing 
neonatal, infant and under-five mortality in Bangladesh. 

Reference [16] noted that the Cox proportional-hazards regression model had 
achieved widespread use in the analysis of time-to-event data with censoring and 
covariates. They noted that the covariates may change their values over time and 
therefore discussed the use of such time-dependent covariates. They further noted 
that the interrelationships between the outcome and variables over time could 
lead to bias unless the relationships were well understood. They indicated that 
the form of a time-dependent covariate was much more complex than in Cox 
models with fixed (non-time-dependent) covariates and that constructing it in-
volves a function of time. In the study [16], child mortality was considered as the 
dependent variable. Child Mortality was deemed to measure the probability of 
dying between the age of one and four years (expressed per 1000 live births). 
They also considered several important socioeconomic and demographic pre-
dictors which included the following: Age of women (15 - 19, 20 - 24 and 25 - 49 
years); education of women (illiterate, literate but below primary, primary but 
below middle, middle but below high school and high school and above); place 
of residence (rural and urban); child’s gender (Female and Male); mass media 
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exposure (no exposure and any exposure); wealth quintile (poorest, poorer, mid-
dle, richer and richest); religion (Hindu, Muslim and others); caste (Scheduled 
Caste (SC), Scheduled Tribe (ST), Other Backward Class (OBC) and others); 
birth order (1, 2 - 3 and 4 or more); birth Interval (less than 2 years and greater 
than 2 years); parity (1 - 2, 3 - 4 and ≥5); working status of women (Not work-
ing, working at home and working away from home); women empowerment (not 
empowered, partially empowered and Fully empowered); and region. 

Reference [17] conducted a study on factors influencing women's waiting time 
to first birth in Bangladesh, they applied the Cox proportional hazard model. In 
their study, the event of interest was waiting time to first birth after marriage. 
The variable could not be obtained directly and therefore they used the differ-
ence between the age of the women at first birth and age at first marriage as the 
waiting time to first birth. Women who were still waiting for their first birth af-
ter termination of study were considered to be censored. The event of interest 
variable was measured in months. The censoring indicator was equal to 1 if the 
observation was found to have had their first child and 0 if they did not have any 
child. Some demographic and socio-economic variables were selected as expla-
natory variables—few of these were: Current working status; age of woman, re-
gion of descent, type of residence; religious affiliation; educational level; house-
hold head; media influence; ideal number of children; wealth quintile; partners 
level of education; and occupation of partner. 

1.2. Developing the Cox Proportional Hazards Regression 

The difficulties one encounters with parametric models can be resolved with the 
proportional hazard’s models. For two individuals who differ only in the rele-
vant membership (e.g., treatment verses control) their predicted log-hazard will 
differ additively by the relevant parameter estimate, which is to say, their pre-
dicted hazard rate will differ by eβ , i.e., multiplicatively by the anti-log of the 
estimate. Thus, the estimate can be considered a hazard ratio, that is, the ratio 
between the predicted hazard for a member of one group and that for a member 
of the other group, holding everything else constant. For a continuous explana-
tory variable, the same interpretation applies to a unit difference. Other hazard 
rate models have different formulations and the interpretation of the parameter 
estimates differs accordingly. 

Assuming that the value of the covariate x, is fixed and does not change over 
time, the regression model will be 

0 1y xβ β σε ∗= + + .                       (1) 

where ( )lny t=  and ε ∗  is lnε . 
Expressed on a time scale, the model becomes 

0 1e xt β βσε += .                         (2) 

In survival analysis, the survival time is determined by a systematic compo-
nent 0 1xβ β+  and the error component ε . Choosing a parametric distribution 
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for the error component ( 1σ = ). The hazard function will also assume a new 
parametric structure. The hazard function for a subject with covariate equal to x 
will be 

( ) ( )0 1, , e xh t x β ββ − += = .                     (3) 

Two points worth knowing here are that 
1) The hazard function does not depend on time; its value is determined by 

the covariate x and the unknown parameters 0β  and 1β  
2) The hazard function and systematic component in the regression model are 

inversely related. 
The fact that the hazard does not depend on time means that the risk of fail-

ure is the same no matter how long the subject is followed. Models that are used to 
describe survival times in a comparative sense are often called semi-parametric 
regression models. Typically, when we want to compare the survival experience 
of sub-groups, we need to specify the hazard function as a function of time and 
covariates. 

( ) ( ) ( )0, , ,h t x h t r xβ β= ×                     (4) 

The hazard function in Equation (4) is the product of two functions. The 
function ( )0h t  shows how the hazard function changes with survival time. The 
other function ( ),r x β  shows how the hazard function changes as a function of 
the subject covariates. 

The functions must be selected such that ( ), , 0h t x β >  
When the ( ), 1r x β = , ( )0h t  is referred to as the baseline hazard function. 
Under the model in Equation (4), the ratio of the hazard functions of two 

subjects with covariate values denoted x1 and x0 is given as 

( ) ( )
( )

1
1 0

0

, ,
,

,
,

,
h t x

HR t x x
h t x

β
β

=
 

( ) ( ) ( )
( ) ( )

( )
( )

0 1 1
1 0

0 0 0

, ,
, ,

,,
h t r x r x

HR t x x
h t r x r x

β β
β β

= =               (5) 

The hazard ratio HR depends only on the function ( ),r x β . If the ratio in 
Equation (5) is easily interpreted then the baseline function which is a function 
of time is of little importance. 

Reference [18] was the first to propose that in the model of Equation (5) 

( ) ( ), expr x xβ β=  
With this parameterization the hazard function is now denoted by 

( ) ( )0
1

, , exp
n

i i
i

h t X h t xβ β
=

 =  
 
∑                   (6) 

and the Hazard Ratio  

( ) ( )1 0
1 0, , e x xHR t x x β −=                      (7) 

More generally, we can write Equation (6) as 
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( ) ( ) ( )0 1 1 2 2, , exp n nh t X h t x x xβ β β β= + + +�  
where ( ),h t X  is the hazard at time t for a subject with a set of predictors  

1 2, , , nX x x x= � , ( )0h t  is the baseline hazard function, and 1 2, , , nβ β β β= �  
are the model parameters describing the effect of the predictors on the overall 
hazard. The interpretation of the Cox model is done using hazard ratios (HR), 
defined as the ratio of the predicted hazard function under two different values 
of a predictor variable. This model is referred to in the literature by a variety of 
terms such as the Cox model, the Cox proportional hazards model or simply the 
proportional hazards model. They are also called semi-parametric functions be-
cause the baseline hazard function ( )0h t  is not explicitly defined. Characteris-
tics of the Cox model are outlined below: 
• it is a product of a function in t and a function in X; 
• X is time independent; 
• the baseline hazard is an unspecified function, making it a semi-parametric 

model 
Equation (7) can be interpreted as “relative risk”. 
The coefficients 1 2, , , kβ β β�  are estimated by Cox regression, and can be 

interpreted in a similar manner to that of multiple logistic regressions. 
Suppose the covariate (risk factor) is dichotomous and is coded 1 if present 

and 0 if absent. Then the quantity ( )1exp β  can be interpreted as the instanta-
neous relative risk of an event at any time, for an individual with the risk factor 
present compared with an individual with the risk factor absent, given that both 
individuals are the same on all other covariates. Suppose the covariate is conti-
nuous, then the quantity ( )1exp β  is the instantaneous relative risk of an event, 
at any time, for an individual with an increase of 1 in the value of the covariate 
compared with another individual, given both individuals are the same on all 
other covariate. For example when a covariate is dichotomous such as gender 
with a value of 1 1x =  for males and 0 0x =  for females, the hazard ratio in 
Equation (7) becomes ( )1 0, , eHR t x x β= , if the value of the coefficient is  

( )ln 1.5β =  then ( ) ( )ln 1.5
1 0, , e 1.5HR t x x = =  which means that males are failing 

one and a half times that of females. A hazard ratio of one (1) means that there is 
no effect. One (1) is the null value for the exposure-outcome relationship. The 
term proportional hazards refer to the fact that the hazard functions are multip-
licatively related, that is to say, their ratios are constant over survival time. In 
assessing the validity of the model, this assumption is important. One way to 
specify the distribution of survival time is through the hazard function. If we use 
the relationship between the survival function and the hazard function  
( ) ( )e H tS t −=  where ( ) ( )( )lnH t S t= − , then 

( ) ( ), ,, , e H t xS t x ββ −=                       (8) 

where ( ), ,H t x β  is the cumulative hazard function at time t for a subject with 
covariate x. 

One important decision in survival analysis is how to properly model the con-
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ditional hazard rate of failure given certain predictor variables (covariates); this 
is due to the fact that statisticians are interested in finding out whether the pre-
dictor variables are correlated or uncorrelated with the survival or failure times. 
The model provides a technique for exploring the association of predictor va-
riables with failure times and survival distributions; it is also used for studying 
the effect of a primary covariate or a predictor of interest while adjusting for 
other variables. This model assumes that given an m-dimensional vector of co-
variates Z, the conditional hazard rate given by, 

( ) { }
0

1| lim | ,
t

h t z P t T t t T t Z z
t∆ → +

= ≤ < + ∆ ≥ =
∆

           (9) 

is a function of the independent predictor variables, 

( ) ( ) ( )0|h t z h t z= ℜ .                     (10) 

The function ( ) ( )( )expz zψℜ =  is parameterized as follows ( ) Tz zψ β=  
with ( )T

1 2, , , mβ β β β= �  being a vector of unknown parameters,  
( ) ( ) ( ) ( )( )TT

1 2 1 2, , , , , ,m mz z z z x x xϕ ϕ ϕ= =� � , is a vector of specified functions 

iϕ . Also, ( )0h t  is an unknown baseline hazard function. Once the conditional 
hazard rate is given, the conditional survival function ( )|S t z  and conditional 
density function ( )|f t z  can also be determined. The relationship between the 
hazard rate, survival function and density function are given below 

( ) ( )( )| exp |S t z H t z= − , ( ) ( ) ( )| | |f t z h t z S t z= ⋅ .       (11) 

where ( ) ( )
0

| | d
t

H t z h t z t= ∫  is the cumulative hazard function. 

Not all the survival times 1 2, , , NT T T�  were fully observed, instead one ob-
serves for the ith subject an event time ( )min ,i i iX T C= , where iT  and iC  
are respectively the failure and censoring times of the ith subject. The censoring 
indicator ( )i i iI T Cδ = ≤ , as well as an associated vector of covariates iZ  can 
be denoted as follows: 

( ){ }, , : 1, 2, ,i i iZ X i Nδ = � . 

Which is an Independent Identical Distribution sample from the population 
( ), ,Z X δ  with ( )min ,X T C=  and ( )I T Cδ = ≤ . If the random variable T 
and C are positive and continuous then 

( ) ( )
( ){ }0

|
|

E Z z
x

E H X Z z
δ =

ℜ =
=

.                  (12) 

where ( ) ( )0 0 dH X h u u= ∫ , is the cumulative baseline hazard’s function. This 
function allows one to estimate the function ℜ  using regression techniques if 

( )0h X  is known. The likelihood function can also be derived. 
When 0δ = , all we know is the survival time i iT C≥  and the probability of 

getting this is  

( ) ( ) ( )| | |i i i i i i i iP T C Z P T X Z S X Z≥ = ≥ = .           (13) 

When 1δ = , the likelihood of getting iT  is ( ) ( )| |i i i if T Z f X Z= . 
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Therefore, the conditional likelihood for getting the data is 

( ) ( ) ( ) ( )
1 0 1

| | | |
i i i

i i i i i i i i
i

L f X Z S X Z h X Z S X Z
δ δ δ= = =

= =∏ ∏ ∏ ∏      (14) 

( ){ } ( )

( ){ } ( )
1
log | |

log | |
i

i i i i
i

i i i i i
i i

L h X Z H X Z

h X Z H X Z
δ

δ
=

= −

= −

∑ ∑

∑ ∑
             (15) 

From the proportional hazards model 

( ) ( ){ } ( ) ( )0 0logi i i i i
i i

L h X Z h X Zδ= ℜ − ℜ∑ ∑           (16) 

If both the functions ( )ψ ⋅  and ( )0h ⋅  are parameterized, the parameters can 
be estimated by maximizing the likelihood in Equation (16) 

1.3. Popularity of the Cox Proportional Hazard Model 

There are several reasons why the Cox model is very popular, six of them are 
listed here: 
• The Cox model is robust. It usually fits the data well no matter which para-

metric model is used; 
• We can get the estimate of the effect without knowing ( )0h t ; 
• The estimated hazards are always non-negative; 
• The , sβ  can be estimated and the hazard ratio calculated; 
• The hazard function ( ),h t X  and the survival function ( ),S t X  can be es-

timated; and 
• The Cox model is preferred over the logistic model which ignores survival 

time and censoring information. 

1.4. Hypothesis Testing for Proportional Hazard Models 

One way of finding out if the predictor variables really contribute to the risk or 
hazard function (after fitting the Cox model) is to conduct a test of hypothesis. 
There are two tests that will be very useful in testing this hypothesis. They are 
the Wald and the likelihood ratio tests: For models with multiple parameters, it 
is convenient to use the Wald test for one parameter at a time. When fitting dif-
ferent nested models, the likelihood ratio test is most convenient. 

For a test of a single parameter being equal to 0, the Wald test statistic is: 

( )
2

2
2

Z
V
β
β

= � , If oH  is true, 2 2Z χ≈  (or, equivalently, ( )0,1z N≈  Large  

values of 2Z  support the alternative hypothesis. For multivariate models, a 
version of the Wald test exists, which comes from a 2χ  distribution with more 
degrees of freedom, but we will rarely need this. The likelihood ratio test statistic 
for the hypothesis that a single parameter is equal to zero is  

( ) ( )2 reduced fullp pG L L = − −   If oH  is true 2G χ≈ . For tests of multiple 
parameters being equal to zero, the degrees of freedom increase as explained be-
low 
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Let us consider the hypothesis: 

( )1 1 2: 0, 1 .k k kl lH k k kβ β= = = ≤ ≤ ≤ ≤� �            (17) 

The hypothesis in Equation (17) is rejected at a significance level of α  if 

( )2
1kLR lαχ −> , where 1 2, , , lk k k k= �  

If kH  is satisfied, the variables 1 2, , ,k k klx x x�  will be excluded from the mod-
el, therefore the hypothesis becomes 

1,2, , 1: 0m mH β β= = =� �                    (18) 

Equation (18) means that none of the predictor variables identified contri-
buted to the hazard or risk of death. The hypothesis in (17) is rejected if; 

( )2
1,2, , 1mLR mεχ −>�  

The hypothesis: ( ): 0, 1, 2, , .j jH j mβ = = �             (19) 

This implies that the model with or without the predictor variables gives the 
same results. 

The hypothesis in Equation (19) is rejected if; ( )2
1 1jLR εχ −>  

1.5. Stratified Cox (SC) Procedure 

The stratified Cox proportional hazard model allows the underlying hazard func-
tion to vary across the strata variables. The procedure demands that the Cox 
proportional hazards (PH) model is modified to make provision for control by 
stratifying a variable that fails to satisfy the PH assumption. Variables that satisfy 
the PH assumption are included in the model, whereas the variables that fail to 
satisfy the PH assumption are stratified by their non-inclusion in the model. 

Let’s assume that 1 2, , , KZ Z Z�  do not satisfy PH, and 1 2, , , PX X X�  do sa-
tisfy the PH assumption. We will define a new variable 

*
Z  from the Z’s which 

will be used for the stratification. If race and sex do not satisfy the PH assump-
tion then we can form combinations from the categories as follows 

From Table 1, we note therefore that 
*
Z  has 6k =  categories or strata. 

The hazard function for the stratified Cox model is given below 

( ) ( ) ( )0 1 1 2 2, exp , 1, 2, , 6g g p Ph t X h t X X X g k kβ β β = + + + = = � �   (20) 
*
Z  is not included in the model but 1 2, , , PX X X�  are included in the mod-

el In this model there will be different baseline hazards functions  
( )0 , 1, 2, ,gh t g k= �  but same coefficients 1 2, , , pβ β β� . The fitted SC model 

will yield different estimated survival curves for each stratum because the baseline 
hazards are different for each stratum. However, since the coefficients of the X’s 

 
Table 1. Table exemplifying how to stratify by the variable race. 

 
White 1 Black 2 Asian 3 

Male 1 1.1 1.2 1.3 

Female 2 2.1 2.2 2.3 
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are the same for each stratum, estimates of the hazard’s ratio will be the same. 
This feature of the SC model is referred to as the no-interaction assumption. The 
no interaction assumption implies that the hazard ratios are the same for each 
stratum. 

If the only predictor that failed to satisfy the PH assumption is sex and the 
covariates are Age(X1) and user status (X2) then the SC model becomes  

( ) ( ) [ ]0 1 1 2 2, expg gh t X h t X Xβ β= + , with g = 1, 2 [male = 1, female = 2] 

or  

( ) ( ) [ ]1 01 1 2, exp Age User Statush t X h t β β= +  for males       (21) 

( ) ( ) [ ]2 02 1 2, exp Age User Statush t X h t β β= + , for females      (22) 

In the models above age and user status are in the model whereas sex is not in 
the model Sex is therefore controlled by stratification. Since the age and user 
status variables are included in the model, we can estimate the effect of each va-
riable adjusted for the effect of the other variable and sex. The estimated hazard 
ratio for the effect of age adjusting for user status and sex is given by 1eβ , and 
that for ‘user status’ adjusting for age and sex is given by 2eβ  

We use the stratified Cox model to control for the sex variable which does 
not satisfy the PH assumption. The implication here is that the sex variable is 
being adjusted for stratification, we have also included the age and preventive 
measure variable (which do satisfy the PH assumption) into the model. In 
other words, the age and preventive measure variable have been adjusted by 
their inclusion into the model. In the model we can infer that the hazard ratio 
for the effect of the preventive measure variable adjusted for age and sex is 
given by the value 1.452, this value can be interpreted to mean that the ex-
posed group (that is the group that do not use the insecticide treated net) has 
1.5 times the hazard of death as compared to the less exposed group (group 
that use ITN) reference [19]. 

1.6. The Meaning of the PH Assumption 

The PH assumption requires the hazard ratio (HR), defined as the ratio of the 
predicted hazard function under two different values of a predictor variable to 
be constant over time. In other words, the hazard function for one individual 
should be proportional to the hazard function for any other individual. Moreo-
ver, the proportionality constant should be independent of time, that is to say, at  

any time t, ( )
( )

i

j

h t
C

h t
= . where C is a constant. C may depend on the explanatory  

variables but not on time. Graphically, the hazards for different individuals on 
the same graph should not cross paths. The rule is that if the hazards cross paths, 
then the PH assumption is violated, resulting in the inappropriateness of the use 
of the Cox PH model. It should be noted that a bit of crossing at early time 
points may be a product of noise in the survival estimates and may not consti-
tute a violation of the proportional hazard’s assumption. 
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There are a variety of techniques, both graphical and test-based, for assessing 
the validity of the proportional hazard’s assumption. One technique is to simply 
plot Kaplan-Meier survival curves to compare two groups with no covariates. If 
the curves cross each other, the proportional hazards assumption is violated. If 
on the other hand the curves do not cross the path of each other, then the PH 
assumption is satisfied. An important caveat to this approach must be kept in 
mind for small studies. There may be a large amount of error associated with the 
estimation of survival curves for studies with a small sample size; therefore, the 
curves may cross even when the proportional hazards assumption is met. The 
complementary log-log plot is a more robust test that plots the logarithm of the 
negative logarithm of the estimated survivor function against the logarithm of 
survival time. If the hazards are proportional across groups, this plot will yield 
parallel curves. Another common method for testing the proportional hazards 
assumption is to include a time interaction term to determine if the HR changes 
over time, since time is often the culprit for non-proportionality of the hazards. 
If the group time interaction term is not zero, it is evidence against proportional 
hazards. 

1.7. Failure of the Proportional Hazards Assumption 

If the PH assumption does not hold, there are options for improving the non- 
proportionality in the model. Other new covariates can be included in the mod-
el, again, non-linear terms for existing covariates, or interactions among cova-
riates can be incorporated. Alternatively, the model could be stratified in the 
analysis on one or more variables. This approach will lead to estimates of a 
model in which the baseline hazard is allowed to be different within each stra-
tum, but the covariates effects are equal across strata. Other options include di-
viding time into categories and using indicator variables to allow hazard ratios to 
vary across time, and changing the analysis time variable (e.g., from elapsed time 
to age or vice versa). 

1.8. Alternative Method for Assessing the PH Assumption 

The goodness of fit approach is appealing because it provides a test statistics 
and p-value for assessing the PH assumption for a given predictor of interest. 
This approach was originally proposed by Schoenfeld but has been modified in 
[20] and is based on the residuals defined by Schoenfeld now known as the 
Schoenfeld residuals. For each predictor in the model Schoenfeld residuals are 
defined for every subject who has an event [19]. The steps for running the test 
are based on the null hypothesis that; ‘The correlation between the Schoenfeld 
residuals and the ranked failure time is zero, that is 0 0H ρ= = ’ The outline 
follows below: 
• Run a Cox PH model and obtain Schoenfeld residual for each predictor; 
• Create a variable that ranks the order of failure. The subject who had the first 

event gets a value of 1; the next gets a value of 2 and so on; 
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• Save the Schoenfeld residuals of the model and the scaled Schoenfeld residuals; 
• For persons censored, the value of the residual is set to missing; and 
• Test the correlation between the variables created in the first and second 

steps. 
If the null hypothesis is rejected, we will conclude that the PH assumption is 

violated, otherwise, it is not violated. 

1.9. Hazard Ratio 

A hazard ratio is a measure of how often an event of interest happens in one 
group compared with another group. Hazard ratio (HR) is a measure of an effect 
of an intervention on an outcome of interest over time. The outcome could be 
an adverse/negative outcome or a favorable/positive outcome. Hazard Ratio (i.e., 
the ratio of hazards) = Hazard in the treatment group divided by Hazard in the 
control group. It is also termed as the instantaneous relative risk. If the predictor 
variable is continuous, then the quantity ( )1exp β  is the instantaneous relative 
risk of an event, at any time. For an example, if a predictor variable is dichotomous 
such as presence/absence of virus with a value of 1 1x =  for presence and 0 0x =  
for absence, the hazard ratio becomes ( ) ( )1 0,, expHR t x x β= . If the value of the 
coefficient is ( )log 2.5β =  then ( ) ( ){ }1 0, exp log 2.5 2, .5HR t x x = =  which is 
interpreted to mean that with the presence of the virus patients are failing two 
and a half times that of absence of a virus. 

A hazard ratio greater than one (1) indicates that the covariate is positively 
associated with the probability of the event and negatively associated with the 
length of survival time. 

In summary, 
• HR = 1.0, implies equal risk rates. (No effect, differences are likely due to 

chance); 
• HR > 1.0, implies increased risk rate in control group (increase in Hazard); 

and 
• HR < 1.0, implies decreased risk rate in control group (reduction in the hazard). 

In studies on cancer patients: 
• A covariate with hazard ratio > 1 (i.e.: 0β > ) is called bad prognostic factor; 

and 
• A covariate with hazard ratio < 1 (i.e.: 0β < ) is called good prognostic factor. 

The computation of the hazard ratio assumes that the ratio is consistent over 
time; therefore, if the survival curves cross, the hazard ratio statistic should be 
ignored. The term proportional hazards refer to the fact that the hazard functions 
are multiplicatively related, that is to say their ratios are constant over survival time 
[19]. In assessing the validity of the model, this assumption is important. 

While a hazard ratio (HR) and relative risk (RR) are similar in some aspects, 
there is a slight difference between the two. For instance, in a clinical trial, a re-
searcher might investigate the Hazard rates and Relative risk for two types of 
drug users: user X and user Y. Assuming that both the hazard ratios (HR) and 
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relative risk (RR) were 3.0, then the interpretation of the results is as follows: 
• The relative risk (RR) tells us that the risk of death is three times higher with 

user X than with user Y over the entire period of the study. RR does not care 
about the timing of the event. 

• The hazard ratio (HR) tells us that the risk of death is three times higher with 
user X than with user Y at any particular point in time. HR cares about the 
total number of events and also the timing of the events. 

The distinguishing feature is the timing or time period under consideration. 
In evaluating Hazard ratios, it is imperative that we support our results with 
other measures like the median survival time, overall survival, or time to pro-
gression. 

1.10. The Likelihood Ratio Test 

To help choose between two alternatives; random verses systematic variation 
based on the observed difference between two log-likelihood values generated 
from two statistical models, the application of a theorem from theoretical statis-
tics has been proposed [21]. The theorem states that the difference between two 
log-likelihood values multiplied by −2 has an approximate chi-square distribu-
tion when three conditions hold. The first condition is that the two models ge-
nerating the log-likelihood values must be calculated from exactly the same data. 
The second is that the compared models must be nested (That is, one model is a 
special case of the other). The third condition is that the two log-likelihoods 
must differ only because of random variation. When the first two conditions ap-
ply, a test statistic with a chi-square distribution produces an assessment of the 
plausibility of the third condition. 

The likelihood ratio test can be used to perform several tests. For instance, it 
could be used to test the significance of an interaction term in a model and the 
significance of a covariate in a model after adjusting for the other covariates. To 
test the significance of a covariate like usage of ITN, we need to compute the 
difference between the log likelihood statistics of the reduced model which does 
not contain the covariate and the likelihood statistics of the full model contain-
ing the covariate. The formula is given below; 

( )2log 2logR FLR L L= − − − .                 (23) 

where, R denotes the reduced model and F the full model. 
It has been indicated in [19] that the LR statistics is a chi-square statistic 2χ  

with p degrees of freedom where p is the number of covariates or predictors be-
ing assessed (in this example p = 1) under the null hypothesis that the covariate 
is not significant. 

1.11. Graphical Approach to Log-Log Plot 

This plot is simply a transformation of an estimated survival curve that results 
from taking the natural logarithm of an estimated survival probability twice, that 
is ( )ˆlog log S− − . 
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Under the Cox model the survivorship function is 

( ) ( ) ( )exp
0, ,

x
S t x S t

β
β =    .                   (24) 

Alternatively, we can write it as ( ) ( ) 1
exp

0,
p

j j
j

x
S t X S t

β
=
∑=    , where ( )0S t  is the 

baseline survival function. 
Taking the log of the expression twice we shall obtain 

( ) ( )0
1

log , exp log
p

i i
i

S t X x S tβ
=

 
= × 

 
∑

 

( ) ( )

( )

( )

0
1

0
1

0
1

log log , log exp log

log exp log log

log log

p

i i
i

p

i i
i

p

i i
i

S t X x S t

x S t

x S t

β

β

β

=

=

=

 
− = − ×    

 
 

= + −    
 

 
= + −    
 

∑

∑

∑
 

( ) ( )0
1

log log , log log
p

i i
i

S t X x S tβ
=

 
− − = − − −       

 
∑

 

Note: ( )log ,S t X  and ( )0log S t  are negative but ( )log ,S t X−  is positive. 
For two subjects 

( ) ( )1 11 12 1 2 21 22 2, , , , , , ,P PX X X X X X X X= =� �  

( ) ( )1 1 0
1

log log , log log
p

i i
i

S t X x S tβ
=

 
− − = − − −       

 
∑

 

( ) ( )2 2 0
1

log log , log log
p

i i
i

S t X x S tβ
=

 
− − = − − −       

 
∑

 

( ) ( )( )

( ) ( )

1 2

1 0 2 0
1 1

log log , log log ,

log[ log log log
p p

i i i i
i i

S t X S t X

x S t x S tβ β
= =

− − − − −      

     = − − − − − − −            
∑ ∑

 

( ) ( )( )
( )

1 2

1 2 2 1
1 1 1

log log , log log ,
p p p

i i i i i i i
i i i

S t X S t X

x x x xβ β β
= = =

∴ − − − −      

   
= − + = −   
   
∑ ∑ ∑

           (25) 

Alternatively, if the predictor variables are time independent, then the PH 
model is given by 

( ) ( ) ( )0|h t z h t z= ℜ .                     (26) 

where ( ) ( )( )expz zψℜ =  and ( ) Tz zψ β= , with ( )T
1 2, , , mβ β β β= � . 

Then we can render Equation (26) in terms of the exponential function we 
obtain 

( ) ( ) T
0| exph t z h t zβ=                     (27) 
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And taking the natural logarithm at both sides of Equation (27) gives 

( ) ( ) T
0log | logh t z h t zβ= +  

For different units of the vector z say x1 and x2, with corresponding coeffi-
cients 1β  and 2β , we obtain 

( ) ( )1 0 1 1log | logh t x h t xβ= +                   (28) 

( ) ( )2 0 2 2log | logh t x h t xβ= +                   (29) 

We see from Equations (28) and (29) that the baseline hazards are constant in 
both cases, they do not contribute to the predictions. If the PH assumption is sa-
tisfied for this data, then the graphs of the time functions Equations (28) and 
(29) will be approximately parallel. The graph of the differences between Equa-
tions (28) and (29) does not involve t. The formula says that if we use the Cox 
PH model and plot the estimated log-log survival curves for two subjects on the 
same graph, the two graphs would be approximately parallel and the distance 
between the two curves is the linear expression involving the differences in pre-
dictor values which does not involve t. This parallelism of the log-log survival 
plots for the Cox PH model provides us with a graphical approach for assessing 
the PH assumption [22]. 

2. Materials and Method 
2.1. Target Population 

The target population was all the residents of Sekondi-Takoradi district in Gha-
na. Data on malaria cases was obtained from three hospitals in the district, using 
observational studies, interviews and records from the records department. {Mala-
ria accounts for about 1 million deaths in Africa annually and has slowed eco-
nomic growth in African countries by up to 1.3% per year. Insecticide-treated 
nets (ITNs) undergo a series of tests to obtain listing by World Health Organiza-
tion (WHO) prequalification. These tests characterize the bio-efficacy, physical 
and chemical properties of the ITN. ITN procurers assume that product specifi-
cations relate to product performance [23] [24]. The observational studies were 
carried out on patients who had been diagnosed of severe malaria and were on 
admission at the hospital. The study spanned over a 4-month period beginning 
from 1 September 2009 to 31 December 2009. The patients were enrolled into 
the study at different times as and when they were diagnosed and admitted. 
Within the study period patients who were discharged were treated as censored, 
those who died from a different ailment besides malaria were treated as cen-
sored, those who died from malaria were treated as patients who obtained the 
event of interest. At the end of the study period, all patients who were still on 
admission were considered as censored. In all a total of 1793 patients were 
enrolled into the study. The patients were made up of males, females, young and 
old, rich and poor, those from the country side and those from the cities. For 
each patient, data on the following were obtained, age on admission, gender, 
level of exposure indicative by type of mosquito net used at home, date of ad-
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mission, date of discharge/death, cause of death and censoring status. The as-
sumptions made about the patients were that all of them received the same 
treatment once they were on admission; a further assumption was that those on 
admission were considered as first-time in-patients who had had no previous 
admission records. 

2.2. Data Analysis 

The extracted data for each person was coded as follows: Gender: Male = 1; Fe-
male = 2. 

Type of preventive measure used: Insecticide treated net = 0; mosquito nets 
plus others = 1. 

Censoring status: if patient died it is coded as = 1; If patient was discharged, 
died from a different sickness or was alive at the end of study, the code was = 0 

Difference between date of discharge/death and date of admission = survival 
time in days. Age was seen as a continuous quantitative variable. The coded va-
riables were keyed into SPSS version 20 and analyzed using survival analysis 
models. The survival experiences of the two exposure groups were compared 
and contrasted using the Kaplan-Meier survival curves. The Cox proportional 
hazards model was used firstly to assess the risk of malaria-death for the two 
exposure groups; secondly, it was used to explore the relation between the base-
line risk factor (malaria-death) and the predictor variable of interest (level of 
exposure), after adjusting for possible interaction effect of sex. The log rank test 
was used to test whether Kaplan-Meier curves for the two exposure groups in the 
entire population were statistically equivalent. The likelihood ratio test was used 
to ascertain the significance of the preventive measure variable (ITNs) that was 
used to lessen the exposure level to the mosquito parasites. The log-minus-log 
method was used to fit the biomedical data to assess whether the exposure data 
satisfies the proportional hazards assumption (Figure 1). 

Table 2 gives a pictorial view of the survival analysis scheme from the origin 
state, that is, arrival on admission to the destination point, that is, end of study 
period. 

 

 
Figure 1. Survival model for biomedical data. 
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Predictor variables: age, sex, preventive measures (level of exposure) 
Yt = dependent variable; Yt (age, sex, level of exposure) 
Event of interest = death due to malaria 

( )
( )

0, Censored did not obtain the event ofinterest

1, Failure obtained the event ofinterest i.e death due to malaria
δ

= 
  

2.3. Simulation 

Simulation studies present an important statistical tool to investigate the per-
formance, properties and adequacy of statistical models in pre-specified situa-
tions. One of the most important statistical models in medical research is the 
Cox proportional hazards model. In this paper, techniques to generate survival 
times for simulation studies regarding Cox proportional hazards models are pre-
sented. We simulated the data set called “anderson.dat”, which consisted of sur-
vival times on 42 leukemia patients [5]. Table 2 represents a truncation of “an-
derson.dat”. the simulation studies were performed using the first four subjects. 

Figure 2 gives the probability value (p-value) for the three covariates. The 
p-value for logwbc (0.00) is less than 0.005 and the hazard ratio (HR) is 5.40 in-
dicating a strong relationship between logwbc value and increase risk of relapse. 
Holding the other covariates constant, a higher value of logwbc is associated 
with poor survival. Here, a person with higher logwbc has a higher risk of death. 

The p-value for treatment status (Rx) = 0.002) which is less than 0.005 and HR 
is 4.64 indicating a strong relationship between Rx value and increase risk of re-
lapse. Holding other covariates constant, a higher value of Rx is associated with 
poor survival. A person with higher Rx value has a higher risk of death. The 
p-value for sex (0.42) is greater than 0.005 and the HR for sex is 1.43. Figure 3 dis-
plays the curves of the survival probability for the first 4 persons in our dataset 
(Table 2). We notice that the first and second persons (person-0 and person-1) 
both have a high survival chance with their curve lying above the other carves 
(two curves walking the same path). The third person (Person-2) has the lowest  

 

 
Figure 2. Plot to identify which of the three covariates (factors) affected the subjects the most. 
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Figure 3. Plots of the survival probability for the first 4 persons in our dataset (Table 2). 
We notice that person-0 and person-1 both have a high survival chance (two curves 
walking the same path). Person-2 has the lowest survival chances. Person 3 has a high 
logwbc value (2.53). 

 
Table 2. Remission survival times on 42 leukemia patients. 

Subj Surv Relapse Sex logwbc Rx 

1 35 0 1 1.45 0 

2 34 0 1 1.47 0 

3 32 0 1 2.2 0 

4 32 0 1 2.53 0 

5 25 0 1 1.78 0 

6 23 1 1 2.57 0 

7 22 1 1 2.32 0 

8 20 0 1 2.01 0 

9 29 0 0 2.05 0 

 
Table 3. Output after Fitting the Cox Regression Model (CoxPHFitter) by considering all 
parameters “Surv”, “Relapse”, “Sex”, “Logwbc”, “Treatment Status (Rx)”. 

Out put Further Details 

model lifelines.CoxPHFitter 

duration col “Surv” 

event col “relapse” 

baseline estimation breslow 

number of observations 42 

number of events observed 30 

partial log-likelihood −69.81 

time fit was run 2021-09-23 04:31:45 UTC 
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Table 4. Results of the Cox simulated values based on the output variables and the data 
set. 

 
β 

exp 
(β) 

s.e (β) 
Coef. 
lower 
95% 

Coef. 
upper 
95% 

Exp 
(coef.) 
lower 
95% 

Exp 
(coef) 
upper 
95% 

z p log2p 

Sex 0.36 1.43 0.45 −0.52 1.23 0.60 3.43 0.80 0.42 1.25 

Logwbc 1.69 5.40 0.34 1.03 2.35 2.79 10.48 4.99 <0.005 20.69 

Rx 1.54 4.64 0.46 0.63 2.44 1.88 11.45 3.34 <0.005 10.20 

 

 
Figure 4. Plotting of Median Conditional Time to Event-using Kaplan Meier. As time 
passed, the median survival time decreases, increased again, remained stable for a while 
and decreased sharply, increased again and finally decreased. 

 
survival chances. The fourth person (person 3) has a high logwbc value (2.53) 
(Table 3). Figure 4 resents the graph of the median conditional time to event- 
using Kaplan Meier. As time passed, the median survival time fluctuates (de-
creases, increases, remained stable for a while, decreases sharply, increases again 
and finally decreases). Table 4 shows the results of the Cox model simulated 
values based on the output variables (Table 3) and the data set (Table 2), we 
note that the logwbc and Rx variables were significant but that of age was not 
significant (Tables 5-8). 

3. Results 
3.1. Hypothesis Testing for Various Conjectures 
3.1.1. Hypothesis One 

Ho: The survival curves of the exposed and the less exposed groups are equiv-
alent. 

Test statistic: Log-Rank test (Mantel-Cox) 
Decision criteria: Reject the Ho if the p-value is less than 0.05α =  

https://doi.org/10.4236/ojs.2021.116055


A. J. Turkson et al. 
 

 

DOI: 10.4236/ojs.2021.116055 952 Open Journal of Statistics 
 

Table 5. Shows the output after fitting data using Kaplan-Meier-Fitter with duration va-
riable, or time “Surv” and event observed as “relapse”. Fitted with 42 total observations 
with12 right-censored observations. 

Event_at Removed Observed Censored Entrance At_risk 

0.0 0 0 0 42 42 

1.0 2 2 0 0 42 

2.0 2 2 0 0 40 

3.0 1 1 0 0 38 

4.0 2 2 0 0 37 

5.0 2 2 0 0 35 

6.0 4 3 1 0 33 

7.0 1 1 0 0 29 

8.0 4 4 0 0 28 

9.0 1 0 1 0 24 

10.0 2 1 1 0 23 

11.0 3 2 1 0 21 

12.0 2 2 0 0 18 

13.0 1 1 0 0 16 

15.0 1 1 0 0 15 

16.0 1 1 0 0 14 

17.0 2 1 1 0 13 

20.0 1 0 1 0 11 

22.0 2 2 0 0 10 

23.0 2 2 0 0 8 

25.0 1 0 1 0 6 

29.0 1 0 1 0 5 

32.0 2 0 2 0 4 

34.0 1 0 1 0 2 

35.0 1 0 1 0 1 

Footnotes: #at_risk—it stores the number of current patients; at-risk = current patient at 
risk + entrance removed; #event_at—It stores the value of the timeline for the dataset 
(i.e., time the patient was observed in the experiment or time the experiment was con-
ducted); # Removed = observed + censored; # Censored = Persons that did not relapse; 
and #Observed = Persons that relapsed (died). 

 
Table 6. Summary of data on malaria cases for users and non-users of ITN. 

Event ITN Users Other Nets Total 

Died 

Not Die 

At Risk 

66 

339 

405 

325 

1063 

1388 

391 

1402 

1793 

https://doi.org/10.4236/ojs.2021.116055


A. J. Turkson et al. 
 

 

DOI: 10.4236/ojs.2021.116055 953 Open Journal of Statistics 
 

Table 7. Variables in the Cox proportional hazards model. 

Predictor variables β SE Wald df Sig. Exp (β) 

Sex 

Preventive Measure 

Age 

0.091 

0.384 

0.013 

0.102 

0.135 

0.002 

0.791 

8.041 

48.229 

1 

1 

1 

0.374 

0.005 

0.000 

0.913 

1.468 

1.013 

 
Table 8. Variables in the stratified Cox model (Stratified by sex). 

Predictor variables β SE Wald df Sig. Exp (β) 

Preventive Measure 

Age 

0.373 

0.013 

0.135 

0.002 

07.607 

49.112 

1 

1 

0.006 

0.000 

1.452 

1.014 

 
Table 9. Summary of Test results for testing the equality of Survival curves for exposed 
and less exposed groups. 

Test Chi-Square dof Significant 

Log Rank (Mantel-Cox) 

Breslow (Generalized Wilcoxin) 

Tarone-Ware 

9.323 

10.310 

9.720 

1 

1 

1 

0.002 

0.001 

0.002 

 
From the test results presented as Table 9, the p-value of the two exposure 

groups was less than 0.05, that is (p-value = 0.002 < 0.05). We therefore reject Ho 
(Hypothesis 3.1.1) and conclude that the survival curves of the exposed group 
and the less exposed group were significantly different. 

3.1.2. Hypothesis Two 
HO: The method of protection adopted to prevent exposure to parasite was not 

significant. 
Test statistic: Likelihood ratio test ( )2log 2logR FLR L L= − − − . 
Decision criteria; Reject the HO if the p-value is less than 0.05α = . 
The −2 Log Likelihood ( )2log 2logR FLR L L= − − −  value for the full model 

(that is, the one containing both age and preventive measure variables [Table 10 
and Table 11]) was 5217.642, while the reduced model (that is, the one contain-
ing only the age variable) was 5226.168. 5226.168 5217.64 8.526LR = − = . The 
LR statistics is a chi-square statistic 2χ  with one degree of freedom (because 
we are assessing only one predictor variable-usage of ITN) under the null hypo-
thesis that the predictor variable was not significant. From a web based statistical 
calculator, the chi-square value of 8.526 translates to a p-value of 0.0035 < 0.05. 
Since the p-value was less than 0.05 we reject the HO, (Hypothesis 3.1.2) and 
conclude that the method of prevention was significant. 

3.1.3. Hypothesis Three 
HO: The survival experiences of the exposed and the less exposed groups is not 

significant after stratifying by sex. 
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Table 10. Variables in the full and reduced Cox models. 

Predictor variables β SE Wald df Sig. Exp(β) 

 Full Cox model    

Preventive Measure 
Age 

0.379 
0.013 

0.135 
0.002 

7.860 
47.424 

1 
1 

0.005 
0.000 

1.461 
1.013 

 Reduced Cox Model    

Age 0.013 0.002 48.635 1 0.000 1.013 

 
Table 11. Log likelihood statistic for full and reduced model. 

 −2 Log likelihood Chi-square df Sig 

Full model 
Reduced model 

5217.642 
5226.168 

58.262 
50.304 

2 
1 

0.000 
0.000 

 
Test statistic: Wald’s Statistics. 
Decision criteria; Reject the HO, if the p-value is less than 0.05α = . 
We note from Table 5 that the p-value of the preventive measure variable 

(p-value = 0.006 < 0.05) was significant. We therefore reject the null hypothesis 
(Hypothesis 3.1.3) and conclude that the preventive measure variable is signifi-
cant after stratifying by sex. 

3.1.4. Hypothesis Four 
Ho: The correlation between the ranked failure time and the Schoenfeld resi-

duals is zero (not significant). 
Test statistic: Schoenfeld residual test (Mantel-Cox). 
Decision criteria: Reject the Ho, if the p-value is less than 0.05α =  or 0.01. 
From Table 9 (the results provided by the computer) the correlation between 

ranked failure time and Schoenfeld residual was significant at both the 0.05 and 
0.01 levels of significance, thus, we have every evidence to reject hypothesis 3.1.4. 
If we consider the last row (rank of duration significant two-tailed), we note that 
the null hypothesis was rejected for the sex variable (p = 0.04) but not rejected 
for preventive measure (p = 0.21) and age variable (p = 0.85). 

4. Discussions 

We see from (Table 6) that out of the 1793 patients sampled 405 representing 
22.6% were using insecticide treated nets while the majority (77.4%) was using 
other types of nets like window netting and ordinary treated nets. It was also es-
tablished that of those who were using ITN 16% died within the four months 
study period while 84% survived, again out of the non-users of ITN 23% died 
while 77% survived within the same study period. The ratio of death of male to 
female was 1.21׃. This ratio indicates that death due to malaria for the period of 
observation was not gender related. 

The plot of (Figure 5) gives a graphical picture of the survival curves of the 
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two groups of users of ITN. We notice from the graph that the survival expe-
riences at the first few days of the study appeared to be the same but thereafter 
the differences showed up clearly, we see also that the curve for the users of ITN 
consistently lies above that of the non-users, this characteristic shows that users 

 
Table 12. Computer results of correlation between residual covariates and ranked surviv-
al time. 

  PR for Sex 
PR for  

Prev.meas 
PR for  

Age 
Rank of  

duration (days) 

PR for Sex 
P. correlation  
Sig. (2-tailed) 

1.000 
0.108* 
0.033 

0.144** 
0.004 

0.101* 
0.044 

PR for  
Prev.meas 

P. correlation  
Sig. (2-tailed) 

0.108* 
0.033 

1.000 
0.141** 
0.005 

−0.062 
0.219 

PR for Age 
P. correlation  
Sig. (2-tailed) 

0.144** 
0.004 

0.141** 
0.005 

1.000 
−0.010 
0.847 

Rank of  
duration (days) 

P. correlation  
Sig. (2-tailed) 

0.101* 
0.044 

−0.062 
0.219 

−0.010 
0.847 

1.000 

Note: PR = Partial Residual, N = 391; P correlation = Pearson correlation. Prev.meas 
means preventive measure; Sig. means significant value; *Correlation is significant at the 
0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-tailed). 

 

 
Figure 5. Survival functions of users of ITN and non-users. The curve for users of ITN lies above that of the 
non-users. We see also that for those who did not use ITN there were many steps within the curve with each 
step representing death. 
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of ITN have a better survival prognosis than non-users. The difference further 
means that ITN was effective at all points during the observational period. From 
the graph we could also estimate the median survival times for the two classes of 
users. This is done by locating 0.5 on the y-axis and proceeding horizontally till 
it meets the curves, once the horizontal line meets the curve, we draw a vertical 
line from the point of intersection of the curve and the horizontal line to meet 
the x-axis. From the graph the median survival time of the non-users of ITN was 
approximately 10 days while that of the users of ITN was close to forty (40) days. 
The median value further confirms our claim that users of ITN have better sur-
vival prognosis than non-users. 

The failure potential of the users of ITN and non-users is presented as Figure 
6. It is worth mentioning that while the survival function gives the probability of 
surviving, the hazard function or rate gives the risk of failing. The higher the 
hazard rates the worst the impact on survival. The curves in the figure depicts 
that non-users of ITN are at a higher risk of malaria deaths than users 

From Figure 7, we could infer that the survival experiences of males and fe-
males were approximately the same, this implies that sex do not contribute sig-
nificantly to death due to malaria. The difference between two plots is given by  

( )2 1
1

p

i j j
i

x xβ
=

 
− 

 
∑ , and what the expression is saying is that, if we use a Cox PH 

model and plot the estimated log-log survival curves for two groups on the same 
 

 
Figure 6. Hazard curves used for comparing the hazards for the users and Non-users of Insecticide treated nets. 
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Figure 7. Survival curves used for comparing the survival experiences of males and females and their risk of mala-
ria death. The curves for the male and the female cross each other at various points. 

 
graph the curves will be approximately parallel, and the distance between them 
is the linear expression involving the difference in the predictor values (method 
of protection used for preventing mosquito bites) which does not involve t. The 
summary of the four possible results from the examination of the log negative 
log Kaplan-Meier survival estimates plotted against the log of time as shown in 
Figure 8 for the two levels of protection against exposure to the mosquito para-
site are given below. 
• Parallel and straight lines imply that the Weibul model, (WM), Accelerated 

Failure time (AFT) and the Proportional hazard (PH) assumption hold. 
• Parallel but not straight lines imply that the PH assumption holds but neither 

the WM nor AFT model holds. 
• Non-parallel and non-straight lines suggest that PH, AFT and WM do not 

hold 
• Non-parallel but straight lines imply that the WM holds but neither the PH 

nor the AFT hold. 
Examining Figure 8 critically, we notice that the plots for both the less ex-

posed and the exposed as indicated by the use of ITN or otherwise are reasona-
bly straight suggesting that the Weibul assumption reasonably holds. We notice 
again that the two curves are approximately parallel (their gradients ρ are ap-
proximately the same) implying that the PH and the AFT assumptions hold. 
This parallelism of the log-log Kaplan Meier survival curves for the Cox PH 
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Figure 8. Log-Log Survival curves for assessing Weibull, Accelerated Failure Time (AFT) and Proportional Ha-
zards (PH) assumptions. 

 
provides us with a graphical approach for assessing the PH assumption. We 
could infer from the parallelism of the plots that once the plots are parallel, un-
der no circumstance will the survival experiences of the two groups of users be 
the same. 

We used the stratified Cox model (Table 8) to control for the sex variable 
which does not satisfy the PH assumption. The implication here is that the sex 
variable is being adjusted for stratification, we have also included the age and 
preventive measure variable (which do satisfy the PH assumption) into the 
model, in other words the age and preventive measure variables have been ad-
justed by their inclusion into the model. In the model we can infer that the ha-
zard ratio for the effect of the preventive measure variable adjusted for age and 
sex is given by the value 1.452., this value can be interpreted to mean that the 
exposed group (that is the group that do not use the insecticide treated net as a 
means of preventing exposure to the mosquito parasite) has 1.5 times the hazard 
of death through malaria as the less exposed group (group that use ITN as a 
means of preventing exposure to the malaria parasite) 

The variables in the stratified Cox model (Table 8) provides us with useful 
information to test whether there is any difference in the population survival 
curves for the two classes of users of ITN, after adjusting for sex (since sex did 
not contribute significantly to the risk of malaria death). The null hypothesis for 
this test was that there was no difference in the survival curves of the users of 
ITN and non-users. The p-value of the log-rank test (0.002 < 0.05) was highly 
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significant, implying that there was a statistically significant difference between 
the population survival curves after adjusting for sex. This result states inter alia 
that if the whole population elements were included in this study the survival 
experiences of the users of ITN and non-users would have been different, this 
further means that the predictor variable under consideration does contribute 
significantly to the death due to malaria. 

The Cox proportional hazards (PH) model is presented in Table 7, in this 
model the PH assumption was assumed to hold for all three covariates. The 
model used all 1793 patients observed in the study. The output variable was time 
in days until a patient die. The method of estimation used to obtain the coeffi-
cients was the maximum likelihood estimation (MLE). A p-value of 0.374 (from 
column 6) was obtained for the sex variable. This value indicates that the sex va-
riable was not significant, that is to say, the sex of the patient plays no significant 
role in deaths due to malaria, however the p-values (0.000) of age of the patient 
and the p-value (0.005) of user status of ITN (Type of preventive measure used) 
were both highly significant telling us that the risk of malaria death was depen-
dent on one’s age and the method of prevention adopted (in this case users and 
non -users of ITN). From column 2, the magnitude of the coefficient (0.384) of 
ITN user status depicts that user status contributes largely to the variation in the 
dependent variable (that is death due to malaria), while the contributions from 
the remaining covariates age and sex were insignificant. The hazard ratio de-
noted by ( )exp β  in the Table 4 indicates that the ratio of the users of ITN and 
non-users was 1.468, which translates into saying that the non-users if ITN were 
1.5 times at risk of malaria death than users of ITN. For age and sex variables the 
hazard ratios do not give any useful information. It should be recalled that a ha-
zard ratio of one means that there was no effect. 

The Cox adjusted log-log plots (Figure 7) were fitted using the mean values of 
age and sex and were used to evaluate the PH assumption for the preventive 
measure. From this figure, we noticed that the two graphs were approximately 
parallel which translates into saying that the survival experiences of the users of 
ITN and non-users can in no way be the same. Table 12 gives us the results for 
the Schoenfeld statistical test, in this test, the null hypothesis HO is that the PH 
assumption was not violated. The p-values for testing whether the correlation 
was zero between the ranked survival time and the covariates (Schoenfeld resi-
duals) are the p-values for the statistical test. From the computer output (Table 
12), the following results were obtained: 

Case A: p-value for sex-Schoenfeld residual and the ranked survival time = 
0.044 < 0.05. 

Case B: p-value for preventive measure-Schoenfeld residual and the ranked 
survival time = 0.219 > 0.05. 

Case C: p-value for age-Schoenfeld residual and the ranked survival time = 
0.847 > 0.05. 

In case A, the null hypothesis was rejected, thus we conclude that for the sex 
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variable the PH assumption was violated, which also means that in determining 
death due to malaria the sex variable was not a risk factor. In the cases B and C, 
we do not have enough evidence to reject the null hypothesis, so we conclude 
that the PH assumption was not violated for the age and preventive measure va-
riables, by implication we can assert that in determining the risk of malaria deaths 
these variables (age and preventive measure) might play significant roles. 

From the computer outputs labeled as Table 5 and Table 6 we could assess 
the significance of the preventive measure variable using the likelihood ratio test 
which was given as ( )2log 2logR FLR L L= − − −  

The −2 Log Likelihood value for the full model (one containing both age and 
preventive measure variable) was 5217.642, while the value for the reduced model 
(one containing only the age variable) was 5226.168 

5226.168 5217.642 8.526LR = − =  

The LR statistics is a chi square statistic 
2χ  with one degree of freedom (be-

cause we are assessing only one predictor-usage of ITN) under the null hypothe-
sis that the predictor is not significant. 

From a web based statistical calculator, the chi square value of 8.526 translates 
to a p-value of 0.0035 < 0.05, thus we have enough evidence to reject the null 
hypothesis, and conclude that the predictor under investigation (type of preven-
tive measure used by patients) was significant and therefore contributes signifi-
cantly to the risk of malaria death. 

5. Conclusions 

At the onset, we sought to provide theoretical framework underpinning the Cox 
proportional hazards model; outline theories on which the Cox model could be 
laid out; do some simulation study on the Cox model and provide a real case 
empirical studies with apt interpretation of the outcome. In clinical investiga-
tions and medical researches, there may be many situations, where several known 
quantities potentially affect patient prognosis. One or two of these competing 
risk factors might predict one’s predicament more than others, in seeking to find 
out which of the risk factors contribute or have the highest impact on the sur-
vival time of a patient, there is the need for researchers to adjust the covariates to 
realize the impact of each of them on the survival times of the patients. Aside the 
multivariate nature of the covariates, some covariates might be categorical while 
others might be quantitative. Again, there might be cases where we need a model 
that has the capability of extending survival analysis methods to assessing simul-
taneously the effect of several risk factors on survival time. A method of analysis 
that can accommodate all the enumerated situations is none other than the Cox 
proportional Hazards model. The discovery of a diagnostic key assessment indi-
cator to diseases such as malaria has been on the ascendancy. Most of these me-
thods focus on classification problems, that is, adopting a model that discrimi-
nates patients into distinct clinical groups. Few papers have been published on 
approaches that predict a patient’s event risk or hazard of death due to a predic-
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tive risk factor. This study has effectively integrated data into multivariable Cox 
proportional hazard models for risk prediction in malaria. Subsequently, it is in-
sightful, besides the main objective of the study to say that: 
• All the three models, Weibull, accelerated failure time, and the Proportional 

hazards assumptions were satisfied; 
• The method of protection adopted and age satisfied the proportional hazards 

assumption but sex did not; 
• The hazard ratios of the exposed group were 1.5 times the hazards of the less 

exposed group; and 
• Sex of residents did not contribute to the risk of malaria death, but the me-

thod of protection and age contributed towards the risk of malaria death. 
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