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Abstract 
This paper models stochastic volatility using Hidden Markov Models in Ken- 
ya. The univariate Stochastic volatility Model is calibrated to the Nairobi Se-
curities Exchange 20 share index daily data from January 2012 to February 
2021. The Hidden Markov model (HMM) is employed to establish volatility 
regimes while the Expected Maximization (EM) algorithm is applied in pa-
rameter estimation. Markov Chain Monte Carlo (MCMC) and Sequential Monte 
Carlo (SMC) techniques are employed in filtering out noisy observations in 
parameter estimation. The 4-state model, which divides the economy into pe-
riods of very high, high, low, and very low volatility, is established to be op-
timal. 
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1. Introduction 

The probability that stock prices will rise or decline is an increasing function of 
volatility, which in turn leads to an increase in the value of options. The use of 
volatility as a proxy to risk has resulted in an increased need to accurately model 
and forecast volatility which is vital for a range of applications including finan-
cial asset pricing, hedging strategies, portfolio selection and asset management. 
The Black-Scholes model, as a forerunner to the option pricing framework, is 
still widely used in the financial market. The model assumes that continuously 
compounded log spot asset prices are normally distributed with a constant mean 
and variance. 

However, empirical studies have shown that this is not always the case, as 
market prices have shown peakedness and fat tails, and the constant variance 
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assumption does not fit market-realistic models particularly for volatility-backed 
financial assets. Due to this major shortcoming, researchers have come up with 
asset pricing models that allow for the volatility to be heteroskedastic despite some 
conditioning it on some prespecified criteria. Allowing for a time-varying va-
riance has proven to be a significant improvement to the modeling dynamics of 
various financial assets and macroeconomic factors, with applications present in 
the modeling of inflation (Chan, 2013), foreign exchange (Ahlip, 2008), volatility 
(Maqsood, Safdar, Shafi, & Lelit, 2017) and macroeconomic forecasting (Clark & 
Ravazzolo, 2015). Stochastic volatility models specify a stochastic differential 
equation driven by its own risk process for each of the stock price and volatility 
equations. While local volatility models are a valuable simplification of the 
time-varying volatility, they tend to produce a flattened forward implied volatil-
ity and have generally shown an inability to price complex structured products 
close to their market prices. 

Various studies have suggested the use of Hidden Markov Models (HMMs) in 
the estimation of standard and non-standard stochastic volatility models. Hid-
den Markov models describe the underlying state of the economy by encoding 
all information in the financial markets into a single (state) process (Krishnamur-
thy, Leoff, & Sass, 2018). They have their applications in the determination of fi-
nancial time series data regimes and amplification of signals for momentum in-
dicators aimed at improving investment decision-making. 

A hidden Markov Model (HMM) is a statistical Markov chain where the sys-
tem being modelled is assumed to be a Markov process with unobservable or hid-
den states and transition probabilities. The observation process is assumed to 
be strictly Markovian and its behaviour depends only on the finite or infinite 
state process, which is only partially observable through the observation process. 
HMMs have further applications in econometrics, signal processing, pattern rec-
ognition, computational finance and bioinformatics. Financial signal processing 
techniques have been majorly employed in technical analysis by quantitative ana-
lysts in robust asset selection and high-frequency trading to gain from short 
random asset market price fluctuations. This entails analysis of key behaviours 
and patterns within financial markets over time for prediction purposes. 

In Kenya, Hidden Markov models have been employed in modelling daily rain-
fall occurrence (Nyongesa, Zeng, & Ongoma, 2020), estimation of malaria symp-
tom data set (Mbete, Nyongesa, & Rotich, 2019), credit scoring for the poor and 
unbanked financial consumers (Bundi et al., 2016) and calibration and state es-
timation for the Vasicek term-structure model to the evolution of interest rates 
(Chelimo, 2017). 

The purpose of this paper is to model stochastic volatility using a hidden 
Markov model in the Kenyan economy. The question arises as to how to model 
volatility in a way that is consistent with the market-observed variation of non-con- 
stant volatility together with identifying hidden states that drive the volatility 
process. We consider the univariate stochastic volatility model when modelling 
volatility, as it is simple but flexible enough to incorporate volatility stylized facts 
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together with allowing for non-linear modelling of the latent state space. 
The HMM is employed in identifying hidden factors and possible volatility 

regimes in the volatility process. The Markov property of the HMM allows for 
computationally viable algorithms as well as a general enough structure that can 
model complex behavior. In the long run, volatility is a necessary prediction 
tool for investors in asset pricing and portfolio management. This study seeks to 
create a theoretical foundation for the application of HMMs in stochastic volatil-
ity modelling to the growing financial sector in Kenya and other frontier mar-
kets. 

The rest of this paper is structured as follows: Section 2 provides a mathemat-
ical definition of the univariate stochastic volatility model, Hidden Markov Model 
(HMM), the Expected Maximization (EM) algorithm, Markov Chain Monte 
Carlo (MCMC) and Sequential Monte Carlo (SMC) techniques are employed in 
filtering out noisy observations in parameter estimation. Section 3 gives the cali-
bration results of the univariate Stochastic Volatility (SV) model under the dif-
ferent stated filtering techniques, while Section 4 provides a discussion on the 
effects of macroeconomic variables on volatility regime switches, together with 
an analysis of the effects of changes in states/regimes on parameter estimates 
under the stated filtering techniques. Finally, Section 5 provides a conclusion 
and limitations of the study, as well as suggestions for further research. 

2. Model Description 
2.1. The Stochastic Volatility Model 

Volatility can be modelled probabilistically through state-space models where 
the logarithm of squared volatilities (latent states) follows an AR (1) process 
(Andersen, Davis, Kreiß, & Mikosch, 2009; Kastner, 2016). The log return of  

asset price, tP , is defined by 
1

log t
t

t

P
r

P−

=  and admits the univariate SV model: 

t t tr = σ ε                            (1) 

where tε  is a Gaussian white noise process with zero mean and unit variance, 
and 0tσ >  is a stochastic process representing the volatility of tr . Based on 
empirical results, 2

tσ  follows a log-normal distribution. As such, there exists a 
random variable 2logt tz = σ , which is normally distributed, and which reduces 
Equation (1) to:  

exp
2
t

t t
z

r  = ε 
 

                        (2) 

Traditionally, tz  is assumed to follow a first order AR (1) process with Gaus-
sian innovation white noise: 

1t t tz z cφ ω−= + +                        (3) 

where φ  and c are constants, while ( )~ 0,t N Qω  and tε  are mutually in-
dependent. Additionally, if 1φ < , the above process is wide-sense stationary. 
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When a scaling factor, β , is be introduced to Equation (2) to remove the 
constant term c in Equation (3), we have the canonical SV model for the log re-
turn a: 

1 ,t t tz z −= φ +ω                         (4) 

exp ,
2
t

t t
z

r  = β ε 
 

                       (5) 

with initial state 0z . 
Equations (4) and (5) are the state model and the measurement/observation 

model, respectively. These are a particular type of stochastic non-linear state 
space models, where tz  is the unobserved state variable commonly interpreted 
as the latent time-varying volatility process, tr  is the output of the model which 
is the return process in this case, tω  and tε  are considered as the process 
noise and the measurement noise respectively, and { }, ,Qθ = φ β  are the model 
parameters. Squaring Equation (5) and introducing a logarithm reduces the eq-
uation to: 

,t t tx z v= α + +                          (6) 

where: 

( )2log ,t tx r=  

( ) ( )2 2log log ,tE  α = β + ε   

( )( ) ( ) ( )2 2 2 2
1 1log log ~ log log .t tv E E   = ε − ε χ − χ     

This yields a univariate stochastic volatility model: 

1 ,t t tz z −= φ +ω                          (7) 

,t t tx z v= α + +                          (8) 

where ( )~ 0,tw N Q  and ( ) ( )2 2
1 1~ log logtv Eχ χ −   . 

The vector of parameters is { }, ,Qθ = α φ , representing the level of log-variance, 
persistence of log-variance and volatility of log-variance respectively. We then 
apply the method of moments (Kim, 2005) to generate consistent estimates for a 
linear system: 

( )0 0 ,
n

tt x
n
=α = ∑  

( ) ( ) ( )
( )( )

2 20 3

1 1 2 23

,
n

t t t tt
n

t t t tt

x x x x

x x x x
− −=

− − − −=

− −
φ =

− −
∑
∑

 

( ) ( ) ( ) ( ) ( )1 10 22
1ˆ ˆ .

n
t t t tt

t t

x x x x
Q var v var v

n
− −=

−

− − φ −
= − − φ∑  

2.2. Hidden Markov Model 

We consider a bivariate probabilistic HMM that consists of a state process kz , 
which is discrete and takes its values from some finite set Z  equipped with a 

https://doi.org/10.4236/jfrm.2021.103021


M. B. Bosire, S. C. Maina 
 

 

DOI: 10.4236/jfrm.2021.103021 371 Journal of Financial Risk Management 
 

countably generated σ-algebra Ω , and the observation process kx  from 
another finite space X  with corresponding σ-algebra Λ , such that ( Z , Ω ) 
and ( X , Λ ) are measurable spaces. kz  are considered to be latent (hidden) 
variables governed by ( )|k kPr x z  and ( )1|k kPr z z − . 

The joint distribution of nx  and nz  is such that:  

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
2

, , , , , | | | ,
n

n n k k k k
k

Pr x x z z Pr z Pr x z Pr z z Pr x z−
=

= ∏   

with stationary transitional probabilities:  

( ) ( ) ( )1, | , 1, , ,k ki jT Pr z j z i i j n+= = = ∀ ∈   

emission probability:  

( ) ( ) ( )| 1, , ,i k kx Pr x z i i nξ = = ∀ ∈   

and an initial distribution:  

( ) ( ) ( )1 1, , .i Pr z i i nπ = = ∀ ∈   

These reduce the joint distribution to: 

( ) ( ) ( ) ( ) ( )
11 1 1 1

2
, , , , , , .

k

n

n n z k k z k
k

Pr x x z z i x T z z x−
=

= π ξ ξ∏   

Following the formal definition of (Bickel, Ritov, & Ryden, 1998), the stochas-
tic process ( ), 1nz n ≥  with a state space ( ),ΩZ  is a hidden Markov model if 
the following hold: 

1) We are given, but do not observe, a strictly stationary Markov Chain 

1, , nz z  with state space ( ),ΩZ .  
2) For all n given ( )1, , nz z , the ( ), 1, ,ix i n=   are conditionally indepen-

dent and the conditional distribution of ix  depends only on iz .  
3) The conditional distribution of ix  given iz  does not depend on i.  
We assume that the process ( ), 1ix i ≥  is strictly stationary, and if the hidden 

Markov chain ( ), 1iz i ≥  is ergodic, then ( ), 1ix i ≥  is also ergodic. 

2.2.1. Expectation-Maximization Algorithm 
The EM algorithm is employed in finding the (local) maximum likelihood esti-
mates for parameters where the model depends on unobserved latent variables 
and where equations cannot be solved directly. The EM iteration alternates be-
tween an expectation (E) step, which creates a function for the expectation of the 
log-likelihood of the complete data over the smoothing distribution, which is 
evaluated using the current parameter estimates, and a maximization (M) step, 
which re-estimates parameters by maximizing the expected marginal log-likelihood 
found on the E-step. These parameter estimates are then used to determine the 
distribution of the latent variables in the next E-step. 

Given the complete data-set, { },x z , of observed data and unobserved data 
respectively, and a vector of unknown parameters, θ , along with a likelihood 
function, ( ) ( ); , , |L x z p x zθ = θ , then: 

E-Step: 
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The E-step of the EM algorithm computes the expected value of ( ); ,L x zθ  
given the observed data, x, and the current parameter estimate, tθ . In particular, 
we define:  

( ) ( ) ( ) ( ); : ; , | , ; , | , d ,t t tQ E L x z x L x z p z x zθ θ = θ θ = θ θ   ∫  

where ( )| , tp z x θ  is the conditional density of z given the observed data, x, and 
assuming tθ = θ . 

M-Step: 
The M-step consists of maximizing over θ  the expectation step computed 

above. That is, we set:  

( )1 arg max | .t t+ θθ = θ θ  

We then set 1t t+θ = θ  and repeat up until tθ  converges, with convergence 
to a local maximum guaranteed. The idea is to first initialize the parameters θ  
to some (random) variables, compute the conditional probability ( )|Pr z θ , 
then use the computed values of z to compute better estimates for the parame-
ters θ . This is performed iteratively until convergence, which is achieved when 
parameter estimates become stable and no further improvements can be made to 
the likelihood value. The ML estimate of θ  is then taken as the best estimate of 
the local maxima. 

2.2.2. Filtering Techniques 
Markov Chain Monte Carlo 
Given a collection of observations ( )1: 1: , ,t tx x x=  , inference is made with 

regard to the parameter set, θ , and the states, ( )1: 1: , ,t tz z z=  . In the Bayesian 
framework, inference relies on the posterior density:  

( ) ( ) ( )1: 1: 1: 1: 1:, | | | ,t t t t tp z x p x p z xθθ = θ  

where: 

( ) ( ) ( )
( ) ( ) ( )

( )
1: 1: 1:

1: 1: 1:
1: 1:

,
| , | ,t t t

t t t
t t

p x p p z x
p x p z x

p x p x
θ

θ
θ

θ
θ = =  

with: 

( ) ( ) ( ) ( )1: 1: 1 1
2 1

, | | .
t t

t t n n n n
n n

p z x z f z z g x zθ θ θ − θ
= =

= ϕ ∏ ∏  

It is feasible to design efficient MCMC algorithms for linear Gaussian and fi-
nite state space models where it is possible to sample from ( )1: 1:|t tp z xθ  and 
compute ( )1:tp xθ . Common practice is to build MCMC kernel updating sub-
blocks as:  

( ) ( ) ( ): 1 : 1 : 1 1| , | | .
n K t

n n K n n K n n K m m m m
m n m n

p z x z f z z g x z
+

θ + − + − + − θ − θ
= =

∝ ∏ ∏  

The prior distribution of the parameter vector is specified by choosing inde-
pendent components of each parameter, that is, ( ) ( ) ( ) ( )p p p p Qθ = α φ . 
α∈  is equipped with a normal and uninformative prior ( )~ ,N b Bα αα  

https://doi.org/10.4236/jfrm.2021.103021


M. B. Bosire, S. C. Maina 
 

 

DOI: 10.4236/jfrm.2021.103021 373 Journal of Financial Risk Management 
 

where it is common practice to set 0bα =  and 100Bα ≥  for daily log-returns. 
For [ ]1,1φ∈ − , ( ) ( )0 01 2 ,a bφ+ ∈  where 0a  and 0b  are hyperparameters 
and ( ),B x y  denotes the beta function. As for the volatility of the variance 
process, ( )2

1 2 2~ B 1 1,Q QQ R G B+∈ ∗Ξ =  or an equivalent centered normal dis-
tribution ( )~ 0, QQ N B±  (Frühwirth-Schnatter & Wagner, 2010). 

Joint (batched) sampling of all instantaneous volatilities through the “All 
Without a Loop (AWOL)” is a key feature that enables for a significant reduc-
tion in the correlation of the draws. Complex models such as volatility models 
are such that it is possible to sample from the prior only as a result of which the 
question arises on how to efficiently evaluate a MCMC sampler point-wise on 
these models. The SMC methods provide approximations for ( )1: 1:|t tp z xθ  and 

( )1:tp xθ  sequentially, and are considered for general state HMMs. 
Sequential Monte Carlo 
SMC filters aim to estimate, recursively in time, the posterior distributions of 

hidden states of a Markov Process given some noisy and partial observations. 
They employ a set of particles (samples) to represent the posterior distribution 
and often assume the states, kz , and the observations, kx , can be modelled in 
the form: 
 The state process, { }0 1, ,z z  , is modelled as a Markov process on zd  (for 

some 1zd ≥ ), with initial distribution ( )0Pr z  that evolves according to the 
transition probability density, ( )1|k kPr z z − . 

 The observations, { }0 1, ,x x  , take values in some state space on xd  (for 
some 1xd ≥ ) and are conditionally independent provided that 0 1, ,z z   
are known.  

Under Baye’s Rule for conditional probability, we have the non-linear filtering 
equation:  

( ) ( ) ( )
( )

0 0 0
0 0

0

, , | , , , ,
, , | , , ,

, ,
k k k

k k
k

Pr x x z z Pr z z
Pr z z x x

Pr x x
=

  

 



 

where: 

( ) ( ) ( )0 0 0 0 0, , , , | , , , , d d ,k k k k kPr x x Pr x x z z Pr z z z z= ∫      

( ) ( )0 0 1
0

, , | , , | ,
k

k k i i
i

Pr x x z z Pr z z −
=

=∏   

( ) ( ) ( )0 0 0 1
0

, , | .
k

k i i
i

Pr z z Pr z Pr z z −
=

= ∏  

The non-linear filtering problem involves computing the conditional distribu-
tion, ( )0 1| , ,k kPr z x x − , sequentially and the filtering equation is given by the 
recursion: 

( ) ( ) ( )
( ) ( )

0 1updating
0

0 1

| | , ,
| , , ,

| | , , d
k k k k

k k
k k k k k

Pr x z Pr z x x
Pr z x x

Pr x z Pr z x x z
−

−

→ =
′ ′ ′∫







 

( ) ( ) ( )prediction
1 0 1 0| , , | | , , dk k k k k k kPr z x x Pr z z Pr z x x z+ +→ = ∫   
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We assume ( )|k kPr x z  is continuous with the convention  
( ) ( )0 0 0| , , kPr z x x Pr z=  for 0k = . 

3. Data Analysis 
3.1. Data Description 

This study uses secondary data, recorded daily, for the period January 2012 to 
February 20211 from the Nairobi Securities Exchange 20 (NSE20) Share index, 
which comprises of twenty listed firms based on quantitative financial merit. 
These firms represent 80% of the market capitalization and are therefore a good 
proxy for measuring the study variables. The companies are selected based on 
measures of trading activity such as market capitalization, number of shares quoted, 
profitability and dividend record. The constituent firms of the NSE20 share in-
dex are listed in Table 1 by sector. 
 
Table 1. Constituent companies of the NSE20 share index. 

Industry/Sector Companies 

Banking Sector 

1. Absa Bank Kenya Ltd 

2. Equity Group Holdings Plc 

3. KCB Group Plc 

4. Diamond Trust Bank Kenya Ltd 

5. The Co-operative Bank of Kenya Ltd 

6. NIC Group Plc 

7. Standard Chartered Bank Kenya Ltd 

Commercial & Services Sector 

8. WPP Scangroup Plc 

9. Kenya Airways Plc 

10. Nation Media Group Plc 

Construction and Allied Sector 11. Bamburi Cement Ltd 

Energy and Petroleum Sector 
12. KenGen Co. Plc 

13. Kenya Power & Lighting Co Ltd 

Insurance Sector 
14. Britam Holdings Plc 

15. Kenya Re Insurance Corporation Ltd 

Investment Sector 16. Centum Investment Co Plc 

Investment Services Sector 17. Nairobi Securities Exchange Plc 

Manufacturing & Allied Sector 
18. East African Breweries Ltd 

19. British American Tobacco Kenya Plc 

Telecommunication Sector 20. Safaricom Plc 

 
The demeaned log returns are seen to vary around a mean value of averagely 

0.00, with periods of high and low variance as shown in Figure 1. The greatest 
variance can be observed in early 2014 in the plot of log returns, a trend that is 
also visible in the rolling volatility plot presented in Figure 2 and latent volatili-
ties quantile plots in Figure 3 plots. The volatility evolves continuously. 

 

 

1Source: https://www.investing.com/. 
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Figure 1. Log returns for NSE20 share index daily price data for the period January 2012 
to February 2021. 
 

 

Figure 2. Rolling volatility for daily price data for the period January 2012 to February 
2021. 
 

 

Figure 3. Quantile plot of time against percentage latent volatilities for daily price data 
for the period January 2012 to February 2021. 
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In Figure 3, the volatility estimates are approximated using initial parameter 
estimates 0.0002α = − , 0.75900φ =  and 0.1Q σ = . The volatility estimates 
are based on 0.05, 0.5 and 0.95 quantiles of latent volatility. 

3.2. Determination of Regimes 
3.2.1. 2-Regime Model 
The two-state HMM allows for high and low volatility without any additional 
differentiation. Based on the findings, the 2-state process assumes that the log-vola- 
tility process starts at state 1 where state 2 represents high volatilities while state 
1 represents low volatilities. The 2-state HMM filter2 converges at 25 iterations 
with 7 degrees of freedom, a log-likelihood of −4742.109, AIC value 9498.217 
and BIC value 9538.23. 

The transitional matrix for a 2-state fitted HMM model, as seen in Table 2, 
depicts stable states, that is, a higher probability of remaining in the same state 
given by 0.989 and 0.973 for state 1 and state 2 respectively. There is a higher 
probability of staying in state 1 relative to state 2. There is a higher transitional 
probability from state 2 to state 1, 0.027, compared to the probability of moving 
from state 1 to state 2, 0.011. 
 
Table 2. Transition matrix for the 2-state HMM. 

 To state 1 To state 2 

From state 1 0.989 0.011 

From state 2 0.027 0.973 

 
The descriptive statistics for parameter estimates of the Gaussian response va-

riables (Resp) are presented in Table 3. State 1 has a lower mean (intercept) val-
ue of 6.926 and a lower standard deviation 1.261 where state 2 has a higher mean 
value 13.591 and high standard deviation value 5.323. This shows that the re-
sulting model has two well-separated states, where state 2 has fast responses while 
state 1 has slow responses. Figure 4 is a graphical representation of state changes 
for the 2-state HMM model. 
 

 

Figure 4. State changes for a 2-state HMM applied to rolling volatility data for the period 
January 2012 to February 2021. 

 

 

2This is achieved upon fitting a HMM filter, using the library (depmixS4) on rolling volatility data. 
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Table 3. Descriptive statistics for the 2-state HMM. 

 Resp. (intercept) Resp. sd 

State 1 6.926 1.261 

State 2 13.591 5.323 

3.2.2. 3-Regime Model 
The three-state HMM provides for a high volatility regime, a low volatility re-
gime and a transitional regime bridge between the high and low volatility re-
gimes. The 3-state process assumes that the volatility process begins at state 1, 
where state 1 represents low volatilities, state 2 represents high volatilities and 
state 3 represents the transitional regime bridge between state 1 and state 2. The 
3-state HMM filter converges at 52 iterations with 14 degrees of freedom, a 
log-likelihood of −3876.486, AIC value 7780.972 and BIC value 7860.997. 

Given the transitional matrix in Table 4, there is a higher likelihood of re-
maining in all states, implying stable states. The probability of staying in state 1, 
0.978, is the highest whereas there is no likelihood of moving from state 1 to 
state 2 with an equally lower probability, 0.003, of moving from state 2 to state 1. 
 
Table 4. Transition matrix for the 3-state HMM. 

 To state 1 To state 2 To state 3 

From state 1 0.978 0.000 0.022 

From state 2 0.003 0.971 0.025 

From state 3 0.019 0.011 0.970 

 
Table 5 gives the descriptive statistics for the Gaussian response variables 

(Resp). State 2 has the highest response rate given that it has the highest re-
sponse parameter estimates, while state 1 has the lowest response rate. The 
graphical representation of state changes for the 3-state HMM model are as 
shown in Figure 5. 
 

 

Figure 5. State changes for a 3-state HMM applied to rolling volatility data for the period 
January 2012 to January 2021. 
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Table 5. Descriptive statistics for the 3-state HMM. 

 Resp. (intercept) Resp. sd 

State 1 5.999 0.739 

State 2 15.808 5.665 

State 3 8.527 1.057 

3.2.3. 4-Regime Model 
The four-state HMM provides for very high and very low volatility regimes, and 
two intermediate states representing high and low volatility regimes. Given the 
findings, the 4-state process assumes that the log-volatility process starts at state 
1. State 1 represents very low volatilities while state 4 represents low volatilities. 
State 2 represents high volatilities while state 3 represents very high volatilities. 
The 4-state HMM filter converges at 67 iterations with 23 degrees of freedom, a 
log-likelihood of −3223.031, AIC value of 6492.063 and BIC value of 6623.531. 

The transition matrix given in Table 6 indicates a higher likelihood of staying 
in the same state. The highest probability is in staying in state 1 which represents 
very low volatility while there is no likelihood of moving from state 1 to state 2 
or state 3. The parameter estimates of the Gaussian response variables (Resp) 
have their descriptive statistics as shown in Table 7. State 3 has the highest re-
sponse rate given its high intercept and standard deviation values, while state has 
the lowest response rate. 
 
Table 6. Transition probability matrix for the 4-state HMM. 

 To state 1 To state 2 To state 3 To state 4 

From state 1 0.973 0.000 0.000 0.027 

From state 2 0.002 0.943 0.019 0.036 

From state 3 0.005 0.021 0.971 0.003 

From state 4 0.019 0.029 0.002 0.950 

 
Table 7. Descriptive statistics for the 4-state HMM. 

 Resp. (intercept) Resp. sd 

State 1 5.653 0.575 

State 2 9.424 0.746 

State 3 16.031 5.688 

State 4 7.336 0.521 

 
The 4-state HMM model’s state changes are represented graphically by Figure 

6. 
It has been empirically observed that the log-likelihood increases with in-

creased number of states, which is a result of increased number of parameters to 
be estimated. The same is evidenced in this study, given the resultant log-likelihood 
values −4742.109, −3876.486 and −3223.031 for the 2-state, 3-state and 4-state  
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Figure 6. State changes for a 4-state HMM applied to rolling volatility data for the period 
January 2012 to February 2021. 
 
model respectively. Due to the shortcomings of the log-likelihood in state esti-
mation, we rely on the information criteria to determine the optimal states. In-
formation criteria reward goodness of fit but impose a penalty that is an in-
creasing function of the number of estimated parameters and which discourages 
model over-fitting. Based on the BIC, which imposes a greater penalty for addi-
tional parameters, the 4-state economy is optimal with the lowest BIC value of 
623.531, relative to the 9538.23 and 7860.997 values for the 2-state and 3-state 
respectively. 

3.3. Parameter Estimation 
3.3.1. Markov Chain Monte Carlo (MCMC) 
The single regime model assumes that there are no regimes in the economy. As 
such, the model’s input is all the data set used in the study, that is, a numeric 
vector of squared log returns without any missing values. Given the definitions 
of (Kim, 2005) the initial parameter estimates are:  

( ) ( )( ) ( ) ( ){ }0 0~ , , 1 2 ~ , , 0.1t tN mean x var x a b Qθ = α φ+ = 3. The parameter 
estimates obtained for the single state model are given by Table 8. 
 
Table 8. Parameter estimates for the single state SV model under MCMC. 

Parameter Mean Standard deviation ESS 

µ  −0.00037 0.03568 9301 

φ  0.99947 0.00031 2290 

σ  0.24462 0.02407 105 

Total (n) 2273   

Iterations per second 626   

Time elapsed (in seconds) 17.58   

 

 

3 µ  and α  are used interchangeably and represent the level of log-variance while both Q and σ  
represent the volatility of the log variance process. 
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There is low deviation from the mean values of the parameter estimates as 
shown by the standard deviation values. The effective sample size (ESS) is a me-
tric for determining how well a converged Markov chain traversed the posterior 
space. Intuitively, it’s the number of independently distributed and identically 
distributed draws, with higher values indicating better mixing. Figure 7 summa-
rizes the resultant simulation density plots of the Markov chains of the parame-
ters where the grey-dashed lines and black-solid lines represent prior and post-
erior densities respectively. 
 

 

Figure 7. MCMC density plots of parameter posteriors against their frequencies for the 
single state univariate stochastic volatility model. 
 

The multi-regime SV model assumes 2-state, 3-state and 4-state volatility re-
gimes with parameter estimates together with the simulation density plots of the 
Markov chains of each parameter under each regime presented and discussed 
below. 

2-State Model 
The 2-State model assumes that there are two regimes in the economy, where 

state 1 represents low volatility and state 2 represents high volatility as discussed 
under the determination of regimes Section (3.2.1). Parameter estimates for the 
2-state model under the MCMC filtering technique are presented in Table 9. 
 
Table 9. Parameter estimates for the 2-state SV model under MCMC. 

Parameter State 1 State 2 

µ  −0.0526 −0.0004 

φ  1.0000 0.9978 

σ  0.4047 0.4796 

Total (n) 1640 632 

 
State 1 has a lower mean value, µ , and higher variance of the volatility process, 

σ , relative to state 2 in the 2-state HMM. Their φ  values for the two states 
have low variance from each other and are as 1φ ≤  which shows that both 
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processes are stationary. Figure 8 presents the simulation density plots of the 
Markov chains of each univariate SV model parameter for the 2-state model. 
 

 

Figure 8. Density plots of MCMC draws from parameter posteriors against their fre-
quencies for state 1 and state 2 respectively. 
 

3-State Model 
The 3-state process assumes that state 1 models low volatilities, state 2 

represents high volatilities and state 3 represents the transitional regime bridge 
between state 1 and state 2. Parameter estimates for each state process in the 
3-state model are presented in Table 10. 

State 1 has the highest mean value while state 3 has the lowest mean value. On 
the contrary, state 1 has the highest variance of the volatility value while state 2 
has the lowest variance of the volatility process value. The φ  values for the dif-
ferent states have low variance from each other and are as 1φ ≤  indicating 
that all three processes are stationary. The simulation density plots of each pa-
rameter’s Markov chains for the 3-state model are illustrated by Figure 9. 
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Table 10. Parameter estimates for the 3-state SV model under MCMC. 

Parameter State 1 State 2 State 3 

µ  −0.0002 −0.0007 −0.0162 

φ  0.9999 1.0000 1.0000 

σ  0.0325 0.6199 0.3679 

Total (n) 908 396 968 

 

 

Figure 9. Density plots of MCMC draws from parameter posteriors against their fre-
quencies for state 1, state 2 and state 3 respectively. 
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4-State Model 
Given the findings in Section (3.2.3), the 4-state process assumes that state 1 

represents very low volatilities, state 4 represents low volatilities, state 2 represents 
high volatilities while state 3 represents very high volatilities. Parameter esti-
mates for each of the 4 states are presented in Table 11. 
 
Table 11. Parameter estimates for the 4-state SV model under MCMC. 

Parameter State 1 State 2 State 3 State 4 

µ  −0.0559 −0.0001 −0.0006 −0.0606 

φ  1.0000 1.0000 0.9996 1.0000 

σ  0.3248 0.2482 0.7441 0.4195 

Total (n) 660 512 377 723 

 
State 2 has the highest mean value while state 4 has the lowest mean value. 

State 3 has the lowest variance of the volatility value while state 2 has the highest 
volatility value. All φ  values for the 4 states have low variance from each other 
and are as 1φ ≤  which implies that all four processes are stationary. The si-
mulation density plots of the Markov chains of each parameter under the 4-state 
model are given by Figure 10. 

3.3.2. Sequential Monte Carlo (SMC) 
Initial parameters for the single-regime model are as ( ) ( )( )~ ,t tN mean x var xα , 
( ) ( )0 01 2 ~ ,a bφ+   and 0.1Q = . The algorithm takes time to converge for 
larger data sets. In theory, it converges where the particle size and number of 
iterations is sufficiently large. However, in practice, it is not feasible to use infi-
nitely large particle sizes and/or number of iterations. As a result, it is of impor-
tance to select an appropriate particle size and number of iterations to imple-
ment the particle filters algorithm. The results per maximum number of itera-
tions M = length (observations), and the number of particles = length (observa-
tions) are as shown in Table 12. 

The single state process takes on all the observations in the study. The φ  
value, 0.9966 is less than one which shows that the process is stationary. 

Figure 11 shows sequential summaries of the parameter posteriors, with each 
panel plotting the (0.05, 0.50, 0.95) posterior quantiles for the given parameter 
and the true parameter values are represented by the mid line. The density plots 
of the parameter estimates derived from the posterior distribution are shown in 
Figure 12. 

The multi-regime SV model assumes 2-state, 3-state and 4-state volatility 
regimes. The parameter estimates and sequential summaries of the parameter 
posteriors under each regime are presented and discussed below. Each panel 
plots the (0.05, 0.50, 0.95) posterior quantiles and density plots for each parame-
ter. 
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Figure 10. Density plots of MCMC draws from parameter posteriors against their fre-
quencies for state 1, state 2, state 3 and state 4 respectively. 
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Table 12. Parameter estimates for the single state SV model under SMC. 

Parameter Parameter Estimates 

µ  −0.00021 

φ  0.9966 

σ  0.2528 

Total (n) 2273 

ESS 2046.693 

 

 

Figure 11. SMC convergence of parameter estimates for the single-state univariate sto-
chastic volatility model. 
 

 

Figure 12. SMC density plots of posterior parameter estimates for the single state univa-
riate stochastic volatility model. 
 

2-State Model 
Parameter estimates for the 2-state model under SMC are presented in Table 

13. State 1 has a lower mean and variance of the volatility process value. Both 
processes are stationary as their φ  values are less than 1. 

Figure 13 represents sequential summaries of the 0.05, 0.50 and 0.95 posterior 
quantiles for each parameter under the 2-state model, together with the density 
plots of the parameter estimates derived from the posterior distribution. 
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Figure 13. SMC convergence of parameter estimates and resultant parameter density 
plots for state 1 and state 2 respectively. 
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Table 13. Parameter estimates for the 2-state SV model under SMC. 

Parameter State 1 State 2 

µ  −0.0001 −0.0004 

φ  0.9946 0.9910 

σ  0.1856 0.0138 

Total (n) 1640 632 

ESS 1517.641 629.8072 

 
3-State Model 
The parameter estimates for the 3-state model under SMC, presented in Table 

14, indicate that the highest mean value is in state 3, followed by state 1 and then 
state 2. State 1 has the highest variance of the volatility process. The values of φ  
indicate that all three processes are stationary. Sequential summaries which de-
pict convergence of the parameter estimates are presented in Figure 14, which 
additionally presents the density plots of the parameter estimates derived from 
the posterior distribution. 
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Figure 14. SMC convergence of parameter estimates and resultant parameter density 
plots for state1, state 2 and state 3 respectively. 
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Table 14. Parameter estimates for the 3-state SV model under SMC. 

Parameter State 1 State 2 State 3 

µ  −0.0002 −0.0010 0.0229 

φ  0.9981 0.9172 0.9810 

σ  0.1809 0.2218 0.3728 

Total (n) 908 396 968 

ESS 836.2122 363.8864 847.4931 

 
4-State Model 
The four-state HMM provides for very high and very low volatility regimes, 

and two intermediate states representing high and low volatility regimes. Para-
meter estimates for each of these state processes are presented in Table 15. 
 
Table 15. Parameter estimates for the 4-state SV model under SMC. 

Parameter State 1 State 2 State 3 State 4 

µ  −0.0368 −0.0001 −0.0008 0.0460 

φ  0.9663 0.7166 0.7784 0.9699 

σ  4.8551 14.4947 8.2678 0.0933 

Total (n) 660 512 377 723 

ESS 330.8861 211.0747 182.6429 693.7399 

 
State 4 has the highest mean value while state 2 has the highest variance of the 

volatility process. The values of φ  are as 1φ ≤  showing all four processes are 
stationary. The 4-state model’s plots of sequential summaries and convergence 
of parameter estimates, together with the density plots of the parameter esti-
mates derived from the posterior distribution are shown in Figure 15. 
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Figure 15. SMC convergence of parameter estimates and resultant parameter density 
plots for state 1, state 2, state 3 and state 4 respectively. 

3.4. Forecasting Volatility 

The HMM filter on rolling volatility indicates well separated volatility states for 
the 2-state, 3-state and 4-state regimes, and characterizes the transition process 
underlying the data. Given that volatility is not directly observable in the market, 
we rely on the transition matrices, given by Table 2, Table 4 and Table 6, for 
predictive purposes when it comes to forecasting volatility. The transition ma-
trices for all three models indicate stable states given higher probabilities of 
staying within a state relative to moving to other states. This supports the vola-
tility clustering stylized fact, as periods of high volatility are usually followed by 
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periods of high volatility while periods of low volatility are followed by periods 
of low volatility. 

The 3-state model assumes that state 1 represents low volatility, state 2 
represents high volatility while state 3 is the bridge between low and high volatil-
ity. According to the empirical results, there is no probability of moving from 
state 1 to state 2, and the probability of moving from state 2 to state 1 is low. 
This indicates that the volatility process has a low likelihood of jumping from 
low to high or from high to low levels. The same holds for the 4-state model 
where the transition probability from state 1 (very low volatility) to state 2 (high 
volatility) and to state 3 (very high volatility) is 0. Transition probabilities from 
state 2 to state 1, state 3 to state 1 and state 4 (low volatility), and from state 4 to 
state 3, are also relatively low. 

4. Discussion 

Latent Markov models have been employed in modelling regime switches in 
economics. The HMM filter provides a clear separation of states where the input 
data is rolling volatility over a 30-day window. The 4-state economy is optimal 
given that it has a relatively low AIC and BIC value. Under the 4-state regime, 
the HMM filter classifies the economy into four volatility regimes: very high, 
high, low and very low volatility. Experimental results show that all three state 
models begin at state 1 which represents low volatility for the 2-state and 3-state 
models, and very low volatility for the 4-state model. 

Given the 4-state optimal model, very low volatility characterizes the begin-
ning of the modelling period which could be attributed to moderate economic 
growth but of significant increase from the year 2011. On average, low volatility 
can be seen in early 2016, 2018 and 2019 which are characterized by fairly stable 
exchange and inflation rates. In early 2016, a relatively stable currency and lower 
inflation rates were witnessed due to reduction of the benchmark interest rate 
from 11.5% to 10.5%, resulting in lower credit costs. Political risk dominated the 
years 2012-2014 as a result of the International Criminal Court (ICC) hearings, 
resulting in some price volatility during the same period. 

Periods of high volatility during the modelling period could be attributed to 
the general elections in March 2013 and September 2017 with a consequent nul-
lification of the results in the last quarter of 2017. The Central Bank’s decision to 
lift its base rate in July 2015 resulted in volatile 91-day Treasury Bill (T-bill) 
prices in late 2015. Further to that, in mid-2016, a Banking Amendment Act that 
capped interest rates levied by financial lending institutions caused some market 
volatility. The International Criminal Court’s decision in January 2014 to post-
pone the start of the prosecutor’s trial until February 2014 (ICC, 2014), as well as 
many other critical information releases on the same case, may have contributed 
to the very high volatility observed in early 2014. The election business cycle 
may have amplified this, resulting in uncertainty about monetary policy and fis-
cal spending transmission or policy risk, which often leads to delayed recovery 
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from political events (Born & Pfeifer, 2014). Charges of crimes against humanity 
against Kenya’s top political figures may have discouraged foreign investment in 
Kenyan companies. High inflation and a low exchange rate of the US dollar 
against the Kenyan shilling resulted in a depreciated currency in early 2014. The 
COVID-19 pandemic has had its impact on both the domestic and global fronts 
resulting in a contracted quarterly gross domestic product contrary to the 
growth that had been witnessed in the last decade. 

The univariate stochastic volatility model takes the volatility of the variance 
process into account and is a general state-space model. The AR (1) process, 
whose one-time shock impacts values of the evolving variable infinitely far into 
the future, captures the persistent nature of volatility. This may be the case par-
ticularly where there is no market resolution following a macroeconomic or po-
litical event. The EM algorithm is employed in parameter estimation as it achieves 
maximum likelihood parameter estimates without having to deal with the like-
lihood which cannot be presented in a closed form stochastic volatility model, 
and where the data is not fully observable. 

The MCMC and SMC rely on Bayesian estimation of parameters which are 
distributed approximately with regard to the posterior. In Bayesian inference, an 
assumption about the prior distributions of the parameter set is made and para-
meter estimates are then simulated using the assumed priors. The posterior dis-
tribution is obtained by evaluating the likelihood of each parameter estimate, 

( )Pr θ , given observation information, ( )| tPr xθ . Filtering techniques are em-
ployed to extract latent state variables from noisy data to be used in parameter 
estimation. MCMC utilizes batched and offline samplers while SMC employs 
sequential and online techniques for parameter estimation. 

Parameter estimates for the single state models under MCMC (Table 8) and 
SMC (Table 12) differ but have a low deviation from each other. For both filters, 
the σ  values exhibit the most deviation in the various state models. Under 
SMC, σ  values have the most deviation under the 4-state model returning the 
highest values for states 1, 2 and 4. The µ  and φ  values remain relatively within 
the same range, depending on whether the particular state models low, moderate 
or high volatility. For MCMC, parameter estimates for the level of log-variance are 
close to each other in the 2-state model but their range widens in the 3-state and 
4-state models. Resultant posterior density plots under MCMC and SMC depict 
a relatively even distribution for the µ  parameter, a negative (left) skew for the 
φ  parameter and positive (right) skew for the σ  parameter. 

The Markov Chain is a stochastic model that describes a series of possible 
events where the probability of each event is solely determined by the state ob-
tained in the previous event. A transition probability matrix occurs in a first-order 
Markov chain process, which specifies the likelihood of transitioning from one 
state to another in successive time periods. As volatility is not directly observable 
in the market, we rely on transition probabilities to forecast volatility. The tran-
sition matrices for all three models imply to stable states which supports the sty-
lized fact of volatility clustering. 
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5. Conclusions and Further Work 

Hidden Markov Models (HMMs) have their applications in state inference based 
on observations. Secondary price data for the Nairobi Securities Exchange 20 
(NSE 20) share index is used to estimate rolling volatility with a goal of estimat-
ing volatility regimes by employing an HMM filter. The univariate stochastic 
volatility model established by (Taylor, 1982), and acknowledged by (Andersen 
et al., 2009), provides a straightforward yet versatile framework for modeling 
time-varying volatility, as evidenced by empirical research. 

The use of the Schwartz Bayesian Information Criterion (BIC) is motivated by 
a well-known drawback of the log-likelihood in state estimation, which increases 
as the number of states increases. The BIC allows us to select an optimal model, 
that is, the model with the lowest BIC value. Estimation results under determi-
nation of regimes indicate that the 4-state model, which divides the economy 
into periods of very high, high, low and very low volatility, is optimal. 

We employ Markov Chain Monte Carlo (MCMC) and Sequential Monte Car-
lo (SMC) filtering techniques which generate approximations to filtering distri-
butions and are commonly used in non-linear and/or non-Gaussian state-space 
models. Given the different parameter estimates for the state processes under 
each modelling regime and under each filtering technique, a more versatile 
framework for modeling the volatility process is implemented. As a result, when 
analyzing volatility dynamics in the pricing of various volatility-backed financial 
assets, regime switching should be factored. 

A useful extension to this research, particularly in frontier markets, can em-
ploy a multivariate stochastic volatility model. A comparative analysis of the said 
models with the univariate SV model can offer insights on the ability of the 
models to capture stylized facts of the volatility process under regime changes. 
Given the nature of financial time series data, it would be important to consider 
non-linear, non-Gaussian filtering techniques in state-space estimation. Finally, 
while this study focused on daily data, tick-by-tick data could be used in model-
ing market returns and subsequent volatility for better risk management and 
control, particularly in highly liquid markets. Tick-by-tick data exhibits better 
convergence properties particularly in maximum likelihood estimation of para-
meters. 
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