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() ©® We are interested in the following second order linear Partial Differential Equa-
tion (PDE):

2 2 2
A(x,t)aaT?+B(x,t)%+c(x,t)aan’+D(x,t)%;f
(1)

+ E(x,t)aa;(t)+ F(xt)®=g(xt);

where @ designates an scalar function depending on the variables x and ¢
Usually x states for the space variable and ¢ for the time. The Equation (1) can be
brought in the following form:
2 2-u H AV
> S A0S
=0 v=0 axﬂat

=g(X,t)' (2)

The resolution of such an equation presents a great interest, because it go-
verns several phenomenas in physics, chemistry, mathematics, economy, etc. [1].
It is a general form that deals with:

o Elliptic equations: It treats the Poisson equation which describes electrostatic
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and magnetostatic phenomenas, flow of perfect incompressible fluids, vortex
and viscous incompressible flow, filtration of fluids through porous mate-
rials, etc. It concerns also the Euler-Tricomi equation that allows the study of
transonic flow.

e Parabolic equations: It handles problems governed by the extended diffusion
equation or the Diffusion Advection Reaction equation (of concentration, mat-
ter, temperature or electromagnetic field) or the BlackScholes equation in ma-
thematical finance [2] [3].

e Hyperbolic equation: Equations such the extended complete wave equation
and the extended complete telegraph equation are contained in (1). These
two equations have important applications in electromagnetic and telecom-
munications [4] [5] [6] [7].

We propose to solve this equation with a simple, accurate and efficient me-
thod, by reducing the costs in time, memory space, and method’s heaviness. We
aim at a good compromise between simplicity and result accuracy.

So, we will first, formulate the problem. Then, we choose a hybrid approxima-
tion scheme, using two finite differences approaches: Backward Time Centered
Space (BTCS) and Centered Time Centered Space (CTCS) [8] [9] [10]. This he-
terogeneous scheme has the advantages of both. The first method BTCS is impli-
cit and the second one is explicit. With their superposition, the resulting method
becomes implicit. Therefore, we will use different methods for processing the ma-
trices that result from the discretization. These methods are the algorithm of
Usmani [11], which inverts any regular tridiagonal matrix directly; and the algo-
rithm of Thomas which inverts a diagonal dominant tridiagonal matrix using
the Right Hand Side (RHS) of the equation.

Subsequently, we will treat numerical experimentation to validate our pro-

posed method. Finally, we discuss the results and give outlook for further work.

2. Problem Formulation and Meshing

We consider a scalar function ® = CD(X,t) which depends on the real variables

xand ¢ This function satisfies the partial differential Equation (3) with the given

conditions.
AD, +BD, +CD, + DD, +ED, +F® =g,(xt)e]0,L[x]0,
@ (x,0)= fy(x),®,(x,0)=f,(x),xe]0, L] (3)

®(0,t) =gy (t),d(L,t)=g,(t),t €]0,00

Here, The coefficients A, B, G, D, E and F are constant or known functions
depending on the variables xand ¢ L is a real constant. The function
g=¢ (X,t) is a known excitation. The functions f (X) , B (X) » 9o (t) and
g, (t) have been also given.

The following mesh has been considered: the spatial interval [O, L] is discre-
tized in N, +2 points X, =i-AX,i=0,12,---,N, +1, with Ax=h= L(Nx +l) .
The considered instants are: t, =n-At. The time step is At =k and must be
sufficiently small to allow a good, accurate and efficient resolution of the prob-
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lem. An approximated value of @ is to be found at point (Xi,tn):
O (x,t,) =D . We define: g(x.t,)=9", do(t,)=0s, 9.(t,)=9,
fo(x)=fq and f(x)=f;.Itholds: A(x,t,)=A", B(x.t,)=B,
C(x.t,)=C!", D(x.t,)=D", E(x.t,)=E" and F(x.t,)=F".

3.Schema BTCS + CTCS

We consider the Finite Difference method in Time Domain (FDTD); more pre-
cisely the two schemes: BTCS and CTCS [8] [9] [10]. Then, we superpose the
two approaches in order to obtain a better approximation of the solution of the
treated differential equation. In this way we combine the advantages of the two
schemes. As one can remark, these two schemes have the same spatial discretiza-
tion (Centered Space CS). Thus, we have for the derivative in x direction the fol-

lowing approximations:

o o -
g

2 "L (4)
[8 mJ(xi,tn)—ﬂ O(hz), i=1,2,3---.N

ox? h?
For the BTCS scheme, we get the first and second order backward time deriv-

atives, for t, >0:

(@j(xi,tn):q)‘n_—q)‘n_l+0(k),

ot k %)
o’D O 20 + @ .
[atz j(xi,tn)z 2 +0(k), i=1,2,3,---,N
Combining the Equations (3)-(5), one gets:
h h h2 h?
'-—B'-=D [®], +| -2 iz C'+—E"+h°F" |@]
(A 2k i 2 i ] i-1 [ Ai k i i ]
::cib ::dib
h h
+| A'"+—B"+=D' ,
(A 2k 2 ) i+1
(©)
I 2 2 6
= —lB oy 2h C”+h—E oM+ h —B" |}
2k k? k 2k
—_— —
=g —d® =

2
J{—:—c jd)i”2+hzgi”, i=2,3-,N —Ln>1.

N
::bib

With the CTCS scheme, we have the following first and second order deriva-
tives, for t, >0:

oD O -t
(Ej(xi,tn):T+O(k2),

7
(achj( Q" -2 + @M @)

n +0(K?), 1=123+N,.

8t2 %t ) k2
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Associating the Equations (3), (4), and (7); one gets:

2 2

(_L Binlj o, + h_zciml + U E o] + (L Binlj 7y

4k k 2k 4k
[——

et ef
=G =df =g

2
:(_An—l+gDin—qu)ir1—ll+(2An—1+2::_zcin—1_h2|:in—1jq)in—l

-
=c{® =d{°

2 2
_An—l _g Dinqu)nl + [_l Binqu)inlz + [_%Cinl + h_ Einqu)inz

(8)

e 4K 2k

w_ntC . C
=g =—g =h°

+ +
VR 7N\
|=

-1 -2 2.n-1 - .
B jcl)i”+1 +h“g", i=2,---,N,-Ln>2.
=af
We define ¢ =c’ +c’, d =d’+d’, e =¢’ +e°, ¢/ =c¢’+c°,
d'=d®+d"°, e =¢"+e°, a =0+a" and b =h"+b°;for
1=12,3,---,N,;n>1. Thus, we obtain the following matrix equation, consider-

ing the mesh points X, and X, :

d e 0 - - 0 o’
c, d, & . - 0 D)
0 ¢, d, e . : @;
ST 0 :
et || PN,
0 ¢y dy Jl @Y
—
=A —"
d/ ¢ 0 - - 0 )@ b a 0 - - 0\ @r?
c, dy e . -+ 0 ||| |-a b, @& . - 0 || ®)?
0 c dj e . o)t 0 -a b, a . : @)
=l A 0 ;
e"\‘X71 q)r’l‘;{l 0 aN)rl CDR‘_X{l
0 ¢ di Jlont) (0 - - 0 -a b, J| O
+ +
=A —pn1 =A" —pn-2
h* (g +97")-c,@f + o)t —a,df?
h* (g5 +05™)
h2 n+ n-1
N (93. 93 )
h* (gR, 4 +904)
(5, +05")—e,, @] +ej, @ +a, @]
=G"
)

This previous equation is equivalent to:
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(A @" =(A) @ +(A") @"*+G", n>2, (10)
—A"
with
@' =(®) —kdy) and @} =(2kD] +d;*)- (11)

So, we will discuss the inversion methods of the matrix (A)n , which permits
to get the solution ®".

4. General Solution

An important discussion is to be done with respect to Equation (9), particularly
concerning the matrix (A)". Principally, this matrix must be inverted for each
time t, in order to get the solution at this time: ®". But, if the coefficients of
Equation (1) do not dependent on the time (A)" =(A) then one and exactly
one inversion is sufficient.

The algorithm of Thomas can be used for the inversion (see Appendix). With
this method, we do not have an idea about the regularity of the matrix. But, it is
clear that if the tridiagonal matrix (A)n is diagonal dominant then it is regular.
Of course, this property is sufficient but not necessary for the regularity.

We prefer an inversion with the Usmani’s algorithm [11], which is a general
and stable method. It allows a direct inversion that does not use the right hand
side (H") in the inversion process; contrarily to the algorithm of Thomas. Us-
mani has presented a direct and exact method to invert a tridiagonal regular
matrix [11].

We can apply it for (A)", defining:

6,=16,=d,,6, ,=0and g =d;0,_,—ce_,0,,i=23-,N,,
andny ,, =1my =dy ,7, =0 and
1 =ity = Cia&ifp 1 = N =L N, =2,---,2,1

Then, the coefficients of the inverted matrix (B)n are obtained with:

(-0 e =20 i<
I=i HNX
ei— i I
by = # i=] (12)
i+ 0 i+
(_1) ] = j-1 i i>j
I=]j ng
We get the solution:
" =(B)" xH". (13)

The solution @], at point X, and time t,, is given by a simple matrix-

vector multiplication:

Ny
@p:_zlbij.ﬂ?, i=1,2,,N,n>2. (14)
j=
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5. Solution for Time-Depending Coefficients

In the case that the coefficients of Equation (1) do not dependent on the space:
A=A(t) , B= B(t) , C =C(t), D= D(t) , E= E(t) and F = F(t); then
the matrix (A4) dependent only on the time. Its coefficients are constant at a fixed
time t,. The formula of the invert matrix (B)n can be simplified [12] [13]
[14]:

Defining a real number A and a complex number 6 in following manner:

=d? —4ec and 6 =atanh [%} (15)
we get |A|i J=12,---,N, , which is the determinant of the submatrix of order 7

of (A); and which is of dimension (ixi). In the case, where e-c =0, the deter-
minant of the matrix (A) is: |A|NX =d™

One can verify that this determinant, for e-c#0, is given by the following
relations [12] [13] [14]:

AL - %ﬂdh/g} X {d—\/Z} x }:(isgn(d) |ec|)NXM,d¢i2\/g

2 2 sinh ()
(i |ec|) (N, +1),d =+2 |ec|
(16)

The inverted matrix (B) exists when dis different of one of the following val-
ues [14]:

d_2fcos[ JI_lZ N,. (17)

Outside these values of d,, the matrix (A) is regular and its inverts (B) is

given by the following formula:

(_1)i+j e .|A|i—1 '|A|Nx—j

L 1<i,j<N (18)

(—1)i+j ¢ -—|A|H. N s

Al

6. Numerical Verification

For the numerical verification, we choose the equation of telegraph equation,
which has been treated by several authors [4] [5] [6] [7]. We compare our results
with those obtained by [4].
The following problem treated by [4] was considered and our method was ap-
plied:
D, (X,1)+ Dy (X,1)+2aD (1) + F2D(X,t)=g(x1), (Xt)e]0,n[x]0,00[
( ,0) = o (x) =sin(x),®, (x,0) = f, (x) = =sin(x), x € J0,x[
®(0.t)=g, (1) =0.®(mt) =g, (t)=0,t€]0,
(19)
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By choosing dx = 0.02 and df = 0.001, the following results were obtained,
showing the L, and L, errors:

BTCS + CTCS Method

dx=0.02; dt=0.001

t Le L CPU Time (s)

0.5 8.4773420757966456E-005  1.8833168906993345E-003 0.23201400000000000
1 8.4773420757966456E-005  2.8160185504662303E—-003 0.44402700000000001
1.5 8.4773420757966456E—005  3.0963482287696856E—003 0.57603499999999996
2 8.4773420757966456E-005  3.1650156583819949E—-003 0.82005099999999997

Cubic B - spline Collocation; R. C. Mittal; Rachna Bhatia [3]

dx = 0.02; dt = 0.0001

t Lo L CPU Time (s)
0.5 2.3328E-006 1.8612E-006 3.04

1 4.3667E-006 3.4839E-006 4.89

1.5 4.7817E-006 3.8251E-006 5.27

2 4.2706E-006 3.4073E-006 7.53

The results are very satisfactory because our method is not heavy and leads to
a precise solution. Compared to the one used in [4], it could be said to be less
precise. But it should be emphasized that the method, used in [4], is a Cubic
B-splines collocation method, which is expensive in calculation. On the other

hand, we used the finite difference method.

7. Conclusions

In this work, a method of solving a general linear partial differential equation
has been presented. The finite difference hybrid approach (BTCS + FTCS) that
has been used is simple, accurate and efficient; and is economical in terms of
calculation and occupancy of the memory space.

This study can allow numerous applications of this method to several pheno-
mena of the sciences and techniques governed by this equation. In addition, other

methods could be explored to improve performance.
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Appendix

For a resolution of Equation (10) with the algorithm of Thomas, the vector &,
7 ,and T can be introduced, in order to proceed to a forward elimination. Then
the solutions are obtained by backward restitution. This algorithm is presented
below.

Algorithm Inversion
ap:=di; y1:=e1/ar; ri= Hi /g
For i:= 2 To Ny — 1 Do

o = di — ¢vim1; Yii= eifog; o= (HP — erim1) [ oy {Forward Elimination}
End For
an, = dn, — ¢N,IN,—1; TN, = (Hp, — N, TN, —1)/an,
(DXQ = TN,,
For i:= Ny — 1 Downto 1 Do
OF :=r; —viH, {Backward Restitution}
End For

End Algorithm Inversion

DOI: 10.4236/jemaa.2021.1310010

143 Journal of Electromagnetic Analysis and Applications


https://doi.org/10.4236/jemaa.2021.1310010

	Efficient BTCS + CTCS Finite Difference Scheme for General Linear Second Order PDE
	Abstract
	Keywords
	1. Introduction
	2. Problem Formulation and Meshing
	3. Schema BTCS + CTCS 
	4. General Solution 
	5. Solution for Time-Depending Coefficients
	6. Numerical Verification 
	7. Conclusions 
	Conflicts of Interest
	References
	Appendix 

