Existence of $T-v-p(x)$-Solution of a Nonhomogeneous Elliptic Problem with Right Hand Side Measure

El Houcine Rami, Abdelkrim Barbara, El Houssine Azroul
Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
Email: ramielhoucine@gmail.com, babdelkarim66@hotmail.com, elhoussine.azroul@gmail.com

How to cite this paper: Rami, El H., Barbara, A. and Azroul, El H. (2021) Existence of $T-v-p(x)$-Solution of a Nonhomogeneous Elliptic Problem with Right Hand Side Measure. Journal of Applied Mathematics and Physics, 9, 2717-2732.
https://doi.org/10.4236/jamp.2021.911175

Received: September 18, 2021
Accepted: November 12, 2021
Published: November 15, 2021

Copyright © 2021 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

Using the theory of weighted Sobolev spaces with variable exponent and the L^{1}-version on Minty's lemma, we investigate the existence of solutions for some nonhomogeneous Dirichlet problems generated by the Leray-Lions operator of divergence form, with right-hand side measure. Among the interest of this article is the given of a very important approach to ensure the existence of a weak solution of this type of problem and of generalization to a system with the minimum of conditions.

Keywords

Nonhomogeneous Elliptic Equations, Dirichlet Problems, Weighted Sobolev Spaces with Variable Exponent, Minty's Lemma, $T-v-p(x)$-Solutions

1. Introduction

Consider the nonhomogeneous and nonlinear Dirichlet boundary value problem:

$$
(\mathcal{P}) \begin{cases}-\operatorname{div}(a(x, u, \nabla u))=\mu & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded open domain of $\mathbb{R}^{N} \quad(N \geq 2)$ and
$A u=-\operatorname{div}(a(x, u, \nabla u))$ is a Leray-Lions operator defined from the weighted Sobolev spaces with variable exponent $W_{0}^{1, p(x)}(\Omega, v)$ into its dual $W^{-1, p^{\prime}(x)}\left(\Omega, v^{*}\right)$ with $v^{*}=v^{1-p^{\prime}(x)}$ and $\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1$. The datum μ is a measure that admits an L^{1}-dual composition.

Throughout the paper, we suppose that the exponent $p(\cdot)$ is an element of $C_{+}(\bar{\Omega})=\{$ log-Hölder continuous function $p(\cdot): \bar{\Omega} \rightarrow \mathbb{R}$ such that $\left.1<p_{-} \leq p(x) \leq p_{+}<N\right\}$ (where for all $h \in C_{+}(\bar{\Omega})$, we denote h_{+}and h_{-}by $h_{+}=\sup _{x \in \Omega} h(x)$ and $\left.h_{-}=\inf _{x \in \Omega} h(x)\right)$ and that v is a weight function defined on Ω (i.e., v is a measurable function which is strictly positive a.e. in Ω) satisfying:

$$
\begin{gather*}
v \in L_{l o c}^{1}(\Omega), \tag{1.1}\\
v^{\frac{-1}{p(x)-1}} \in L_{l o c}^{1}(\Omega), \tag{1.2}\\
v^{-s(x)} \in L^{1}(\Omega) \text { for some } s(x) \in\left(\frac{N}{p(x)}, \infty\right) \cap\left(\frac{1}{p(x)-1}, \infty\right) . \tag{1.3}
\end{gather*}
$$

The problem (\mathcal{P}) is studied where the following assumptions are satisfied: $\left(H_{1}\right)$ a is a Carathéodory function satisfying:

$$
\begin{gather*}
|a(x, r, \xi)| \leq \beta v^{\frac{1}{p(x)}}\left[b(x)+|r|^{p(x)-1}+v^{\frac{1}{p^{\prime}(x)}}(\gamma(r)|\xi|)^{p(x)-1}\right] \tag{1.4}\\
{[a(x, r, \xi)-a(x, r, \eta)](\xi-\eta) \geq 0 \quad \forall \xi, \eta \in \mathbb{R}^{N}} \tag{1.5}\\
a(x, r, \xi) \xi \geq \alpha v|\xi|^{p(x)} \tag{1.6}
\end{gather*}
$$

where $b(\cdot)$ is a positive function in $L^{p^{\prime}(x)}(\Omega), \gamma(r)$ is a continuous function and α, β are strictly positive constants.
$\left(H_{2}\right)$ The second member μ is supposed of the form:

$$
\begin{equation*}
\mu=f-\operatorname{div} F \tag{1.7}
\end{equation*}
$$

where $f \in L^{1}(\Omega)$ and $F \in\left(L^{p^{\prime}(x)}\left(\Omega, v^{*}\right)\right)^{N}$.
A typical example of the problem (\mathcal{P}) is the following involving the so-called $p(x)$-Laplacian operator with weight:

$$
\Delta_{v, p(x)} u=\operatorname{div}\left(v(x)|\nabla u|^{p(x)-2} \nabla u\right)
$$

The operator $\Delta_{v, p(x)}$ becomes p-Laplacian when $p(x) \equiv p$ (a constant) and $v(x) \equiv 1$. The $p(x)$-Laplacian operator with weight possesses more complicated nonlinearities than the classical p-Laplacian, for example, it is inhomogeneous with some degeneracy or singularity. For the applied background of $p(x)$-Laplacian, we refer to (see [1]). The study of differential equations with variable exponents has been a very active field in recent years, we find applications in electro-rheological fluids (see [1] and [2]) and in image processing (see [3]).

Under our assumptions (in particular (1.5), the problem (\mathcal{P}) does not admit, in general, a weak solution since the term $a(x, u, \nabla u)$ may not belong to $\left(L_{\text {loc }}^{1}(\Omega)\right)^{N}$. To overcome this difficulty we use in this paper the framework of L^{1}-version of Minty's lemma (similar to the one used in [4]). And due to the assumption (1.6) it may be a degenerated or singular problem. Note also that, since the datum is a measure, then the notion of a weak solution cannot be used,
hence it is replaced by another approach of solution calling $T-\nu-p(x)$-solution (see definition 3.1 below).

Dirichlet problem of type (\mathcal{P}) was considered in ([5] [6]), where in the first work the case of $p(x) \equiv p$ (a constant) and $v(x) \equiv 1$ is treated, while the second work concerns the degenerated case with $p(x) \equiv p$ (a constant). Hence our present paper can be seen as a generalization of the two works ([5] [6]). We also point out that the existence of solutions for elliptic equations with variable exponents can be found in [7] [8] and [9] and.

This paper is divided into three sections, organized as follows: In Section 2, we introduce and prove some properties of the weighted Sobolev spaces with variable exponent and in Section 3, we prove the existence of $T-v-p(x)$-solutions of our problem (\mathcal{P}). Among the research objectives of this article is to introduce it for applications in physics and also will be a platform for the problem systems of Dirichlet and others.

2. Weighted Sobolev Spaces with Variable Exponent

Let $p \in C_{+}(\bar{\Omega})$ and v be a weighted function in Ω.
We define the weighted Lebesgue space with variable exponents $L^{p(x)}(\Omega, v)$ as the set of all measurable functions $u: \Omega \rightarrow \mathbb{R}$ for which the convex weightmodular

$$
\rho_{v, p(x)}(u)=\int_{\Omega} v(x)|u|^{p(x)} \mathrm{d} x
$$

is finite. The expression

$$
\|u\|_{p(x), v}=\inf \left\{\mu>0: \int_{\Omega} v(x)\left|\frac{u}{\mu}\right|^{p(x)} \mathrm{d} x \leq 1\right\}
$$

defines a norm in $L^{p(x)}(\Omega, v)$, called the Luxemburg norm.
Proposition 2.1. The space $\left(L^{p(x)}(\Omega, v),\|\cdot\|_{p(x), v}\right)$ is a Banach space.
Proof. By considering the operator $M_{v^{\frac{1}{p(x)}}}: L^{p(x)}(\Omega, v) \rightarrow L^{p(x)}(\Omega)$ defined by

$$
M_{v^{\frac{1}{p(x)}}}(f)=f v^{\frac{1}{p(x)}}
$$

for all $f \in L^{p(x)}(\Omega, v)$, it's easy to show that $M_{v^{\frac{1}{p(x)}}}$ is an isomorphism and hence we can deduce.

Remark 2.1. When $v(x) \equiv 1$, the weighted Lebesgue spaces with variable exponent $L^{p(x)}(\Omega, v)$ coincides with the Lebesgue space with variable exponent $L^{p(x)}(\Omega)$.

The weight-modular $\rho_{v, p(x)}$ coincides with the modular $\rho_{p(x)}$ defined on $L^{p(x)}(\Omega)$ by $\rho_{p(x)}(u):=\int_{\Omega}|u|^{p(x)} \mathrm{d} x$ (for more details see [10] [11] [12] and [13]).

Lemma 2.1. For all function $u \in L^{p(x)}(\Omega, v)$, the following assertions are sa-

tisfied:

1) $\rho_{v, p(x)}(u)>1(=1 ;<1) \Leftrightarrow\|u\|_{p(x), v}>1(=1 ;<1)$, respectively.
2) If $\|u\|_{p(x), v}>1$, then $\|u\|_{p(x), v}^{p_{-}} \leq \rho_{v, p(x)}(u) \leq\|u\|_{p(x), v}^{p_{+}}$.
3) If $\|u\|_{p(x), v}<1$, then $\|u\|_{p(x), v}^{p_{+}} \leq \rho_{v, p(x)}(u) \leq\|u\|_{p(x), v}^{p_{-}}$.

Proof. It suffices to remark that $\rho_{v, p(x)}(u)=\rho_{p(x)}\left(v^{\frac{1}{p(x)}} u\right)$ and $\left\|v^{\frac{1}{p(x)}} u\right\|=\|u\|_{p(x), v}$, and using the analogous result in [13].

Proposition 2.2. Let Ω be a bounded open domain of \mathbb{R}^{N} and v be a weight function on Ω satifying the integrability condtions (1.1) and (1.2). Then $L^{p(x)}(\Omega, v) \hookrightarrow L_{\text {loc }}^{1}(\Omega)$.

Proof.

Let K be an included compact on Ω. By vertue of Hölder inequality we have,

$$
\begin{aligned}
\int_{K}|u| \mathrm{d} x & =\int_{K} \left\lvert\, u v^{\frac{1}{p(x)}} v^{\frac{-1}{p(x)}} \mathrm{d} x\right. \\
& \leq 2\left\||u| v^{\frac{1}{p(x)}}\right\|_{L^{p(x)}(K)}\left\|v^{\frac{-1}{p(x)}}\right\|_{L^{p^{\prime}(x)}(K)} \\
& \leq 2\|u\|_{p(x), v}\left(\int_{K} v^{\frac{-p^{\prime}(x)}{p(x)}} \mathrm{d} x+1\right)^{\frac{1}{p_{-}^{\prime}}} \\
& \leq 2\|u\|_{p(x), v}\left(\int_{K} v^{\frac{-1}{p(x)-1}} \mathrm{~d} x+1\right)^{\frac{1}{p_{-}^{\prime}}}
\end{aligned}
$$

Hence, the conditions (1.1) and (1.2) allow to conclude.
We define the weighted Sobolev space with variable exponents denoted $W^{1, p(x)}(\Omega, v)$, by

$$
W^{1, p(x)}(\Omega, v)=\left\{u \in L^{p(x)}(\Omega): \frac{\partial u}{\partial x_{i}} \in L^{p(x)}(\Omega, v), i=1, \cdots, N\right\}
$$

equipped with the norm

$$
\|u\|_{1, p(x), v}=\|u\|_{p(x)}+\sum_{i=1}^{N}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{p(x), v}
$$

which is equivalent to the Luxemburg norm

$$
\||u|\|=\inf \left\{\mu>0: \int_{\Omega}\left(\left|\frac{u}{\mu}\right|^{p(x)}+v(x) \sum_{i=1}^{N}\left|\frac{\frac{\partial u}{\partial x_{i}}}{\mu}\right|^{p(x)}\right) \mathrm{d} x \leq 1\right\} .
$$

Proposition 2.3. Let v be a weight function on Ω satisfying the conditions (1.1) and (1.2). Then the space $\left(W^{1, p(x)}(\Omega, v),\|\cdot\|_{1, p(x), v}\right)$ is a Banach space.

Proof. Let $\left(u_{n}\right)_{n}$ be a Cauchy sequence in $\left(W^{1, p(x)}(\Omega, v),\|\cdot\|_{1, p(x), v}\right)$. Then $\left(u_{n}\right)_{n}$ is a Cauchy sequence in $L^{p(x)}(\Omega)$ and $\left(\frac{\partial u_{n}}{\partial x_{i}}\right)_{n}$ is also a Cauchy sequence in $L^{p(x)}(\Omega, v)$ for all $i=1, \cdots, N$. By vertue of proposition 2.1, we can deduce that there exist $u \in L^{p(x)}(\Omega)$ and $v_{i} \in L^{p(x)}(\Omega, v)$ such that:

$$
u_{n} \rightarrow u \text { in } L^{p(x)}(\Omega)
$$

and

$$
\frac{\partial u_{n}}{\partial x_{i}} \rightarrow v_{i} \text { in } L^{p(x)}(\Omega, v) \text { for all } i=1, \cdots, N .
$$

Moreover, by using proposition 2.2 , we have $L^{p(x)}(\Omega, v) \subset L_{\text {loc }}^{1}(\Omega) \subset D^{\prime}(\Omega)$. Thus, for all $\varphi \in D(\Omega)$ one has,

$$
\left\langle T_{v_{i}}, \varphi\right\rangle=\lim _{n \rightarrow \infty}\left\langle T_{\frac{u_{n}}{\partial u_{n}}}, \varphi\right\rangle=-\lim _{n \rightarrow \infty}\left\langle T_{u_{n}}, \frac{\partial \varphi}{\partial x_{i}}\right\rangle=-\left\langle T_{u}, \frac{\partial \varphi}{\partial x_{i}}\right\rangle=\left\langle\frac{T_{\frac{\partial}{u}}}{\frac{\partial x_{i}}{\partial x_{i}}}, \varphi\right\rangle .
$$

Hence $T_{v_{i}}=T_{\frac{\partial u}{\partial x_{i}}}$, i.e. $v_{i}=\frac{\partial u}{\partial x_{i}}$.
Consequently,

$$
u \in W^{1, p(x)}(\Omega, v)
$$

and

$$
u_{n} \rightarrow u \text { in } W^{1, p(x)}(\Omega, v) .
$$

Remark 2.2. Since v satisfies the conditions (1.1) and (1.2), it s easy to prove that $C_{0}^{\infty}(\Omega)$ is included in $W^{1, p(x)}(\Omega, v)$; then we can define the following space

$$
W_{0}^{1, p(x)}(\Omega, v)=\overline{C_{0}^{\infty}(\Omega)^{-l} \cdot \|_{1, p(x), v}},
$$

which is also a Banach space under the norm $\|\cdot\|_{1, p(x), v}$.
Proposition 2.4. (Characterization of the dual space).
Let $p(.) \in C_{+}(\bar{\Omega})$ and v be a weight function on Ω satisfying the conditions (1.1) and (1.2). Then for all $G \in\left(W_{0}^{1, p(x)}(\Omega, v)\right)^{*}$, there exists a unique system of functions $\left(g_{0}, g_{1}, \cdots, g_{N}\right) \in L^{p^{\prime}(x)}(\Omega) \times\left(L^{p^{\prime}(x)}\left(\Omega, v^{1-p^{\prime}(x)}\right)\right)^{N}$ such that,

$$
G(f)=\int_{\Omega} f(x) g_{0}(x) \mathrm{d} x+\sum_{i=1}^{N} \int_{\Omega} \frac{\partial f}{\partial x_{i}} g_{i}(x) \mathrm{d} x, \forall f \in W_{0}^{1, p(x)}(\Omega, v) .
$$

Proof. The proof of this proposition is similar to that used in [12] (theorem3.16).

Now, let us introduce the function p_{s} defined by

$$
p_{s}(x)=\frac{p(x) s(x)}{s(x)+1} .
$$

We have

$$
p_{s}(x)<p(x) \text { a.e. in } \Omega
$$

and

$$
\left\{\begin{array}{l}
p_{s}^{*}(x)=\frac{N p_{s}(x)}{N-p_{s}(x)}=\frac{N p(x) s(x)}{N(s(x)+1)-p(x) s(x)} \text { if } p(x) s(x)<N(s(x)+1), \\
p_{s}^{*}(x) \text { is arbitrary, otherwise. }
\end{array}\right.
$$

Proposition 2.5. Let $p, s \in C_{+}(\bar{\Omega})$ and v be a weight function on Ω which satisfies the conditions (1.1), (1.2) and (1.3). Then $W^{1, p(x)}(\Omega, v) \hookrightarrow W^{1, p_{s}(x)}(\Omega)$.

Proof. According to the Hölder inequality and the condition (1.3), one has

$$
\begin{aligned}
\int_{\Omega}|v(x)|^{p_{s}(x)} \mathrm{d} x & =\int_{\Omega}|v(x)|^{p_{s}(x)} v^{\frac{p_{s}(x)}{p(x)}} v^{\frac{-p_{s}(x)}{p(x)}} \mathrm{d} x \\
& \leq\left(\frac{1}{\left(\frac{p}{p_{s}}\right)_{-}}+\frac{1}{(s+1)^{-}}\right)\left\|\left.v(x)\right|^{p_{s}(x)} v^{\frac{p_{s}(x)}{p(x)}}\right\|_{\frac{p(x)}{p_{s}(x)}}\left\|v^{\frac{-p_{s}(x)}{p(x)}}\right\|_{s(x)+1} \\
& \leq\left(\frac{1}{\left(\frac{p}{p_{s}}\right)_{-}}+\frac{1}{(s+1)^{-}}\right)\left(\left(\int_{\Omega}|v(x)|^{p(x)} v(x) \mathrm{d} x\right)^{\frac{1}{\gamma_{1}}}\left(\int_{\Omega} v(x)^{-s(x)} \mathrm{d} x\right)^{\frac{1}{\frac{\gamma_{1}}{1}}}\right. \\
& \leq C\left(\int_{\Omega}|v(x)|^{p(x)} v(x) \mathrm{d} x\right)^{\frac{1}{\gamma_{1}}}\left(\int_{\Omega} v(x)^{-s(x)} \mathrm{d} x\right)^{\frac{1}{\gamma_{1}}} \\
& \leq C\left(\int_{\Omega}|v(x)|^{p(x)} v(x) \mathrm{d} x\right)^{\frac{1}{\gamma_{1}}} .
\end{aligned}
$$

If we take $v=\frac{\partial u}{\partial x_{i}}$, we then obtain

$$
\int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p_{s}(x)} \mathrm{d} x \leq C\left(\int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p(x)} v(x) \mathrm{d} x\right)^{\frac{1}{\gamma_{1}}}
$$

where

$$
\gamma_{1}= \begin{cases}\left(\frac{p}{p_{s}}\right)_{-} & \text {if }\left\|\left.\frac{\partial u}{\partial x_{i}}(x)\right|^{p_{s}(x)} v^{\frac{p_{s}(x)}{p(x)}}\right\|_{\frac{p(x)}{p_{s}(x)}} \geq 1, \\ \left(\frac{p}{p_{s}}\right)^{+} & \text {if }\left\|\left.\frac{\partial u}{\partial x_{i}}(x)\right|^{p_{s}(x)} v^{\frac{p_{s}(x)}{p(x)}}\right\|_{\frac{p(x)}{p_{s}(x)}}<1\end{cases}
$$

Consequently, we can write

$$
\left\|\frac{\partial u}{\partial x_{i}}(x)\right\|_{p_{s}(x)}^{\gamma_{2}} \leq C\left(\int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p(x)} v(x) \mathrm{d} x\right)^{\frac{1}{\gamma_{1}}} \leq C_{0} C_{1}\left\|\frac{\partial u}{\partial x_{i}}(x)\right\|_{p(x), v}^{\frac{\gamma_{3}}{\gamma_{1}}}
$$

where

$$
\gamma_{2}= \begin{cases}\left(p_{s}\right)_{-} & \text {if }\left\|\frac{\partial u}{\partial x_{i}}(x)\right\|_{p_{s}(x)} \geq 1 \\ \left(p_{s}\right)^{+} & \text {if }\left\|\frac{\partial u}{\partial x_{i}}(x)\right\|_{p_{s}(x)}<1\end{cases}
$$

and

$$
\gamma_{3}= \begin{cases}p^{+} & \text {si }\left\|\frac{\partial u}{\partial x_{i}}(x)\right\|_{p(x), v} \geq 1, \\ p_{-} & \text {si }\left\|\frac{\partial u}{\partial x_{i}}(x)\right\|_{p(x), v}<1 .\end{cases}
$$

Thus

$$
\begin{equation*}
\left\|\frac{\partial u}{\partial x_{i}}\right\|_{p_{s}(x)} \leq C\left\|\frac{\partial u}{\partial x_{i}}\right\|_{p(x), v}^{\gamma_{\gamma_{1}}^{\gamma_{1}}}, i=1,2, \cdots, N . \tag{2.1}
\end{equation*}
$$

Note that $C=c\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ denotes some positive constant which may be changing step by step.

Since $p_{s}(x)<p(x)$ p.p. in Ω, then, there exists a positive constant C such that

$$
\|u\|_{L^{p s(x)}(\Omega)} \leq C\|u\|_{L^{p(x)}(\Omega)} .
$$

Thus, we conclude that

$$
W^{1, p(x)}(\Omega, v) \hookrightarrow W^{1, p_{s}(x)}(\Omega)
$$

Corollary 2.1. Let $p, s \in C_{+}(\bar{\Omega})$ and v be a weight on Ω which satisfies the conditions (1.1), (1.2) and (1.3). Then $W^{1, p(x)}(\Omega, v) \hookrightarrow \hookrightarrow L^{r(x)}(\Omega)$, for $1 \leq r(x)<p_{s}^{*}(x)$.

Corollary 2.2. Let $p \in C_{+}(\bar{\Omega})$ and v be a weight function on Ω which satisfies the conditions (1.1), (1.2) and (1.3). Then

$$
\|u\|_{L^{p(x)}(\Omega)} \leq C\|\nabla u\|_{L^{p(x)}(\Omega ; v)}, \quad \forall u \in \mathcal{C}_{0}^{\infty}(\Omega) .
$$

Proof. Let $u \in \mathcal{C}_{0}^{\infty}(\Omega)$. Since $1 \leq p(x)<p_{s}^{*}(x)$, we deduce by vertue of the embedding $W^{1, p_{s}(x)}(\Omega) \hookrightarrow L^{p(x)}(\Omega)$ that,

$$
\|u\|_{L^{p(x)}(\Omega)} \leq C_{1}\left(\|u\|_{L^{p_{s}(x)}(\Omega)}+\|\nabla u\|_{\left.L^{p_{s}(x)}(\Omega)\right)^{N}}\right)
$$

Thus, in view of the proposition 2.5, we obtain

$$
\|u\|_{L^{p(x)}(\Omega)} \leq C_{2}\|\nabla u\|_{L^{p_{s}}(\Omega)} \leq C_{3}\|\nabla u\|_{L^{p(x)}(\Omega ; v)},
$$

which allows to conclude that

$$
\|u\|_{L^{p(x)}(\Omega)} \leq C\|\nabla u\|_{L^{p(x)}(\Omega ; v)}
$$

3. Existence Result

Consider the nonhomogeneous nonlinear Dirichlet boundary problem:

$$
(\mathcal{P})\left\{\begin{array}{l}
-\operatorname{div}(a(x, u, \nabla u))=-\operatorname{div} F \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

Definition 3.1. A function u is called a $T-v-p(x)$-solution of problem (\mathcal{P}) if.

$$
\left\{\begin{array}{l}
u \in W_{0}^{1, p(x)}(\Omega, v), \\
\int_{\Omega} a(x, u, \nabla u) \nabla T_{k}(u-\varphi) \mathrm{d} x=\int_{\Omega} f T_{k}(u-\varphi) \mathrm{d} x+\int_{\Omega} F \nabla T_{k}(u-\varphi) \mathrm{d} x, \forall \varphi \in W_{0}^{1, p(x)}(\Omega, v) \cap L^{\infty}(\Omega) .
\end{array}\right.
$$

Theorem 3.1. Let suppose that the assumptions (1.1)-(1.7) are satisfied. Then the problem (\mathcal{P}) has at least one $T-v-p(x)$-solution.

Remark 3.1. Note that in the particular case where $p(.) \equiv p$ (constant), $\gamma(r)=1$ and $v=1$, the same result is proved in [14] by using the approach of pseudo-monotonicity.

3.1. Approximate Problem

Let $\left(f_{n}\right)_{n}$ be a sequence of functions in $L^{\infty}(\Omega)$ which converges strongly to f in $L^{1}(\Omega)$ such that $\left\|f_{n}\right\|_{L^{\infty}(\Omega)} \leq\|f\|_{L^{\infty}(\Omega)}$. For $n \geq 1$, we consider the approximate problem of (\mathcal{P})

$$
\left(\mathcal{P}_{n}\right)\left\{\begin{array}{l}
u_{n} \in W_{0}^{1, p(x)}(\Omega, v) \\
-\operatorname{div}\left(a\left(x, T_{n}\left(u_{n}\right), \nabla u_{n}\right)\right)=f_{n}-\operatorname{div} F \quad \text { in } \Omega
\end{array}\right.
$$

This section is devoted to establishing the existing solution for the approximate problem $\left(\mathcal{P}_{n}\right)$.

Theorem 3.2. The operator A_{k} defined by,

$$
\begin{aligned}
& A_{k}: W_{0}^{1, p(x)}(\Omega, v) \rightarrow W^{-1, p^{\prime}(x)}\left(\Omega, v^{*}\right) \\
& u \mapsto A_{k} u=-\operatorname{div}\left(a\left(x, T_{k}(u), \nabla u\right)\right)
\end{aligned}
$$

is bounded, coercive, hemicontinuous and pseudo-monotone.

Proof of Theorem 3.2

- The operator A_{k} is bounded. Indeed for all $u, v \in W_{0}^{1, p(x)}(\Omega, v)$, one has

$$
\begin{aligned}
& \left|\left\langle A_{k} u, v\right\rangle\right|=\left|\int_{\Omega} a\left(x, T_{k}(u), \nabla u\right) \nabla v \mathrm{~d} x\right|=\left|\int_{\Omega} a\left(x, T_{k}(u), \nabla u\right) v^{\frac{-1}{p(x)}} \nabla v v^{\frac{1}{p(x)}} \mathrm{d} x\right| \\
& \leq\left(\frac{1}{p_{-}}+\frac{1}{p_{-}^{\prime}}\right)\left\|a\left(x, T_{k}(u), \nabla u\right) v^{\frac{-1}{p(x)}}\right\|_{L^{p^{\prime}(x)}(\Omega)}\left\|\nabla v v^{\frac{1}{p(x)}}\right\|_{L^{p(x)}(\Omega)} \\
& \leq 2\left(\int_{\Omega}\left|a\left(x, T_{k}(u), \nabla u\right) v^{\frac{-1}{p(x)}}\right|^{p^{\prime}(x)} \mathrm{d} x\right)^{\frac{1}{p_{-}^{\prime}}}\|\nabla v\|_{L^{p(x)}(\Omega, v)} \\
& \leq 2\left(\int_{\Omega}\left(b(x)+\left|T_{k}(u)\right|^{p(x)-1}+v^{\frac{1}{p^{\prime}(x)}}\left(\gamma\left(T_{k}(u)\right)|\nabla u|\right)^{p(x)-1}\right)^{p^{p^{\prime}(x)}} \mathrm{d} x\right)^{\frac{1}{p_{-}^{\prime}}}\|\nabla v\|_{L^{p(x)}(\Omega, v)} \\
& \leq C_{1}\left(\int_{\Omega}\left(b(x)^{p^{p^{\prime}(x)}}+\left|T_{k}(u)\right|^{p(x)}+v(x)\left(\gamma\left(T_{k}(u)\right)|\nabla u|\right)^{p(x)}\right) \mathrm{d} x\right)^{\frac{1}{p_{-}^{\prime}}}\|v\|_{w_{0}^{1, p(x)}(\Omega, v)}
\end{aligned}
$$

$$
\leq\left(C_{1}+C_{2}+C_{3}\left(\int_{\Omega}\left|T_{k}(u)\right|^{p(x)}+v(x)\left(\gamma\left(T_{k}(u)\right)|\nabla u|\right)^{p(x)} \mathrm{d} x\right)^{\frac{1}{p^{\prime}-}}\right)\|v\|_{W_{0}^{1, p(x)}(\Omega, v)} .
$$

Since $\gamma($.$) is continuous and \left|T_{k}(u)\right| \leq k$ a.e. in Ω, then $\gamma\left(T_{k}(u)\right)|\nabla u|$ is bounded in $W_{0}^{1, p(x)}(\Omega, v)$; hence the operator A_{k} is bounded.

- The operator A_{k} is hemicontinuous. Indeed, let t be a reality that tends to t_{0}. We have

$$
a\left(x, T_{k}(u+t v), \nabla T_{k}(u+t v)\right) \rightarrow a\left(x, T_{k}\left(u+t_{0} v\right), \nabla T_{k}\left(u+t_{0} v\right)\right), \text { a.e. in } \Omega .
$$

Since $\left(a\left(x, T_{k}(u+t v), \nabla T_{k}(u+t v)\right)\right)_{t}$ is bounded in $\left(L^{p^{\prime}}(\Omega)\right)^{N}$, we deduce that $A_{k}(u+t v)$ converges to $A_{k}\left(u+t_{0} v\right)$ weakly in $W^{-1, p^{\prime}(x)}\left(\Omega, v^{*}\right)$ as t tends to t_{0}.

- The operator A_{k} is coercive. Indeed, for all $u \in W_{0}^{1, p(x)}(\Omega, v)$, we have

$$
\frac{\left\langle A_{k} u, u\right\rangle}{\|u\|_{W_{0}^{1, p(x)}(\Omega, v)}} \geq \frac{\int_{\Omega} v(x)|\nabla u|^{p(x)} \mathrm{d} x}{\|u\|_{W_{0}^{1, p(x)}(\Omega, v)}} \geq \frac{\|u\|_{W_{0}^{1, p(x)}(\Omega, v)}^{\delta}}{\|u\|_{W_{0}^{1, p(x)}(\Omega, v)}} \geq\|u\|_{W_{0}^{1, p(x)}(\Omega, v)}^{\delta-1}
$$

where

$$
\delta= \begin{cases}p_{-} & \text {if }\|u\|_{W_{0}^{1, p(x)}(\Omega, v)} \leq 1 \\ p^{+} & \text {if }\|u\|_{W_{0}^{1, p(x)}(\Omega, v)}>1\end{cases}
$$

Obviously, we have $\|u\|_{W_{0}^{1, p(x)}(\Omega, v)}^{\delta-1}$ tends to infinity, when $\|u\|_{W_{0}^{1, p(x)}(\Omega, v)} \rightarrow \infty$, hence we conclude.

- It remains to show that A_{k} is pseudo-monotone: Let $\left(u_{j}\right)_{j}$ be a sequence in $W_{0}^{1, p(x)}(\Omega, v)$ such that

$$
\begin{equation*}
u_{j} \rightharpoonup u \text { in } W_{0}^{1, p(x)}(\Omega, v) \text { and } \limsup \left\langle A_{k} u_{j}, u_{j}-u\right\rangle \leq 0 \tag{3.1}
\end{equation*}
$$

Firstly, we prove that $A_{k} u_{j}$ converges to $A_{k} u$ weakly in $W^{-1, p^{\prime}(x)}\left(\Omega, v^{*}\right)$. Indeed, since $\left(u_{j}\right)_{j}$ is a bounded sequence in $W_{0}^{1, p(x)}(\Omega, v)$, then by the growth condition, $\left(A_{k} u_{j}\right)_{j}$ is bounded in $W^{-1, p^{\prime}(x)}\left(\Omega, v^{*}\right)$, therefore there exists a function $h_{k}=\left(h_{k i}\right)$ such that,

$$
\begin{align*}
& A_{k} u_{j} \rightharpoonup h_{k} \text { dans } W^{-1, p^{\prime}(x)}\left(\Omega, v^{*}\right) \\
& a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u_{j}\right) \rightharpoonup h_{k i} \text { in } L^{p^{\prime}(x)}\left(\Omega, v^{*}\right), \text { for } i=1, \cdots, N \tag{3.2}
\end{align*}
$$

Hence, we can write

$$
\begin{equation*}
\underset{j}{\limsup }\left\langle A_{k} u_{j}, u_{j}\right\rangle \leq\left\langle h_{k}, u\right\rangle \tag{3.3}
\end{equation*}
$$

On the one hand, by (1.5), we have

$$
\begin{aligned}
& \sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla v\right)-a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u_{j}\right)\right)\left(\frac{\partial v}{\partial x_{i}}-\frac{\partial u_{j}}{\partial x_{i}}\right) \mathrm{d} x \geq 0 \\
& \forall v \in W_{0}^{1, p(x)}(\Omega, v)
\end{aligned}
$$

Then

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u_{j}\right) \frac{\partial u_{j}}{\partial x_{i}} d x \\
& \geq \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u_{j}\right) \frac{\partial v}{\partial x_{i}} \mathrm{~d} x-\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla v\right) \frac{\partial v}{\partial x_{i}} \mathrm{~d} x \tag{3.4}\\
& \quad+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla v\right) \frac{\partial u_{j}}{\partial x_{i}} \mathrm{~d} x .
\end{align*}
$$

Since $u_{j} \rightarrow u$ strongly in $L^{p(x)}(\Omega)$ and a.e. in Ω, then $a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla v\right) \rightarrow a_{i}\left(x, T_{k}(u), \nabla v\right)$ strongly in $L^{p^{\prime}(x)}\left(\Omega, v^{*}\right)$ for $i=1, \cdots, N$.

Therefore,

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla v\right) \frac{\partial v}{\partial x_{i}} \mathrm{~d} x \rightarrow \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}(u), \nabla v\right) \frac{\partial v}{\partial x_{i}} \mathrm{~d} x \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla v\right) \frac{\partial u_{j}}{\partial x_{i}} \mathrm{~d} x \rightarrow \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}(u), \nabla v\right) \frac{\partial u}{\partial x_{i}} \mathrm{~d} x \tag{3.7}
\end{equation*}
$$

By vertue of (3.2), we have

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u_{j}\right) \frac{\partial v}{\partial x_{i}} \mathrm{~d} x \rightarrow \sum_{i=1}^{N} \int_{\Omega} h_{k i} \frac{\partial v}{\partial x_{i}} \mathrm{~d} x \tag{3.8}
\end{equation*}
$$

Now, combining (3.4)-(3.6) and (3.7), we obtain

$$
\begin{aligned}
& \lim _{j \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u_{j}\right) \frac{\partial u_{j}}{\partial x_{i}} \mathrm{~d} x \\
& \geq \sum_{i=1}^{N} \int_{\Omega} h_{k i} \frac{\partial v}{\partial x_{i}} \mathrm{~d} x+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}(u), \nabla v\right) \frac{\partial u}{\partial x_{i}} \mathrm{~d} x \\
& \quad-\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}(u), \nabla v\right) \frac{\partial v}{\partial x_{i}} \mathrm{~d} x .
\end{aligned}
$$

Due to (3.3), we deduce that

$$
\begin{aligned}
\sum_{i=1}^{N} \int_{\Omega} h_{k i} \frac{\partial u}{\partial x_{i}} \mathrm{~d} x \geq & \sum_{i=1}^{N} \int_{\Omega} h_{k i} \frac{\partial v}{\partial x_{i}} \mathrm{~d} x+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}(u), \nabla v\right) \frac{\partial u}{\partial x_{i}} \mathrm{~d} x \\
& -\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}(u), \nabla v\right) \frac{\partial v}{\partial x_{i}} \mathrm{~d} x .
\end{aligned}
$$

This implies that,

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla v\right)-h_{k i}\right)\left(\frac{\partial v}{\partial x_{i}}-\frac{\partial u_{j}}{\partial x_{i}}\right) \mathrm{d} x \geq 0, \quad \forall v \in W_{0}^{1, p(x)}(\Omega, v) \tag{3.9}
\end{equation*}
$$

On the other hand, choose $v=u+t w$ in (3.9) (with $t \in]-1,1[$). It's easy to see that

$$
\left.\int_{\Omega}\left(a\left(x, T_{k}(u), \nabla(u+t w)\right)-h_{k}\right) \nabla w \mathrm{~d} x=0, \quad \forall w \in W_{0}^{1, p(x)}(\Omega, v), \forall t \in\right]-1,1[
$$

Hence $A_{k} u=h_{k} \in W^{-1, p^{\prime}(x)}\left(\Omega, v^{*}\right)$, and we deduce that $A_{k} u_{j}$ weakly converges to $A_{k} u$ in $W^{-1, p^{\prime}(x)}\left(\Omega, v^{*}\right)$.

Secondly, we prove that $\left\langle A_{k} u_{j}, u_{j}\right\rangle \rightarrow\left\langle A_{k} u, u\right\rangle$. Indeed, in view of (3.2) and (3.3), we have

$$
\limsup \left\langle A_{k} u_{j}, u_{j}\right\rangle \leq\left\langle A_{k} u, u\right\rangle=\left\langle h_{k}, u\right\rangle .
$$

It remains to show that,

$$
\liminf \left\langle A_{k} u_{j}, u_{j}\right\rangle \geq\left\langle A_{k} u, u\right\rangle=\left\langle h_{k}, u\right\rangle .
$$

For that, we have

$$
\begin{aligned}
\left\langle A_{k} u_{j}, u_{j}\right\rangle= & \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u_{j}\right) \frac{\partial u_{j}}{\partial x_{i}} \mathrm{~d} x \\
= & \sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u_{j}\right)-a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u\right)\right)\left(\frac{\partial u_{j}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) \mathrm{d} x \\
& +\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u\right)\left(\frac{\partial u_{j}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) \mathrm{d} x \\
& +\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u_{j}\right) \frac{\partial u}{\partial x_{i}} \mathrm{~d} x .
\end{aligned}
$$

Since $\quad \sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u_{j}\right)-a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u\right)\right)\left(\frac{\partial u_{j}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) \mathrm{d} x \geq 0 \quad, \quad$ we deduce that

$$
\begin{aligned}
\left\langle A_{k} u_{j}, u_{j}\right\rangle \geq & \left.\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u\right)\right)\left(\frac{\partial u_{j}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) \mathrm{d} x \\
& +\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u_{j}\right) \frac{\partial u}{\partial x_{i}} \mathrm{~d} x .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\liminf \left\langle A_{k} u_{j}, u_{j}\right\rangle \geq & \geq \liminf \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u\right)\left(\frac{\partial u_{j}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) \mathrm{d} x \\
& +\liminf \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, T_{k}\left(u_{j}\right), \nabla u_{j}\right) \frac{\partial u}{\partial x_{i}} \mathrm{~d} x .
\end{aligned}
$$

Hence, $\liminf \left\langle A_{k} u_{j}, u_{j}\right\rangle \geq \sum_{i=1}^{N} \int_{\Omega} h_{i} \frac{\partial u}{\partial x_{i}} \mathrm{~d} x \geq\left\langle A_{k} u, u\right\rangle$. This achieved the proof.

3.2. Proof of Theorem 3.1

The proof is divided into 4 steps.
Step 1: We will show that $\left(u_{n}\right)_{n}$ is a Cauchy sequence in measure. Using $T_{k}\left(u_{n}\right)$ as a test function in $\left(\mathcal{P}_{n}\right)$ leads to,

$$
\int_{\Omega} a\left(x, T_{k}\left(u_{n}\right), \nabla u_{n}\right) \nabla T_{k}\left(u_{n}\right) \mathrm{d} x=\int_{\Omega} f_{n} T_{k}\left(u_{n}\right) \mathrm{d} x+\int_{\Omega} F \cdot \nabla T_{k}\left(u_{n}\right) \mathrm{d} x .
$$

From (1.6) and (1.7), we deduce for all $k>1$ that,

$$
\begin{aligned}
& \alpha \sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p(x)} v(x) \mathrm{d} x \\
& \leq k\|f\|_{L^{1}}+\sum_{i=1}^{N} \int_{\Omega}\left|F_{i}\right| v(x)^{\frac{-1}{p(x)}}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right| v(x)^{\frac{1}{p(x)}} \mathrm{d} x \\
& \leq k\|f\|_{L^{1}}+\sum_{i=1}^{N} \int_{\Omega}\left|F_{i}\right| v(x)^{\frac{-1}{p(x)}}\left(\frac{\alpha}{2}\right)^{\frac{-1}{p(x)}}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right| v(x)^{\frac{1}{p(x)}}\left(\frac{\alpha}{2}\right)^{\frac{1}{p(x)}} \mathrm{d} x .
\end{aligned}
$$

Now, by Young's inequality, we obtain
$\alpha \sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p(x)} v(x) \mathrm{d} x$
$\leq k\|f\|_{L^{1}}+\sum_{i=1}^{N} \int_{\Omega}\left|F_{i}\right|^{p^{\prime}(x)} v(x)^{\frac{-p^{\prime}(x)}{p(x)}} \frac{C(\alpha)}{p^{\prime}(x)} \mathrm{d} x+\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p(x)} v(x) \frac{\alpha}{2 p(x)} \mathrm{d} x$
$\leq k\|f\|_{L^{1}}+\sum_{i=1}^{N} \int_{\Omega}\left|F_{i}\right|^{p^{\prime}(x)} v(x)^{\frac{-p^{\prime}(x)}{p(x)}} C\left(\alpha, p^{\prime-}\right) \mathrm{d} x+\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p(x)} v(x) \frac{\alpha}{2 p^{-}} \mathrm{d} x$.
Then, one has

$$
\begin{aligned}
& \left(1-\frac{1}{2 p^{-}}\right) \alpha \sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p(x)} v(x) \mathrm{d} x \\
& \leq k\|f\|_{L^{1}}+\frac{C\left(\alpha, p^{\prime-}\right)}{k}+\sum_{i=1}^{N} \int_{\Omega}\left|F_{i}\right|^{p^{\prime}(x)} v(x)^{\frac{-p^{\prime}(x)}{p(x)}} \mathrm{d} x
\end{aligned}
$$

for $k \geq 1$, which implies that

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p(x)} v(x) \mathrm{d} x \leq C k \text { for all } k>1 \tag{3.11}
\end{equation*}
$$

Let $k>0$ large enough and B_{R} be a ball of Ω. Using (3.11) and applying Hölder's inequality and Poincaré's inequality, we obtain

$$
\begin{gather*}
k \text { meas }\left(\left\{\left|u_{n}\right|>k\right\} \cap B_{R}\right) \\
=\int_{\left\{u_{n} \mid>k\right\} \cap B_{R}}\left|T_{k}\left(u_{n}\right)\right| \mathrm{d} x \leq\left\|T_{k}\left(u_{n}\right)\right\|_{L^{1}(\Omega)} \leq C\left\|T_{k}\left(u_{n}\right)\right\|_{L^{p(x)}(\Omega)} \\
\leq C\left\|\nabla T_{k}\left(u_{n}\right)\right\|_{p(x), v} \text { (by vertue of Corollary 2.2) } \tag{3.12}\\
\leq C\left(\int_{\Omega} \sum_{i=1}^{N}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p(x)} v(x) \mathrm{d} x\right)^{\frac{1}{\kappa}} \quad \text { (by vertue of Lemma 2.1) } \\
\leq C k^{\frac{1}{\kappa}},
\end{gather*}
$$

where

$$
\kappa= \begin{cases}p_{-} & \text {if }\left\|\nabla T_{k}\left(u_{n}\right)\right\|_{p(x), v} \leq 1 \\ p_{+} & \text {if }\left\|\nabla T_{k}\left(u_{n}\right)\right\|_{p(x), v}>1\end{cases}
$$

which implies that,

$$
\begin{equation*}
\operatorname{meas}\left(\left\{\left|u_{n}\right|>k\right\} \cap B_{R}\right) \leq \frac{C}{k^{1-\frac{1}{\kappa}}}, \quad \forall k>1 \tag{3.13}
\end{equation*}
$$

So, we have, for all $\delta>0$,

$$
\begin{align*}
& \text { meas }\left(\left\{\left|u_{n}-u_{m}\right|>\delta\right\} \cap B_{R}\right) \\
& \leq \text { meas }\left(\left\{\left|u_{n}\right|>k\right\} \cap B_{R}\right)+\text { meas }\left(\left\{\left|u_{m}\right|>k\right\} \cap B_{R}\right) \tag{3.14}\\
& \quad+\text { meas }\left(\left\{\left|T_{k}\left(u_{n}\right)-T_{k}\left(u_{m}\right)\right|>\delta\right\}\right)
\end{align*}
$$

Since $\left(T_{k}\left(u_{n}\right)\right)_{n}$ is bounded in $W_{0}^{1, p(x)}(\Omega, v)$, there exists a subsequence, still denoted by $T_{k}\left(u_{n}\right)$ and a measurable function $v_{k} \in W_{0}^{1, p(x)}(\Omega, v)$ such that $T_{k}\left(u_{n}\right)$ converges to v_{k} weakly in $W_{0}^{1, p(x)}(\Omega, v)$, strongly in $L^{p(x)}(\Omega)$ and almost everywhere in Ω. Hence $\left(T_{k}\left(u_{n}\right)\right)_{n}$ is a Cauchy sequence in measure in Ω.

Let $\varepsilon>0$. Then by (3.13), there exists $k(\varepsilon)>0$ such that,

$$
\operatorname{meas}\left(\left\{\left|u_{n}-u_{m}\right|>\delta\right\} \cap B_{R}\right)<\varepsilon, \forall n, m \geq n_{0}(k(\varepsilon), \delta, R) .
$$

This proves that $\left(u_{n}\right)_{n}$ is a Cauchy sequence in measure in B_{R}, thus converges almost everywhere to some measurable function u. Hence

$$
\begin{align*}
& T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) \text { weakly in } W_{0}^{1, p(x)}(\Omega, v), \tag{3.15}\\
& \text { strongly in } W^{p(x)}(\Omega) \text {, and a.e. in } \Omega .
\end{align*}
$$

Step 2: We shall prove that

$$
\begin{align*}
& \int_{\Omega} a\left(x, u_{n}, \nabla \varphi\right) \nabla T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x \\
& \leq \int_{\Omega} f_{n} T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x \tag{3.16}\\
& \forall \varphi \in W_{0}^{1, p(x)}(\Omega, v) \cap L^{\infty}(\Omega) .
\end{align*}
$$

Let $\varphi \in W_{0}^{1, p(x)}(\Omega, v) \cap L^{\infty}(\Omega)$ and let n be large enough ($\left.n \geq k+\|\varphi\|_{\infty}\right)$. Using the admissible test function $T_{k}\left(u_{n}-\varphi\right)$ in $\left(\mathcal{P}_{n}\right)$ leads to

$$
\int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla\left(T_{k}\left(u_{n}-\varphi\right)\right) \mathrm{d} x=\int_{\Omega} f_{n} T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x, \text { (3.17) }
$$

i.e.,

$$
\begin{align*}
& \int_{\Omega} a\left(x, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x+\int_{\Omega} a\left(x, u_{n}, \nabla \varphi\right) \nabla T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x \\
& -\int_{\Omega} a\left(x, u_{n}, \nabla \varphi\right) \nabla T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x=\int_{\Omega} f_{n} T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x, \tag{3.18}
\end{align*}
$$

which implies that

$$
\begin{align*}
& \int_{\Omega}\left(a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla \varphi\right)\right) \nabla T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x \\
& +\int_{\Omega} a\left(x, u_{n}, \nabla \varphi\right) \nabla T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x=\int_{\Omega} f_{n} T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x+\int_{\Omega} F \nabla T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x . \tag{3.19}
\end{align*}
$$

Thanks to assumption (1.5) and the definition of truncation function, we have

$$
\begin{equation*}
\int_{\Omega}\left(a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla \varphi\right)\right) \nabla T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x \geq 0 \tag{3.20}
\end{equation*}
$$

Combining (3.19) and (3.20), we obtain (3.16).
Step 3: We claim that

$$
\begin{align*}
& \int_{\Omega} a(x, u, \nabla \varphi) \nabla T_{k}(u-\varphi) \mathrm{d} x \tag{3.21}\\
& \leq \int_{\Omega} f T_{k}(u-\varphi) \mathrm{d} x+\int_{\Omega} F \nabla T_{k}(u-\varphi) \mathrm{d} x \quad \forall \varphi \in W_{0}^{1, p(x)}(\Omega, v) \cap L^{\infty}(\Omega) .
\end{align*}
$$

Let $M=k+\|\varphi\|_{\infty}$. Since $T_{M}\left(u_{n}\right)$ converges to $T_{M}(u)$ weakly in $W_{0}^{1, p(x)}(\Omega, v)$, then

$$
\begin{equation*}
T_{k}\left(u_{n}-\varphi\right) \rightharpoonup T_{k}(u-\varphi) \quad \text { weakly in } W_{0}^{1, p(x)}(\Omega, v) \tag{3.22}
\end{equation*}
$$

Thanks to assumption (1.4), we have

$$
\begin{align*}
& \left|a\left(x, T_{M}\left(u_{n}\right), \nabla \varphi\right)\right|^{p^{\prime}(x)} v^{\frac{p^{\prime}(x)}{p(x)}} \\
& \leq \beta\left[b(x)+\left|T_{M}\left(u_{n}\right)\right|^{p(x)-1}+v^{\frac{1}{p^{\prime}(x)}}\left(\gamma\left(T_{M}\left(u_{n}\right)\right)|\nabla \varphi|\right)^{p(x)-1}\right]^{p^{\prime}(x)} \tag{3.23}\\
& \leq C\left[b(x)^{p^{\prime}(x)}+\left|T_{M}\left(u_{n}\right)\right|^{p(x)}+v(x) \gamma_{0}^{p(x)}|\nabla \varphi|^{p(x)}\right],
\end{align*}
$$

where $\gamma_{0}=\sup \left\{|\gamma(s)|:|s| \leq k+\|\varphi\|_{\infty}\right\}$ and C is a positive constant. Since $T_{M}\left(u_{n}\right)$ converges to $T_{M}(u)$ weakly in $W_{0}^{1, p(x)}(\Omega, v)$, strongly in $L^{p(x)}(\Omega)$ and a.e. in Ω, thus

$$
\left|a\left(x, T_{M}\left(u_{n}\right), \nabla \varphi\right)\right|^{p^{\prime}(x)} v^{\frac{p^{\prime}(x)}{p(x)}} \rightarrow\left|a\left(x, T_{M}(u), \nabla \varphi\right)\right|^{p^{\prime}(x)} v^{\frac{p^{\prime}(x)}{p(x)}} \text { a.e in } \Omega
$$

and

$$
\begin{aligned}
& C\left[b(x)^{p^{\prime}(x)}+\left|T_{M}\left(u_{n}\right)\right|^{p(x)}+v(x) \gamma_{0}^{p(x)}|\nabla \varphi|^{p(x)}\right] \\
& \rightarrow C\left[b(x)^{p^{\prime}(x)}+\left|T_{M}(u)\right|^{p(x)}+v(x) \gamma_{0}^{p(x)}|\nabla \varphi|^{p(x)}\right] .
\end{aligned}
$$

Combining (3.21), (3.22) and using Vitali's theorem, we obtain

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{n}, \nabla \varphi\right) \nabla T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x \rightarrow \int_{\Omega} a(x, u, \nabla \varphi) \nabla T_{k}(u-\varphi) \mathrm{d} x . \tag{3.24}
\end{equation*}
$$

Now, we show that

$$
\begin{equation*}
\int_{\Omega} f_{n} T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x \rightarrow \int_{\Omega} f T_{k}(u-\varphi) \mathrm{d} x \tag{3.25}
\end{equation*}
$$

In the first time, we have $f_{n} T_{k}\left(u_{n}-\varphi\right) \rightarrow f T_{k}(u-\varphi)$ a.e in Ω, $\left|f_{n} T_{k}\left(u_{n}-\varphi\right)\right| \leq k\left|f_{n}\right|$ and $k\left|f_{n}\right| \rightarrow k|f|$ in $L^{1}(\Omega)$. In the second time, by using Vitali's theorem we obtain (3.25).

Since $F \in\left(L^{p^{\prime}(x)}\left(\Omega, v^{*}\right)\right)^{N}$, one has

$$
\begin{equation*}
\int_{\Omega} F \nabla T_{k}\left(u_{n}-\varphi\right) \mathrm{d} x \rightarrow \int_{\Omega} F \nabla T_{k}(u-\varphi) \mathrm{d} x . \tag{3.26}
\end{equation*}
$$

Thanks to (3.24), (3.25) and (3.26), we obtain (3.21).
Step 4: In this step, we introduce the following generalization of Minty's lemma in weighted Sobolev space with variable exponents $W^{1, p(x)}(\Omega, v)$ (which is proved in [15]).

Lemma 3.1. ([15]) Let u be a measurable function such that $T_{k}(u) \in W_{0}^{1, p(x)}(\Omega, v)$ for every $k>0$. Then the following statements are equivalent:

1) $\int_{\Omega} a(x, u, \nabla \varphi) \nabla T_{k}(u-\varphi) \mathrm{d} x \leq \int_{\Omega} f T_{k}(u-\varphi) \mathrm{d} x+\int_{\Omega} F \nabla T_{k}(u-\varphi) \mathrm{d} x$,
2) $\int_{\Omega} a(x, u, \nabla u) \nabla T_{k}(u-\varphi) \mathrm{d} x=\int_{\Omega} f T_{k}(u-\varphi) \mathrm{d} x+\int_{\Omega} F \nabla T_{k}(u-\varphi) \mathrm{d} x$, for every $\varphi \in W_{0}^{1, p(x)}(\Omega, v) \cap L^{\infty}(\Omega)$ and for every $k>0$.

Finally, the result (3.21) and the lemma 3.1 lead to the completion of the proof of theorem 3.1.

4. Conclusion

In this article, we have demonstrated the existence of a solution of a problem
with a second measure member and in the space of Sobolev with variable exponent using Minty's lemma. It is a very important technique in which we use the notions of hemicontinuous and pseudo-monotonic instead of broad or strict monotony.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Ružička, M. (2000) Electrorheological Fluids: Modeling and Mathematical Theory (Lecture Notes in Mathematics, Vol. 1748). Springer, Berlin.
[2] Zhikov, V.V. (2004) On the Density of Smooth Functions in Sobolev-Orlicz Spaces. Zapiski Nauchnykh Seminarov POMI, 310, 67-81.
[3] Chen, Y., Levine, S. and Rao, M. (2006) Variable Exponent, Linear Growth Functionals in Image Restoration. SIAM Journal on Applied Mathematics, 66, 1383-1406. https://doi.org/10.1137/050624522
[4] Boccardo, L. and Orsina. L. (1999) Existence Resultats for Direchlet Problem in L^{1} via Minty's Lemma. Applicable Analysis, 76, 309-313.
https://doi.org/10.1080/00036810008840887
[5] Boccardo, L. (2002) A Remark on Some Nonlinear Elliptic Problem. Electronic Journal of Differential Equations, 8, 47-52.
[6] Akdim, Y., Azroul, E. and Rhoudaf, M. (2008) Existence of T-Solution for Degenerated Problem via Minty's Lemma. Acta Mathematica Sinica, English Series, 24, 431-438. https://doi.org/10.1007/s10114-007-0970-4
[7] Akdim, Y., Azroul, E. and Benkirane, A. (2001) Existence Solutions for Quasilinear Degenerated Elliptic Equations. Electronic Journal of Differential Equations, 2001, 1-19.
[8] Abdellaoui, B. and Peral, I. (2003) Existence and Nonexistence Results for Quasilinear Elliptic Equations Involving the p-Laplaces with a Critical Potential. Annali di Matematica Pura ed Applicata, 182, 247-270.
https://doi.org/10.1007/s10231-002-0064-y
[9] Wen, G., Zhang, Y. and Chen, D. (2014) Approximate Solutions to the Discontinuous Riemann-Hilbert Problem of Elliptic Systems of First Order Complex Equations. Applied Mathematics, 5, 1546-1556. https://doi.org/10.4236/am.2014.510148
[10] Fan, X.L. and Zhang, Q.H. (2003) Existence for $p(x)$-Laplacien Direchlet Problem. Nonlinear Analysis, 52, 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
[11] Fan, X.L. and Zhao, D. (1998) On the Generalized Orlicz-Sobolev Space $W^{k, p(x)}(\Omega)$. Journal of Gansu Education College, 12, 1-6.
[12] Kovácik, O. and Rákosnik, J. (1991) On Spaces $L^{p(x)}$ and $W^{k, p(x)}$.Czechoslovak Mathematical Journal, 41, 592-618. https://doi.org/10.21136/CMJ.1991.102493
[13] Zhao, D., Qiang, W.J. and Fan, X.L. (1997) On Generalized Orlicz Spaces $L^{p(x)}(\Omega)$. Journal of Gansu Sciences, 9, 1-7.
[14] Drabek, P., Kufner, A. and Mustonen, V. (1998) Pseudo-Monotonicity and Degenerated or Singular Elliptic Operators. Bulletin of the Australian Mathematical So-
ciety, 58, 213-221. https://doi.org/10.1017/S0004972700032184
[15] Azroul, E., Barbara, A., Elekhlifi, M. and Rhoudaf, M. (2012) T-p(x)-Solutions for Nonlinear Elliptic Equations with an L^{1}-Dual Datum. Applicationes Mathematicae, 39, 339-364. https://doi.org/10.4064/am39-3-8

