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Abstract 
Using the theory of weighted Sobolev spaces with variable exponent and the 
L1-version on Minty’s lemma, we investigate the existence of solutions for 
some nonhomogeneous Dirichlet problems generated by the Leray-Lions op-
erator of divergence form, with right-hand side measure. Among the interest 
of this article is the given of a very important approach to ensure the exis-
tence of a weak solution of this type of problem and of generalization to a 
system with the minimum of conditions. 
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1. Introduction 

Consider the nonhomogeneous and nonlinear Dirichlet boundary value prob-
lem:  

( ) ( )( )div , , in

0 on ,

a x u u

u

µ− ∇ = Ω


= ∂Ω
  

where Ω  is a bounded open domain of NIR  ( 2N ≥ ) and  
( )( )div , ,Au a x u u= − ∇  is a Leray-Lions operator defined from the weighted So-

bolev spaces with variable exponent ( ) ( )1,
0 ,p xW νΩ  into its dual ( ) ( )1, ,p xW ν′− ∗Ω   

with ( )1 p xν ν ′−∗ =  and 
( ) ( )
1 1 1

p x p x
+ =

′
. The datum µ  is a measure that ad-

mits an L1-dual composition. 
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Throughout the paper, we suppose that the exponent ( )p ⋅  is an element of 

( )C+ Ω  = {log-Hölder continuous function ( ) :p IR⋅ Ω →  such that  
( )1 p p x p N− +< ≤ ≤ < } (where for all ( )h C+∈ Ω , we denote h+  and h−  by 

( )supxh h x+ ∈Ω=  and ( )infxh h x− ∈Ω= ) and that ν  is a weight function de-
fined on Ω  (i.e., ν  is a measurable function which is strictly positive a.e. in 
Ω ) satisfying:  

 ( )1 ,locLν ∈ Ω                           (1.1) 

( ) ( )
1

1 1 ,p x
locLν

−
− ∈ Ω                         (1.2) 

( ) ( ) ( ) ( ) ( )
1 1for some , , .

1
s x NL s x

p x p x
ν −    

∈ Ω ∈ ∞ ∞      −   
∩        (1.3) 

The problem ( )  is studied where the following assumptions are satisfied:  
(H1) a is a Carathéodory function satisfying:  

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1 1

11, ,
p xp xp x p xa x r b x r rξ βν ν γ ξ

−− ′
 
 ≤ + +
  

      (1.4) 

( ) ( ) ( ), , , , 0 , Na x r a x r IRξ η ξ η ξ η− − ≥ ∀ ∈              (1.5) 

( ) ( ), , ,p xa x r ξ ξ αν ξ≥                      (1.6) 

where ( )b ⋅  is a positive function in ( ) ( )p xL ′ Ω , ( )rγ  is a continuous function 
and ,α β  are strictly positive constants.  

(H2) The second member µ  is supposed of the form:  

 div ,f Fµ = −                         (1.7) 

where ( )1f L∈ Ω  and ( ) ( )( ),
Np xF L ν′ ∗∈ Ω .  

A typical example of the problem ( )  is the following involving the so-called 
( )p x -Laplacian operator with weight:  

 ( ) ( ) ( )( )2
, div .p x
p x u x u uν ν −∆ = ∇ ∇  

The operator ( ), p xν∆  becomes p-Laplacian when ( )p x p≡  (a constant) and 
( ) 1xν ≡ . The ( )p x -Laplacian operator with weight possesses more compli-

cated nonlinearities than the classical p-Laplacian, for example, it is inhomoge-
neous with some degeneracy or singularity. For the applied background of 
( )p x -Laplacian, we refer to (see [1]). The study of differential equations with 

variable exponents has been a very active field in recent years, we find applica-
tions in electro-rheological fluids (see [1] and [2]) and in image processing (see 
[3]). 

Under our assumptions (in particular (1.5), the problem ( )  does not admit, 
in general, a weak solution since the term ( ), ,a x u u∇  may not belong to 

( )( )1 N

locL Ω . To overcome this difficulty we use in this paper the framework of 
L1-version of Minty’s lemma (similar to the one used in [4]). And due to the as-
sumption (1.6) it may be a degenerated or singular problem. Note also that, 
since the datum is a measure, then the notion of a weak solution cannot be used, 
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hence it is replaced by another approach of solution calling ( )- -T p xν -solution 
(see definition 3.1 below). 

Dirichlet problem of type ( )  was considered in ([5] [6]), where in the first 
work the case of ( )p x p≡  (a constant) and ( ) 1xν ≡  is treated, while the 
second work concerns the degenerated case with ( )p x p≡  (a constant). Hence 
our present paper can be seen as a generalization of the two works ([5] [6]). We 
also point out that the existence of solutions for elliptic equations with variable 
exponents can be found in [7] [8] and [9] and. 

This paper is divided into three sections, organized as follows: In Section 2, we 
introduce and prove some properties of the weighted Sobolev spaces with varia-
ble exponent and in Section 3, we prove the existence of ( )- -T p xν -solutions of 
our problem ( ) . Among the research objectives of this article is to introduce it 
for applications in physics and also will be a platform for the problem systems of 
Dirichlet and others.  

2. Weighted Sobolev Spaces with Variable Exponent 

Let ( )p C+∈ Ω  and ν  be a weighted function in Ω . 
We define the weighted Lebesgue space with variable exponents ( ) ( ),p xL νΩ  

as the set of all measurable functions :u IRΩ→  for which the convex weight- 
modular  

( ) ( ) ( ) ( )
, dp x
p x u x u xνρ ν

Ω
= ∫  

is finite. The expression  

( ) ( )
( )

, inf 0 : d 1
p x

p x

uu x x
ν

µ ν
µΩ

  = > ≤ 
  

∫  

defines a norm in ( ) ( ),p xL νΩ , called the Luxemburg norm.  
Proposition 2.1. The space ( ) ( ) ( )( ),, , .p x

p xL
ν

νΩ  is a Banach space.  
Proof. By considering the operator 

( )

( ) ( ) ( ) ( )1 : ,
p x

p x p xM L L
ν

νΩ → Ω  defined 

by  

( )
( ) ( )

1

1

,
p x

p xM f f
ν

ν=  

for all ( ) ( ),p xf L ν∈ Ω , it’s easy to show that 
( )
1

p x

M
ν

 is an isomorphism and 

hence we can deduce.  
Remark 2.1. When ( ) 1xν ≡ , the weighted Lebesgue spaces with variable 

exponent ( ) ( ),p xL νΩ  coincides with the Lebesgue space with variable exponent 
( ) ( )p xL Ω . 
The weight-modular ( ), p xνρ  coincides with the modular ( )p xρ  defined on 
( ) ( )p xL Ω  by ( ) ( ) ( ): dp x

p x u u xρ
Ω

= ∫  (for more details see [10] [11] [12] and 
[13]).  

Lemma 2.1. For all function ( ) ( ),p xu L ν∈ Ω , the following assertions are sa-
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tisfied:  
1) ( ) ( ) ( ) ( ) ( ), ,1 1; 1 1 1; 1p x p xu uν ν

ρ > = < ⇔ > = < , respectively. 

2) If 
( ), 1p xu

ν
> , then ( ) ( ) ( ) ( ),, ,

p p
p xp x p xu u uνν ν

ρ− +≤ ≤ .  

3) If 
( ), 1p xu

ν
< , then ( ) ( ) ( ) ( ),, ,

p p
p xp x p xu u uνν ν

ρ+ −≤ ≤ .  

Proof. It suffices to remark that ( ) ( ) ( )
( )
1

,
p x

p x p xu uνρ ρ ν
 
 =
 
 

 and  

( )
( )

1

,
p x

p xu u
ν

ν = , and using the analogous result in [13]. 

Proposition 2.2. Let Ω  be a bounded open domain of NIR  and ν  be a 
weight function on Ω  satifying the integrability condtions (1.1) and (1.2). 
Then ( ) ( ),p xL νΩ ↪ ( )1

locL Ω .  
Proof. 
Let K be an included compact on Ω . By vertue of Hölder inequality we have,  

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( )
( )

( )
( )

1 1

1 1

1

,

1
1

1
,

d d

2

2 d 1

2 d 1 .

p x p x

p x p x

K K

p x p x

L K L K

p x p
p x

p x K

p
p x

p x K

u x u x

u

u x

u x

ν

ν

ν ν

ν ν

ν

ν

′

−

−

−

−

′− ′

− ′
−

=

≤

 
 ≤ +
 
 

 
 ≤ +
 
 

∫ ∫

∫

∫

 

Hence, the conditions (1.1) and (1.2) allow to conclude. 
We define the weighted Sobolev space with variable exponents denoted 

( ) ( )1, ,p xW νΩ , by  

( ) ( ) ( ) ( ) ( ) ( )1, , : , , 1, , ,p x p x p x

i

uW u L L i N
x

ν ν
 ∂

Ω = ∈ Ω ∈ Ω = 
∂ 

�  

equipped with the norm  

( ) ( )
( )

1, ,
1 ,

N

p x p x
i i p x

uu u
xν

ν=

∂
= +

∂∑  

which is equivalent to the Luxemburg norm  

( )

( )

( )

1
inf 0 : d 1 .||| |||

p x

p x N
i

i

u
xuu x xµ ν

µ µΩ
=

  ∂
  

∂  = > + ≤  
      

∑∫  

Proposition 2.3. Let ν  be a weight function on Ω  satisfying the conditions 

(1.1) and (1.2). Then the space ( ) ( ) ( )( )1,
1, ,, , .p x

p xW
ν

νΩ  is a Banach space.  
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Proof. Let ( )n n
u  be a Cauchy sequence in ( ) ( ) ( )( )1,

1, ,, , .p x
p xW

ν
νΩ . Then 

( )n n
u  is a Cauchy sequence in ( ) ( )p xL Ω  and n

i n

u
x

 ∂
 ∂ 

 is also a Cauchy sequence  

in ( ) ( ),p xL νΩ  for all 1, ,i N= � . By vertue of proposition 2.1, we can deduce 
that there exist ( ) ( )p xu L∈ Ω  and ( ) ( ),p x

iv L ν∈ Ω  such that:  
( ) ( )in p x

nu u L→ Ω  

and  

( ) ( )in , for all 1, , .p xn
i

i

u
v L i N

x
ν

∂
→ Ω =

∂
�  

Moreover, by using proposition 2.2, we have ( ) ( ) ( ) ( )1,p x
locL L Dν ′Ω ⊂ Ω ⊂ Ω . 

Thus, for all ( )Dϕ ∈ Ω  one has,  

, lim , lim , , , .
i n n

ii

v n u n u u u
i i xx

T T T T T
x x
ϕ ϕϕ ϕ ϕ→∞ ∂ →∞ ∂

∂∂

∂ ∂
= = − = − =

∂ ∂
 

Hence 
i

i

v u
x

T T∂
∂

= , i.e. i
i

uv
x
∂

=
∂

. 

Consequently,  
( ) ( )1, ,p xu W ν∈ Ω  

and  
( ) ( )1,in , .p x

nu u W ν→ Ω  

Remark 2.2. Since ν  satisfies the conditions (1.1) and (1.2), it’s easy to prove 
that ( )0C∞ Ω  is included in ( ) ( )1, ,p xW νΩ ; then we can define the following 
space  

( ) ( ) ( ) ( )1, ,.1,
0 0, ,p xp xW C νν ∞Ω = Ω  

which is also a Banach space under the norm 
( )1, ,. p x ν

.  

Proposition 2.4. (Characterization of the dual space). 
Let ( ) ( ).p C+∈ Ω  and ν  be a weight function on Ω  satisfying the condi-

tions (1.1) and (1.2). Then for all ( ) ( )( )1,
0 ,p xG W ν

∗
∈ Ω , there exists a unique 

system of functions ( ) ( ) ( ) ( ) ( )( )( )1
0 1, , , ,

N
p x p x p x

Ng g g L L ν′ ′ ′−∈ Ω × Ω�  such that,  

 ( ) ( ) ( ) ( ) ( ) ( )1,
0 0

1
d d , , .

N
p x

i
i i

fG f f x g x x g x x f W
x

ν
Ω Ω

=

∂
= + ∀ ∈ Ω

∂∑∫ ∫  

Proof. The proof of this proposition is similar to that used in [12] (theo-
rem3.16). 

Now, let us introduce the function sp  defined by  

( ) ( ) ( )
( )

.
1s

p x s x
p x

s x
=

+
 

We have  
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( ) ( ) a.e. insp x p x< Ω  

and  

( ) ( )
( )

( ) ( )
( )( ) ( ) ( )

( ) ( ) ( )( )

( )

if 1 ,
1

is arbitrary, otherwise.

s
s

s

s

Np x Np x s x
p x p x s x N s x

N p x N s x p x s x

p x

∗

∗


= = < + − + −




 

Proposition 2.5. Let ( ),p s C+∈ Ω  and ν  be a weight function on Ω  which 
satisfies the conditions (1.1), (1.2) and (1.3). Then ( ) ( )1, ,p xW νΩ ↪ ( ) ( )1, sp xW Ω .  

Proof. According to the Hölder inequality and the condition (1.3), one has  

( ) ( ) ( ) ( )
( )
( )

( )
( )

( )
( ) ( )

( )
( )

( )
( )

( )
( )

( )

( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

1 1

1

1

1 1

1 1

1

d d

1 1
1

1 1 d d
1

d d

d .

s s
s s

s s
s

s

p x p x
p x p x p x p x

p x p x
p x p x p x

p x
s x

p x
s

p x s x

s

p x s x

p x

v x x v x x

v x
p s
p

v x x x x x
p s
p

C v x x x x x

C v x x x

γ γ

γ γ

γ

ν ν

ν ν

ν ν

ν ν

ν

−

Ω Ω

−

−

+

−

−

− Ω Ω

−

−

Ω Ω

Ω

=

 
 
 ≤ +   +     
 
 
 ≤ +   +     

≤

≤

∫ ∫

∫ ∫

∫ ∫

∫

 

If we take 
i

uv
x
∂

=
∂

, we then obtain  

( ) ( )

( )
1

1

d d
sp x p x

i i

u ux C x x
x x

γ

ν
Ω Ω

 ∂ ∂ ≤
 ∂ ∂ 

∫ ∫  

where  

( )
( ) ( )

( )

( )
( )

( )
( ) ( )

( )

( )
( )

1

if 1,

if 1.

ss

s

ss

s

p xp x
p x

s i p x
p x

p xp x
p x

s i p x
p x

p u x
p x

p u x
p x

ν

γ

ν

−

+

  ∂ ≥  ∂ 
= 
  ∂

<  ∂ 


 

Consequently, we can write  

( )
( )

( )

( ) ( )
( )

3
2 1

1

1

0 1
,

d
s

p x

i i ip x p x

u u ux C x x C C x
x x x

γ
γ γ γ

ν

ν
Ω

 ∂ ∂ ∂ ≤ ≤
 ∂ ∂ ∂ 
∫  

where  
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( ) ( )
( )

( ) ( )
( )

2

if 1,

if 1,

s

s

s
i p x

s
i p x

up x
x

up x
x

γ
−

+

 ∂
≥

∂
= 

∂ < ∂

 

and  

( )
( )

( )
( )

,
3

,

si 1,

si 1.

i p x

i p x

up x
x

up x
x

ν

ν

γ

+

−

 ∂
≥

∂
= 

∂ < ∂

 

Thus  

 
( ) ( )

3

1 2

,

, 1, 2, , .
si ip x p x

u uC i N
x x

γ
γ γ

ν

∂ ∂
≤ =

∂ ∂
�              (2.1) 

Note that ( )1 2 3, ,C c γ γ γ=  denotes some positive constant which may be 
changing step by step. 

Since ( ) ( )sp x p x<  p.p. in Ω , then, there exists a positive constant C such 
that  

( ) ( ) ( ) ( ) .p x p xsL Lu C u
Ω Ω
≤  

Thus, we conclude that  
( ) ( )1, ,p xW νΩ ↪ ( ) ( )1, sp xW Ω . 

Corollary 2.1. Let ( ),p s C+∈ Ω  and ν  be a weight on Ω  which satisfies 
the conditions (1.1), (1.2) and (1.3). Then ( ) ( )1, ,p xW νΩ ↪↪ ( ) ( )r xL Ω , for 

( ) ( )1 sr x p x∗≤ < .  
Corollary 2.2. Let ( )p C+∈ Ω  and ν  be a weight function on Ω  which 

satisfies the conditions (1.1), (1.2) and (1.3). Then  

( ) ( ) ( ) ( ) ( )0; , .p x p xL Lu C u u
ν

∞
Ω Ω
≤ ∇ ∀ ∈ Ω  

Proof. Let ( )0u ∞∈ Ω . Since ( ) ( )1 sp x p x∗≤ < , we deduce by vertue of the 
embedding ( ) ( )1, sp xW Ω ↪ ( ) ( )p xL Ω  that,  

( ) ( ) ( ) ( ) ( ) ( )( )1 .Np x p x p xs sL L Lu C u u
Ω Ω Ω

 ≤ + ∇ 
 

 

Thus, in view of the proposition 2.5, we obtain  

( ) ( ) ( ) ( ) ( )2 3 ; ,p x p xpsL L Lu C u C u
νΩ Ω Ω

≤ ∇ ≤ ∇  

which allows to conclude that  

( ) ( ) ( ) ( ); .p x p xL Lu C u
νΩ Ω

≤ ∇  

3. Existence Result 

Consider the nonhomogeneous nonlinear Dirichlet boundary problem:  
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( ) ( )( )div , , div in

0 on .

a x u u F

u

− ∇ = − Ω


= ∂Ω
  

Definition 3.1. A function u is called a ( )- -T p xν -solution of problem ( )  if:  

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1,
0

1,
0

, ,

, , d d d , , .

p x

p x
k k k

u W

a x u u T u x fT u x F T u x W L

ν

ϕ ϕ ϕ ϕ ν ∞

Ω Ω Ω

 ∈ Ω


∇ ∇ − = − + ∇ − ∀ ∈ Ω Ω∫ ∫ ∫ ∩
 

Theorem 3.1. Let suppose that the assumptions (1.1)-(1.7) are satisfied. Then 
the problem ( )  has at least one ( )- -T p xν -solution.  

Remark 3.1. Note that in the particular case where ( ).p p≡  (constant), 
( ) 1rγ =  and 1ν = , the same result is proved in [14] by using the approach of 

pseudo-monotonicity.  

3.1. Approximate Problem 

Let ( )n n
f  be a sequence of functions in ( )L∞ Ω  which converges strongly to f 

in ( )1L Ω  such that 
( ) ( )n LLf f ∞∞ ΩΩ

≤ . For 1n ≥ , we consider the approx-
imate problem of ( )   

( )
( ) ( )

( )( )( )
1,

0 ,

div , , div in .

p x
n

n
n n n n

u W

a x T u u f F

ν ∈ Ω

− ∇ = − Ω

  

This section is devoted to establishing the existing solution for the approximate 
problem ( )n .  

Theorem 3.2. The operator kA  defined by,  

 
( ) ( ) ( ) ( )

( )( )( )

1, 1,
0: , ,

div , ,

p x p x
k

k k

A W W

u A u a x T u u

ν ν′− ∗Ω → Ω

= − ∇�
 

is bounded, coercive, hemicontinuous and pseudo-monotone.  
Proof of Theorem 3.2 

● The operator kA  is bounded. Indeed for all ( ) ( )1,
0, ,p xu v W ν∈ Ω , one has 

( )( ) ( )( ) ( ) ( )

( )( ) ( )

( ) ( )

( )

( ) ( )

( )( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( )( )( ) ( )
( )

( ) ( )

1 1

1 1

1

1

,

1

1
11

,

, , , d , , d

1 1 , ,

2 , , d

2 d

p x p x

p x

p x

p x p x
k k k

p x p x
k

L L

p x p

p x
k L

p x p
p xp x p x

k k L

A u v a x T u u v x a x T u u v x

a x T u u v
p p

a x T u u x v

b x T u T u u x v

ν

ν

ν ν

ν ν

ν

ν γ

′

−

−

−

Ω Ω

−

− −
Ω Ω

′ ′−

ΩΩ

′ ′
−− ′

ΩΩ

= ∇ ∇ = ∇ ∇

 
≤ + ∇ ∇ ′ 

 
 ≤ ∇ ∇  
 

    ≤ + + ∇ ∇     

∫ ∫

∫

∫

( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )( ) ( ) ( )1,
0

1

1 ,d p x
p x pp xp x

k k WC b x T u x T u u x v
ν

ν γ −′′

ΩΩ

 ≤ + + ∇ 
 ∫
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( ) ( ) ( ) ( )( )( ) ( )( ) ( ) ( )1,
0

1

1 2 3 ,d .p x
p xp x p

k k WC C C T u x T u u x v
ν

ν γ −′

ΩΩ

 
 ≤ + + + ∇
 
 

∫  

Since ( ).γ  is continuous and ( )kT u k≤  a.e. in Ω , then ( )( )kT u uγ ∇  is 
bounded in ( ) ( )1,

0 ,p xW νΩ ; hence the operator kA  is bounded. 
● The operator kA  is hemicontinuous. Indeed, let t be a reality that tends to 

0t . We have  

( ) ( )( ) ( ) ( )( )0 0, , , , , a.e. in .k k k ka x T u tv T u tv a x T u t v T u t v+ ∇ + → + ∇ + Ω  

Since ( ) ( )( )( ), ,k k t
a x T u tv T u tv+ ∇ +  is bounded in ( )( )NpL ′ Ω , we deduce that 

( )kA u tv+  converges to ( )0kA u t v+  weakly in ( ) ( )1, ,p xW ν′− ∗Ω  as t tends to 

0t . 
● The operator kA  is coercive. Indeed, for all ( ) ( )1,

0 ,p xu W ν∈ Ω , we have  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
( ) ( )

1,
0

1,
01, 1, 1,

0 0 0

, 1

,
, , ,

d,
,

p x

p x
p x p x p x

p x
Wk

W
W W W

ux u xA u u
u

u u u

δ

ν δ

ν
ν ν ν

ν Ω −Ω
Ω

Ω Ω Ω

∇
≥ ≥ ≥∫  

where  

( ) ( )

( ) ( )

1,
0

1,
0

,

,

if 1,

if 1,

p x

p x

W

W

p u

p u
ν

ν

δ
− Ω

+
Ω

 ≤= 
>

 

Obviously, we have ( ) ( )1,
0

1

,p xWu δ

ν

−

Ω
 tends to infinity, when ( ) ( )1,

0 ,p xWu
νΩ
→ ∞ , 

hence we conclude. 
● It remains to show that kA  is pseudo-monotone: Let ( )j j

u  be a sequence 
in ( ) ( )1,

0 ,p xW νΩ  such that  

 ( ) ( )1,
0in , and limsup , 0.p x

j k j j
j

u u W A u u uνΩ − ≤        (3.1) 

Firstly, we prove that k jA u  converges to kA u  weakly in ( ) ( )1, ,p xW ν′− ∗Ω . 
Indeed, since ( )j j

u  is a bounded sequence in ( ) ( )1,
0 ,p xW νΩ , then by the 

growth condition, ( )k j j
A u  is bounded in ( ) ( )1, ,p xW ν′− ∗Ω , therefore there ex-

ists a function ( )k kih h=  such that,  

 
( ) ( )

( )( ) ( ) ( )

1,dans , ,

, , in , , for 1, , .

p x
k j k

p x
i k j j ki

A u h W

a x T u u h L i N

ν

ν

′− ∗

′ ∗

Ω

∇ Ω = �





    (3.2) 

Hence, we can write  

limsup , , .k j j k
j

A u u h u≤                    (3.3) 

On the one hand, by (1.5), we have  

( )( ) ( )( )( )
( ) ( )

1

1,
0

, , , , d 0,

, .

N
j

i k j i k j j
i i i

p x

uva x T u v a x T u u x
x x

v W ν

Ω
=

∂ ∂
∇ − ∇ − ≥ ∂ ∂ 

∀ ∈ Ω

∑∫  

Then  
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( )( )

( )( ) ( )( )

( )( )

1

1 1

1

, ,

, , d , , d

, , d .

N
j

i k j j
i i

N N

i k j j i k j
i ii i

N
j

i k j
i i

u
a x T u u dx

x
v va x T u u x a x T u v x
x x
u

a x T u v x
x

Ω
=

Ω Ω
= =

Ω
=

∂
∇

∂

∂ ∂
≥ ∇ − ∇

∂ ∂

∂
+ ∇

∂

∑∫

∑ ∑∫ ∫

∑∫

    (3.4) 

Since ju u→  strongly in ( ) ( )p xL Ω  and a.e. in Ω , then  

( )( ) ( )( ) ( ) ( ), , , , strongly in , for 1, , .p x
i k j i ka x T u v a x T u v L i Nν′ ∗∇ → ∇ Ω = �  (3.5) 

Therefore,  

( )( ) ( )( )
1 1

, , d , , d
N N

i k j i k
i ii i

v va x T u v x a x T u v x
x xΩ Ω

= =

∂ ∂
∇ → ∇

∂ ∂∑ ∑∫ ∫      (3.6) 

and  

 ( )( ) ( )( )
1 1

, , d , , d .
N N

j
i k j i k

i ii i

u ua x T u v x a x T u v x
x xΩ Ω

= =

∂ ∂
∇ → ∇

∂ ∂∑ ∑∫ ∫     (3.7) 

By vertue of (3.2), we have  

 ( )( )
1 1

, , d d .
N N

i k j j ki
i ii i

v va x T u u x h x
x xΩ Ω

= =

∂ ∂
∇ →

∂ ∂∑ ∑∫ ∫           (3.8) 

Now, combining (3.4)-(3.6) and (3.7), we obtain  

( )( )

( )( )

( )( )

1

1 1

1

lim , , d

d , , d

, , d .

N
j

i k j jj i i
N N

ki i k
i ii i

N

i k
i i

u
a x T u u x

x
v uh x a x T u v x
x x

va x T u v x
x

Ω→∞ =

Ω Ω
= =

Ω
=

∂
∇

∂

∂ ∂
≥ + ∇

∂ ∂

∂
− ∇

∂

∑∫

∑ ∑∫ ∫

∑∫

 

Due to (3.3), we deduce that  

( )( )

( )( )
1 1 1

1

d d , , d

, , d .

N N N

ki ki i k
i i ii i i

N

i k
i i

u v uh x h x a x T u v x
x x x

va x T u v x
x

Ω Ω Ω
= = =

Ω
=

∂ ∂ ∂
≥ + ∇

∂ ∂ ∂

∂
− ∇

∂

∑ ∑ ∑∫ ∫ ∫

∑∫
 

This implies that,  

( )( )( ) ( ) ( )1,
0

1
, , d 0, , .

N
j p x

i k j ki
i i i

uva x T u v h x v W
x x

ν
Ω

=

∂ ∂
∇ − − ≥ ∀ ∈ Ω ∂ ∂ 

∑ ∫  (3.9) 

On the other hand, choose v u tw= +  in (3.9) (with ] [1,1t∈ − ). It’s easy to see 
that  

( ) ( )( )( ) ( ) ( ) ] [1,
0, , d 0, , , 1,1 .p x

k ka x T u u tw h w x w W tν
Ω

∇ + − ∇ = ∀ ∈ Ω ∀ ∈ −∫  

Hence ( ) ( )1, ,p x
k kA u h W ν′− ∗= ∈ Ω , and we deduce that k jA u  weakly converges 

to kA u  in ( ) ( )1, ,p xW ν′− ∗Ω . 
Secondly, we prove that , ,k j j kA u u A u u→ . Indeed, in view of (3.2) and 

(3.3), we have  
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limsup , , , .k j j k kA u u A u u h u≤ =  

It remains to show that,  
liminf , , , .k j j k kA u u A u u h u≥ =  

For that, we have  

( )( )

( )( ) ( )( )( )

( )( )

( )( )

1

1

1

1

, , , d

, , , , d

, , d

, , d .

N
j

k j j i k j j
i i

N
j

i k j j i k j
i i i

N
j

i k j
i i i

N

i k j j
i i

u
A u u a x T u u x

x
u ua x T u u a x T u u x
x x

u ua x T u u x
x x
ua x T u u x
x

Ω
=

Ω
=

Ω
=

Ω
=

∂
= ∇

∂

∂ ∂
= ∇ − ∇ − ∂ ∂ 

∂ ∂
+ ∇ − ∂ ∂ 

∂
+ ∇

∂

∑∫

∑∫

∑∫

∑∫

 

Since ( )( ) ( )( )( )1 , , , , d 0N j
i k j j i k ji

i i

u ua x T u u a x T u u x
x x= Ω

∂ ∂
∇ − ∇ − ≥ ∂ ∂ 

∑ ∫ , we 

deduce that  

( )( )

( )( )
1

1

, , , ) d

, , d .

N
j

k j j i k j
i i i

N

i k j j
i i

u uA u u a x T u u x
x x
ua x T u u x
x

Ω
=

Ω
=

∂ ∂
≥ ∇ − ∂ ∂ 

∂
+ ∇

∂

∑∫

∑∫
 

Therefore,  

( )( )

( )( )
1

1

liminf , liminf , , d

liminf , , d .

N
j

k j j i k j
i i i

N

i k j j
i i

u uA u u a x T u u x
x x
ua x T u u x
x

Ω
=

Ω
=

∂ ∂
≥ ∇ − ∂ ∂ 

∂
+ ∇

∂

∑∫

∑∫
 

Hence, 1liminf , d ,N
k j j i ki

i

uA u u h x A u u
x= Ω

∂
≥ ≥

∂∑ ∫ . This achieved the proof.  

3.2. Proof of Theorem 3.1 

The proof is divided into 4 steps. 
Step 1: We will show that ( )n n

u  is a Cauchy sequence in measure. Using 
( )k nT u  as a test function in ( )n  leads to,  

( )( ) ( ) ( ) ( ), , d d d .k n n k n n k n k na x T u u T u x f T u x F T u x
Ω Ω Ω

∇ ∇ = + ⋅∇∫ ∫ ∫  

From (1.6) and (1.7), we deduce for all 1k >  that,  

( ) ( )

( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( )

1

1

1

1 1

=1

1 1
1 1

=1

d

d

d .
2 2

p x
N

k n

i i

N
k np x p xiL

i i

N p x p xk np x p xiL
i i

T u
x x

x

T u
k f F x x x

x

T u
k f F x x x

x

α ν

ν ν

α αν ν

Ω
=

−

Ω

−
−

Ω

∂

∂

∂
≤ +

∂

∂   ≤ +    ∂   

∑ ∫

∑∫

∑∫
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Now, by Young’s inequality, we obtain  

( ) ( )

( )

( ) ( )
( )
( )

( )
( )

( ) ( )

( ) ( )

( ) ( )
( )
( ) ( ) ( ) ( )

( )

1

1

1

1 1

1 1

d

d d
2

, d d .
2

p x
N

k n

i i

p xp xN Np x k np xiL
i i i

p xp xN Np x k np xiL
i i i

T u
x x

x

T uC
k f F x x x x

p x x p x

T u
k f F x C p x x x

x p

α ν

α αν ν

αν α ν

Ω
=

′−
′

Ω Ω
= =

′−
′ −

−Ω Ω
= =

∂

∂

∂
≤ + +

′ ∂

∂
′≤ + +

∂

∑∫

∑ ∑∫ ∫

∑ ∑∫ ∫

(3.10) 

Then, one has  

( ) ( )

( )

( ) ( ) ( )
( )
( )1

1

1

11 d
2

,
d ,

p x
N

k n

i i

p xN p x
p xiL

i

T u
x x

xp

C p
k f F x x

k

α ν

α
ν

− Ω
=

− ′−
′

Ω
=

∂ 
−  ∂ 

′
≤ + +

∑∫

∑∫

 

for 1k ≥ , which implies that  

 
( ) ( )

( )
1

d for all 1.
p x

N
k n

i i

T u
x x Ck k

x
ν

Ω
=

∂
≤ >

∂∑∫           (3.11) 

Let 0k >  large enough and RB  be a ball of Ω . Using (3.11) and applying 
Hölder’s inequality and Poincaré’s inequality, we obtain  

{ }( )
{ } ( ) ( ) ( ) ( ) ( ) ( )1d p x

n R

n R

k n k n k nL Lu k B

k meas u k B

T u x T u C T u
Ω Ω>

>

= ≤ ≤∫ ∩

∩
 

( ) ( ),k n p x
C T u

ν
≤ ∇  (by vertue of Corollary 2.2)            (3.12) 

( ) ( )

( )

1

1
d

p x
N

k n

i i

T u
C x x

x

κ

ν
Ω

=

 ∂ ≤
 ∂
 
∑∫  (by vertue of Lemma 2.1) 

1

,Ck κ≤  

where  

( ) ( )

( ) ( )

,

,

if 1,

if 1,

k n p x

k n p x

p T u

p T u
ν

ν

κ
−

+

 ∇ ≤= 
∇ >

 

which implies that,  

{ }( ) 11
, 1.n R

Cmeas u k B k
k κ

−
> ≤ ∀ >∩            (3.13) 

So, we have, for all 0δ > ,  

 

{ }( )
{ }( ) { }( )

( ) ( ){ }( ).

n m R

n R m R

k n k m

meas u u B

meas u k B meas u k B

meas T u T u

δ

δ

− >

≤ > + >

+ − >

∩

∩ ∩       (3.14) 
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Since ( )( )k n n
T u  is bounded in ( ) ( )1,

0 ,p xW νΩ , there exists a subsequence, still 
denoted by ( )k nT u  and a measurable function ( ) ( )1,

0 ,p x
kv W ν∈ Ω  such that 

( )k nT u  converges to kv  weakly in ( ) ( )1,
0 ,p xW νΩ , strongly in ( ) ( )p xL Ω  and  

almost everywhere in Ω . Hence ( )( )k n n
T u  is a Cauchy sequence in measure 

in Ω . 
Let 0ε > . Then by (3.13), there exists ( ) 0k ε >  such that,  

{ }( ) ( )( )0, , , , .n m Rmeas u u B n m n k Rδ ε ε δ− > < ∀ ≥∩  

This proves that ( )n n
u  is a Cauchy sequence in measure in RB , thus converges 

almost everywhere to some measurable function u. Hence  

( ) ( ) ( ) ( )
( ) ( )

1,
0weakly in , ,

strongly in , and a.e. in .

p x
k n k

p x

T u T u W

W

νΩ

Ω Ω



              (3.15) 

Step 2: We shall prove that  

( ) ( )
( ) ( )
( ) ( ) ( )1,

0

, , d

d d

, .

n k n

n k n k n

p x

a x u T u x

f T u x F T u x

W L

ϕ ϕ

ϕ ϕ

ϕ ν

Ω

Ω Ω

∞

∇ ∇ −

≤ − + ∇ −

∀ ∈ Ω Ω

∫
∫ ∫

∩

              (3.16) 

Let ( ) ( ) ( )1,
0 ,p xW Lϕ ν ∞∈ Ω Ω∩  and let n be large enough ( n k ϕ

∞
≥ + ). Using 

the admissible test function ( )k nT u ϕ−  in ( )n  leads to  

( ) ( )( ) ( ) ( ), , d d d ,n n k n n k n k na x u u T u x f T u x F T u xϕ ϕ ϕ
Ω Ω Ω

∇ ∇ − = − + ∇ −∫ ∫ ∫ (3.17) 

i.e.,  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , d , , d

, , d d d ,

n n k n n k n

n k n n k n k n

a x u u T u x a x u T u x

a x u T u x f T u x F T u x

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
Ω Ω

Ω Ω Ω

∇ ∇ − + ∇ ∇ −

− ∇ ∇ − = − + ∇ −

∫ ∫
∫ ∫ ∫

(3.18) 

which implies that  

( ) ( )( ) ( )
( ) ( ) ( ) ( )

, , , , d

, , d d d .

n n n k n

n k n n k n k n

a x u u a x u T u x

a x u T u x f T u x F T u x

ϕ ϕ

ϕ ϕ ϕ ϕ
Ω

Ω Ω Ω

∇ − ∇ ∇ −

+ ∇ ∇ − = − + ∇ −

∫
∫ ∫ ∫

(3.19) 

Thanks to assumption (1.5) and the definition of truncation function, we have  

 ( ) ( )( ) ( ), , , , d 0.n n n k na x u u a x u T u xϕ ϕ
Ω

∇ − ∇ ∇ − ≥∫           (3.20) 

Combining (3.19) and (3.20), we obtain (3.16). 
Step 3: We claim that  

( ) ( )

( ) ( ) ( ) ( ) ( )1,
0

, , d

d d , .

k

p x
k k

a x u T u x

fT u x F T u x W L

ϕ ϕ

ϕ ϕ ϕ ν
Ω

∞

Ω Ω

∇ ∇ −

≤ − + ∇ − ∀ ∈ Ω Ω

∫
∫ ∫ ∩

 (3.21) 

Let M k ϕ
∞

= + . Since ( )M nT u  converges to ( )MT u  weakly in ( ) ( )1,
0 ,p xW νΩ , 

then  

 ( ) ( ) ( ) ( )1,
0weakly in , .p x

k n kT u T u Wϕ ϕ ν− − Ω
         (3.22) 

Thanks to assumption (1.4), we have  
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( )( ) ( )
( )
( )

( ) ( ) ( ) ( ) ( )( )( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1
11

0

, ,

,

p x
p x p x

M n

p x
p xp x p x

M n M n

p x p xp x p x
M n

a x T u

b x T u T u

C b x T u x

ϕ ν

β ν γ ϕ

ν γ ϕ

′
′

′
−− ′

′

∇

 
 ≤ + + ∇
  
 ≤ + + ∇  

    (3.23) 

where ( ){ }0 sup :s s kγ γ ϕ
∞

= ≤ +  and C is a positive constant. Since 
( )M nT u  converges to ( )MT u  weakly in ( ) ( )1,

0 ,p xW νΩ , strongly in ( ) ( )p xL Ω  
and a.e. in Ω , thus  

 ( )( ) ( )
( )
( ) ( )( ) ( )

( )
( ), , , , a.e in

p x p x
p x p xp x p x

M n Ma x T u a x T uϕ ν ϕ ν
′ ′

′ ′
∇ → ∇ Ω  

and  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0 .

p x p xp x p x
M n

p x p xp x p x
M

C b x T u x

C b x T u x

ν γ ϕ

ν γ ϕ

′

′

 + + ∇  
 → + + ∇  

 

Combining (3.21), (3.22) and using Vitali’s theorem, we obtain 

( ) ( ) ( ) ( ), , d , , d .n k n ka x u T u x a x u T u xϕ ϕ ϕ ϕ
Ω Ω

∇ ∇ − → ∇ ∇ −∫ ∫      (3.24) 

Now, we show that  

 ( ) ( )d d .n k n kf T u x fT u xϕ ϕ
Ω Ω

− → −∫ ∫               (3.25) 

In the first time, we have ( ) ( )n k n kf T u fT uϕ ϕ− → −  a.e in Ω ,  
( )n k n nf T u k fϕ− ≤  and nk f k f→  in ( )1L Ω . In the second time, by us-

ing Vitali’s theorem we obtain (3.25). 
Since ( ) ( )( ),

Np xF L ν′ ∗∈ Ω , one has  

 ( ) ( )d d .k n kF T u x F T u xϕ ϕ
Ω Ω

∇ − → ∇ −∫ ∫           (3.26) 

Thanks to (3.24), (3.25) and (3.26), we obtain (3.21). 
Step 4: In this step, we introduce the following generalization of Minty’s lem-

ma in weighted Sobolev space with variable exponents ( ) ( )1, ,p xW νΩ  (which is 
proved in [15]).  

Lemma 3.1. ([15]) Let u be a measurable function such that  
( ) ( ) ( )1,

0 ,p x
kT u W ν∈ Ω  for every 0k > . Then the following statements are 

equivalent:  
1) ( ) ( ) ( ) ( ), , d d d ,k k ka x u T u x fT u x F T u xϕ ϕ ϕ ϕ

Ω Ω Ω
∇ ∇ − ≤ − + ∇ −∫ ∫ ∫  

2) ( ) ( ) ( ) ( ), , d d d ,k k ka x u u T u x fT u x F T u xϕ ϕ ϕ
Ω Ω Ω

∇ ∇ − = − + ∇ −∫ ∫ ∫  

for every ( ) ( ) ( )1,
0 ,p xW Lϕ ν ∞∈ Ω Ω∩  and for every 0k > .  

Finally, the result (3.21) and the lemma 3.1 lead to the completion of the proof 
of theorem 3.1. 

4. Conclusion 

In this article, we have demonstrated the existence of a solution of a problem 
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with a second measure member and in the space of Sobolev with variable expo-
nent using Minty’s lemma. It is a very important technique in which we use the 
notions of hemicontinuous and pseudo-monotonic instead of broad or strict 
monotony. 
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