
https://www.scirp.org/journal/jbise J. Biomedical Science and Engineering,
2021, Vol. 14, (No. 7), pp: 305-315

https://doi.org/10.4236/jbise.2021.147026 305 J. Biomedical Science and Engineering

Inverse Molecule Design with Invertible Neural Networks
as Generative Models

Wei Hu

Department of Computer Science, Houghton College, Houghton, USA

Correspondence to: Wei Hu,
Keywords: Inverse Molecule Design, Invertible Neural Networks, Normalizing Flows
Received: July 1, 2021 Accepted: July 27, 2021 Published: July 30, 2021

Copyright © 2021 by author(s) and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

ABSTRACT
Using neural networks for supervised learning means learning a function that maps input x
to output y. However, in many applications, the inverse learning is also wanted, i.e., infer-
ring y from x, which requires invertibility of the learning. Since the dimension of input is
usually much higher than that of the output, there is information loss in the forward learn-
ing from input to output. Thus, creating invertible neural networks is a difficult task. How-
ever, recent development of invertible learning techniques such as normalizing flows has
made invertible neural networks a reality. In this work, we applied flow-based invertible
neural networks as generative models to inverse molecule design. In this context, the for-
ward learning is to predict chemical properties given a molecule, and the inverse learning is
to infer the molecules given the chemical properties. Trained on 100 and 1000 molecules,
respectively, from a benchmark dataset QM9, our model identified novel molecules that had
chemical property values well exceeding the limits of the training molecules as well as the
limits of the whole QM9 of 133,885 molecules, moreover our generative model could easily
sample many molecules (x values) from any one chemical property value (y value). Com-
pared with the previous method in the literature that could only optimize one molecule for
one chemical property value at a time, our model could be trained once and then be sampled
any multiple times and for any chemical property values without the need of retraining.
This advantage comes from treating inverse molecule design as an inverse regression prob-
lem. In summary, our main contributions were two: 1) our model could generalize well from
the training data and was very data efficient, 2) our model could learn bidirectional corres-
pondence between molecules and their chemical properties, thereby offering the ability to
sample any number of molecules from any y values. In conclusion, our findings revealed the
efficiency and effectiveness of using invertible neural networks as generative models in in-
verse molecule design.

Open Access

https://www.scirp.org/journal/jbise
https://doi.org/10.4236/jbise.2021.147026
http://creativecommons.org/licenses/by/4.0/

https://doi.org/10.4236/jbise.2021.147026 306 J. Biomedical Science and Engineering

1. INTRODUCTION
Machine learning can be divided into three major categories: supervised learning, unsupervised

learning, and reinforcement learning. All these three classes of learning have found successful applications
in molecule design. In the setting of supervised learning, the model learns a function that maps input x to
output y, where x represents the features of a molecule and y the chemical properties of the molecule. The
learning from input to output is forward learning and from output to input is inverse learning, which
usually is much harder than the forward learning. Because the dimension of input is usually much higher
than that of the output, there is a possibility of information loss when the information flows from a higher
dimensional space to a lower one. Therefore, inverse learning problems are often both intractable and
ill-posed. Nonetheless, inverse learning is much needed in cheminformatics as it is very important to infer
molecules from their chemical properties [1].

Recent advances in machine learning such as normalizing flows has made it possible to create inverti-
ble neural networks by imposing extra constraints such as restrictive to the architecture of the networks or
adding a normalization step during training [2]. Since their recent introduction, invertible neural net-
works have shown convincing performance on discriminative and generative learning tasks, which opens
up many exciting new avenues for research. A normalizing flow is a sequence of bijective transformations
for a random variable such that its distribution evolves from a simple distribution to a more complex one.
Invertible neural networks fulfill a long-time dream of being interpretable from deep learning community.
It could be expected that with the introduction of invertible networks, many of the current problems could
be revisited from a completely different perspective on the same problem. This was the reason and motiva-
tion for us to start the work reported in this paper.

Creating molecules of desired chemical properties is of great importance in science as it can guide
and speed up the development of new active compounds. In this paper, we proposed to apply invertible
neural networks to the task of inverse molecule design, which was inspired by the work in [1] where the
main idea was to tune the input (parametrized molecules) for a target value of a chemical property while
keeping the weights of the neural network frozen after the forwarding learning is finished. The method in
[1] could only optimize one molecule for one target value at a time because their network was not inverti-
ble. However, our work tried to investigate the bidirectional correspondence between molecules and their
chemical properties by treating inverse molecule design as an inverse regression problem. With completely
different approaches to the same problem, our expectation was to uncover an array of benefits of using
invertible neural networks as generative models in inverse molecule design.

Our current work could be viewed as a continuation of our earlier work [3], in which we employed
multi-agent reinforcement learning to molecule design. During one episode of its training, a single agent
can only learn how to move forward based on the experience gained thus far. In the case of molecule de-
sign, this means the single agent can only improve the future sites of a molecule, but cannot correct or im-
prove the sites it already has passed during one episode of training. However, in a multi-agent setting, a
group of agents can improve their work on all sites of a molecule simultaneously, so the learning can be
bidirectional: both forward and backward learning, and furthermore, concurrent learning of all sites. Our
findings highlighted that multi-agent approach increases learning significantly compared to single-agent,
which could be attributed to the synergy of team work of a group of agents and a more focused individual
responsibility of each agent in the group [3].

2. METHODS
2.1 Normalizing Flows

Normalizing flows use invertible network structures to create bijective flows between a simple proba-
bility distribution and a very complex distribution, offering a new class of exact likelihood based genera-
tive models.

The whole idea of this new concept begins with change of variables: let Z and X be random variables

https://doi.org/10.4236/jbise.2021.147026

https://doi.org/10.4236/jbise.2021.147026 307 J. Biomedical Science and Engineering

which are related by a bijective mapping : n nf R R→ such that ()x f z= and ()1z f x−= . Then

() () () ()
11

1() det detX Z Z
f x fp x p f x p z

x z

−−
−  ∂ ∂ = =    ∂ ∂  

 (1)

() ()log log log detX Z
fp x p z
z
∂ = −  ∂ 

 (2)

where det f
z
∂ 

 ∂ 
 is the determinant of Jacobian of f at x, which measures the local linear expansion or

shrinkage around x. Therefore, the transform is volume preserving if the determinant equals unity. In
general, the cost of computing a determinant is ()3O n , which can be computationally expensive for
high-dimensional distributions. Therefore, efficient calculation of the determinant is critical for practical
use of this method. One common technique to achieve this goal is to design the transformation so that the
Jacobian is an upper or a lower triangular matrix. Equation (2) offers a means to maximize the likelihood
via change of variables. In contrast to directly parameterizing a probability distribution, the change of va-
riables approach allows for the creation of a complex distribution implicitly by transforming a simple base
distribution.

Hence, we can evaluate the exact log-likelihood as long as the prior distribution ()log Zp z is tracta-
ble and the determinant of the Jacobian can be efficiently computed. It is clear that the design of these
transformations has to balance the expressiveness and the computational cost of the determinant of the
Jacobian. Also, notice that x and z have to be of the same dimension to make the bijection between them
possible.

If we have K such bijection f, a flow is created through a sequential composition of these functions:
()2 1Kx f f f z=   which is able to transform ()p z from a simple distribution to a more complex

one ()p x . ()log Xp x represents the exact log-likelihood of input data x, and the learning of these bijec-
tions is through minimizing the negative log-likelihood loss function. After learning, new samples x can be
generated from the latent variables z according to the prior distribution ()p z through the flow.

We introduce two popular flow models, nonlinear independent components estimation (NICE) [4]
and real non-volume preserving (RealNVP) [5] as they will be utilized in our work. The core techniques of
these methods are dimension partitioning and coupling layers, which transform one part of the input at a
time and allow for both analytic forward and inverse mappings.

The NICE is a transformation that uses additive coupling layers. The coupling layer in NICE parti-
tions z into two disjoints subsets, z1 and z2. Then it applies the following transformation:

Forward mapping z x→ :

()
1 1

2 2 1

x z
x z m z
=

 = +
 (3)

Inverse mapping x z→ :

()
1 1

2 2 1

z x
z x m x
=

 = −
 (4)

where m is a neural network. This defines a volume preserving transformation since the determinant of
the forward mapping is 1.

RealNVP adds scaling factors to the transformation:

()() ()2 1 2 1expx s z z m z= + (5)

where  denotes elementwise product and s is a neural network. This results in a non-volume preserving
transformation. The Jacobian of RealNVP is triangular and Jacobian diagonals are strictly positive, and the

https://doi.org/10.4236/jbise.2021.147026

https://doi.org/10.4236/jbise.2021.147026 308 J. Biomedical Science and Engineering

Jacobian of NICE is triangular and Jacobian diagonals are all 1s. The major challenges of create normaliz-
ing flows are flexible invertible structures and efficient computation of log-determinant.

In addition to the flows based on dimension partitioning, there are other kinds of flows such as those
based on identities of determinants, which make use of some identities to speed up the computation of
determinants if the Jacobians have special structures. Some flows are based on autoregressive transforma-
tions so the Jacobian can be made triangular. Plus, flows can also be free-form, i.e., whose Jacobians are
not limited by special structures [6].

2.2. Invertible Neural Networks

In a typical neural network structure for supervised learning, there are two major sequential stages in
the mapping of input x to output y. The first is made of layers that process the input data, i.e., extracting
useful features, and the second is to change the features into a decision on classification or regression. The
convolutional layers and recurrent layers are key players in the first stage and the softmax layers are com-
monly used in the second stage when a probability distribution is needed as output. Usually the input data
dimension is much higher than the output dimension. To make the information flow bijective in a net-
work, it is easy to replace the first stage with different normalizing flows or other invertible structures. But
to make the second stage invertible, it is necessary to introduce extra technique to capture the information
about x that is not contained in y. For example, adding an extra variable z, so x could be inferred given [y,
z] [7]. Good design of invertible neural networks entails that both inverting the network and computing
the Jacobian determinant be efficient. The invertible neural network used in this work consisted of three
layers. The first is RealNVP, the second is NICE, and the third is for regression.

3. RESULTS
The chemical property studied in this work was the logarithm of partition coefficient (logP) of a mo-

lecule, a measurement of its lipophilic efficiency, which is one of the indicators of drug-likeness. In [1], a
neural network was trained to predict logP values, then the weights of this network were frozen, and the
inverse training optimized the parametrized molecule for a logP value. This method had the limitation of
training the model for one molecule and one logP value at a time. If a different logP value is given to infer
the corresponding molecule, the model had to be retrained. In contrast, we took a different approach to
the same problem: we treated it as an inverse regression problem. Our method could train a generative
model on a dataset of molecules and all their logP values at one time. Once our model was trained, it could
be used to generate any number of molecules for any logP values without the need of retraining. This sec-
tion demonstrated the simplicity and effectiveness of using invertible neural networks as generative mod-
els in inverse molecule design.

3.1. Training Invertible Neural Networks on 100 Molecules

It is well-known that training deep neural networks requires considerably large training datasets as
seen in [1], which used 10,000 molecules from QM9 dataset [8] to study the shift in distribution of logP
values. We first highlighted the data efficiency of our approach by generating new molecules with a very
tiny dataset of 100 molecules randomly selected from QM9 dataset. Our goal was to show that trained on
such a small dataset, our generative model was able to discover molecules to have logP values that ex-
ceeded the limits of our dataset of size 100 and even the limits of the whole QM9 dataset of 133,885 mole-
cules.

Our dataset of 100 molecules had an average logP of 0.259, maximum of logP of 3.14, and minimum
of −2.12 (Figure 1). For reference, QM9 dataset has average logP = 0.36, maximum logP = 3.22, and
minimum logP = −2.12. logP was calculated using software RDKit.

Prior to training our model, each molecule was stored in a SMILES string in QM9 [9], and then was
converted into a SELFIES string [9], then to a one hot encoding binary string. This one hot encoding string
was used as input x (molecule) to train our invertible neural network to predict output y (logP) values.

https://doi.org/10.4236/jbise.2021.147026

https://doi.org/10.4236/jbise.2021.147026 309 J. Biomedical Science and Engineering

Figure 1. Actual logP value distribution of the 100 molecules used in the training of
our model, with average logP = 0.259, maximum of logP = 3.14, and minimum =
−2.12.

Our invertible neural network had two methods, one called forward for forward learning and the

other inverse for inverse learning. For input x, the output y = model.forward(x), then x = mod-
el.inverse(y). Our model was trained with the loss function defined as the squared difference of logP and
predicted logP, and of x and its inverse image x , simultaneously optimizing both the input and output
domains.

2 2loss log pred_ logP P x x= − + −  (6)

This loss function implied the training of our model was bidirectional: forward and backward (in-
verse) (Figure 2).

Since x was a vector of rea numbers, we had to convert it to a one-hot encoding vector, denoted by
hotx , by setting value to 1 at the position of maximum value in x , and all other positions to have value of

0. The logP, SMILES and SELFIES representations in Table 1 and Table 2 were based on hotx .
As observed in [1], our model recognized the presence of carbon atom in a molecule as an important

indicator of a high logP value and the nitrogen atom as an indicator of a low logP value. Next, we dis-
played the molecular graphs of the two novel molecules uncovered by our model, with one of extreme
positive logP value and one of extreme negative logP value (Figure 3 and Figure 4).

3.2. Training Invertible Neural Networks on 1000 Molecules

To further elucidate the advantage of using invertible neural networks as generative models, we chose
a dataset of 1000 molecules from QM9 to train our model using the same loss function as in Section 3.1
(Figure 5). Section 3.1 reported the molecules generated for one time by our model from one y value.
However, in this section our model generated 1000 molecules from one y value, so we could calculate the
average and standard deviation of their logP values, thus enabling us to show the distribution of these pre-
dicted logP values from an array of y values (hypothetical logP) (Table 3 and Figure 6). The average logP

https://doi.org/10.4236/jbise.2021.147026

https://doi.org/10.4236/jbise.2021.147026 310 J. Biomedical Science and Engineering

Figure 2. X-axis represents the predicted logP of the 100 molecules by our
model and y-axis represents their true logP. We split the 100 molecules into
two subsets, 85 molecules for training and 15 for test. This plot shows the
quality of forward learning of our model.

Figure 3. Graph of a novel molecule in table 1 with y value = 5.0
and logP = 4.08, SMILES = CCCCC(C)=CCC=CC, and SELFIES =
[#C][C][C][C][C][Branch2_1][C][=O][C][#C][C][C][=C][C][Bra
nch2_3][=O][Ring1][Branch1_3][F].

Figure 4. Graph of a novel molecule in table 2 with y value = −3.3
and logP = −3.36, SMILES = O(NNNNON)ON, SELFIES =
[Branch1_2][Branch1_1][=O][Branch2_1][C][O][=N][Branch1_3]
[Ring1][Branch1_1][Branch2_2][#N][N][N][O][=N][O][=N].

https://doi.org/10.4236/jbise.2021.147026

https://doi.org/10.4236/jbise.2021.147026 311 J. Biomedical Science and Engineering

Table 1. This table presents the novel molecules sampled individually from one positive y value by
our model. The table contains logP of each molecule, along with its SMILES and SELFIES strings.

y value 3.3 3.3 3.3
logP of hotx 3.48 3.59 4.00
SMILES CCCC(=C)CCCC(F) CCCCCCC=C=CF CCCCC(C)CCCC

SELFIES

[#C][C][C][C][Branch1_3][R
ing1][=C][Branch1_2][=C][C
][C][C][Branch2_1][O][O][F
][#N][Branch1_2]

[#C][C][C][C][Branch1_3][#
N][Branch1_1][C][Branch1_
2][C][Branch2_1][#C][C][C]
[Ring1][F][=C][F][N][Branc
h1_2]

[#C][C][C][C][C][Branch1_2
][=O][C][Branch1_2][C][C][
C][C][Branch2_3][N][Ring2]

y value 4.0 4.0 4.0
logP of hotx 3.67 3.77 4.00
SMILES CCCCCCC(OCCC)F CCCC=C(C)C=CC=CF CCCCCC(C)CC#CC(C)

SELFIES
[C][C][C][C][C][C][C][Bran
ch1_2][Branch1_1][O][C][C]
[C][F][O][N][N]

[C][C][C][C][=C][Branch1_
2][=O][C][Branch2_1][C][=
C][C][=C][F][Ring1][Ring2]

[#C][C][C][C][C][C][Branch
1_1][=O][C][C][C][#C][C][B
ranch1_2][F][C][Ring2]

y value 5.0 5.0 5.0
logP of hotx 3.75 3.99 4.08
SMILES C1CCCC(=C)CCC=C1F CCC=CCCCCC=CF CCCCC(C)=CCC=CC

SELFIES
[#C][C][C][C][C][Branch1_2
][C][#C][Branch2_3][C][C][
C][=C][Ring2][F][N][F]

[#C][C][C][C][Ring1][#N][C
][C][C][C][C][Branch2_1][C
][#N][Branch1_2][#C][F][C]

[#C][C][C][C][C][Branch2_1
][C][=O][C][#C][C][C][=C][
C][Branch2_3][=O][Ring1][
Branch1_3][F]

y value 6.0 6.0 6.0
logP of hotx 3.60 3.85 3.87
SMILES CCCC(=C)CCC=CF CCC(CCC=C(CC=C=C)) FCCCC#CCCCC=CCC

SELFIES

[#C][C][C][C][Branch1_3][#
N][#C][Ring1][C][C][C][C][
=C][F][Branch1_3][Branch1
_2][F]

[#C][C][C][Branch2_3][Ring
1][Ring1][C][C][C][=C][Bra
nch2_2][Branch2_1][Branch
2_1][=C][C][=C][#C][Branc
h1_2][C]

[F][C][C][C][C][#C][=C][Ri
ng1][O][C][C][C][Branch1_1
][#N][Branch2_1][#C][C][C]
[Branch2_1][Ring2]

Table 2. This table presents the novel molecules sampled individually from one negative y value by
our model. The table contains logP of each molecule, along with its SMILES and SELFIES strings.

y value −3.3 −3.3 −3.3
logP of hotx −3.13 −3.16 −3.36
SMILES N(ON(O))NNNC(O) N(N(NN(N)))N O(NNNNON)ON

https://doi.org/10.4236/jbise.2021.147026

https://doi.org/10.4236/jbise.2021.147026 312 J. Biomedical Science and Engineering

Continued

SELFIES

[=N][Branch1_3][Branch1_2
][O][=N][Branch1_1][=N][O
][Branch2_3][=N][N][N][C][
Branch2_3][Branch2_3][=N]
[O][Branch1_2]

[=N][Branch1_3][N][Branch
1_1][#C][=N][Branch1_1][Br
anch1_3][N][N][Branch1_3][
Branch2_2][=N][Branch2_3]
[N][Branch2_2][Branch1_1][
Branch1_3][Branch1_3][Bran
ch2_1]

[Branch1_2][Branch1_1][=O
][Branch2_1][C][O][=N][Bra
nch1_3][Ring1][Branch1_1][
Branch2_2][#N][N][N][O][=
N][O][=N]

y value −4.0 −4.0 −4.0
logP of hotx −2.41 −2.91 −3.28
SMILES NC(C#CN(N))ON NC(OOC(O))=NNNN NN(OOON)NN(N)

SELFIES

[=N][C][Branch1_2][Branch
2_3][C][#C][Branch2_2][Bra
nch2_3][#N][Branch1_3][O][
Branch1_1][=N][Branch2_1]
[=O][Branch2_2][Branch1_3
][=N][Branch1_2][Branch2_
3]

[N][C][Branch1_1][Branch2_
1][O][O][=C][Branch2_2][Br
anch2_1][#C][O][#N][Branc
h1_2][=N][N][N][Branch1_2
]

[#N][Ring1][Branch1_2][N][
Branch1_1][Branch2_1][O][
=O][Ring2][Branch1_1][Bra
nch2_2][=O][N][N][N][Bran
ch1_2][Branch2_1][Branch2_
2][N][Branch2_1]

y value −5.0 −5.0 −5.0
logP of hotx −2.60 −2.80 −3.08
SMILES NOON(CN(N))C(O) NON(NON(N)) N(N(N)NN(N))

SELFIES

[Branch2_3][Branch2_2][#N]
[O][O][Branch1_1][Branch1
_1][N][Branch1_2][Branch1_
2][=C][N][Branch1_1][Ring2
][N][=C][Branch1_3][Branch
2_3][O]

[=N][Ring2][Branch1_2][=N
][O][Branch2_3][Branch1_1]
[N][Branch2_3][N][=O][Bra
nch2_3][#N][O][Branch2_2][
=N][Branch2_1][Branch2_3]
[Ring2][=N][Branch1_1]

[Ring2][#N][Ring2][Branch2
_3][Branch1_1][Branch1_1][
=C][#N][Ring1][#N][Branch
1_3][=O][#N][=N][N][Branc
h2_3][=N][Branch1_2][=N]

Table 3. Average and standard deviation of logP of 1000 collectively sampled molecules from each
one y value by our model, because we treated the inverse molecule design as an inverse regression
problem. Notice that the y values can be any values either positive or negative, and our model could
easily find the corresponding molecules regardless. For the purpose of demonstration, we intention-
ally chose y values with a large range.

y value −25 −23 −20 −17 −15 −13 −10 −7 −5 −3 0
Average logP −1.09 −1.26 −1.63 −1.82 −1.92 −1.60 −1.08 −0.39 −0.16 −0.02 0.19

Std of logP 0.91 0.94 0.96 1.07 1.13 1.21 1.21 0.92 0.72 0.60 0.61
y value 0 3 5 7 10 13 15 17 20 23 25

Average logP 0.19 0.73 1.11 1.50 1.71 1.86 1.91 1.97 1.97 1.93 1.90
Std of logP 0.61 0.81 0.89 0.90 0.83 0.82 0.83 0.82 0.81 0.79 0.78

https://doi.org/10.4236/jbise.2021.147026

https://doi.org/10.4236/jbise.2021.147026 313 J. Biomedical Science and Engineering

Figure 5. X-axis represents the predicted logP of the 1000 molecules by our model and y-axis
represents their true logP. We split the 1000 molecules into two subsets, 850 molecules for training
and 150 for test. This plot shows the quality of forward learning of our model.

Figure 6. Plot one curve using the results in Table 3. As we did in Section 3.1, here logP of x means
logP of hotx . The mean of logP of x is the curve and the standard deviation of logP of x is the shaded
area around the curve.

https://doi.org/10.4236/jbise.2021.147026

https://doi.org/10.4236/jbise.2021.147026 314 J. Biomedical Science and Engineering

of these 1000 sampled molecules from each one y value is the curve in Figure 6 and the shaded area
around the curve is their standard deviation.

The results in Table 3 and Figure 6 implied that the minimum logP value occurred when y value was
near −15, while the maximum logP value occurred when y value was around 17 and 19, not symmetric.
The inverse learning of our model provided the whole landscape of viewing molecules through any y val-
ues (hypothetical logP), which allowed for easy sampling of molecules given a y value, a clear advantage of
our model. Figure 6 also suggested that within the range of −15 and 17, 19, the curve was monotonically
increasing. At the same time, it is of particular interest to observe that our model did not produce mole-
cules of logP values that correlated with the movement of y when it went to the extreme values either in
the positive or negative direction. In other words, by stretching y values too far, our model did not re-
spond in the same manner. The curve in Figure 6 visualized the main contribution of our work as no pre-
vious models in the literature could have this ability.

In summary, the results in Sections 3.1 showed the molecules individually sampled from one y value
by our model, and Section 3.2 presented the molecules collectively sampled from one y value by our mod-
el. Combined together, they illustrated the complete capability of our generative model by learning bidi-
rectional association between molecules and their logP values in the task of inverse molecule design.

4. CONCLUSIONS
Although many challenges remain, machine learning has shown its potential in discovering novel

drug-likeness molecules from a virtually infinite search space, which suggests that human intelligence and
artificial intelligence are both needed in the smart search of new drugs.

In supervised machine learning, the goal is to learn a function that maps input x to output y, where x
usually is a feature vector and y is a label. The forward learning process is to learn a function that maps x
to y. But in the design of molecules, very often we need to solve the inverse problem: given y, what is x?
Because of possible information loss during the forward learning, it is a hard problem to infer x from y, a
form of inverse learning. In molecule design, the forward learning is to predict a chemical property value
from molecular features, and the inverse learning is to identify molecules given a chemical property value,
which is close to inverse regression problems.

Recently, invertible neural networks have been proposed for inverse learning, using additional tech-
niques to capture the information otherwise lost. This leads to discovery of many invertible architectures.
Normalizing flows are such invertible mappings with exact likelihoods, therefore, they could be used as
building blocks in invertible neural networks. Furthermore, they provide a new method for generative
modeling, carrying the benefits of efficient likelihood calculation and data generation. In this research, we
proposed to apply flow-based invertible neural networks as generative models to inverse molecule design.

We experimented with our approach to produce novel molecules of desirable chemical properties.
Notably, trained with only 100 molecules randomly selected from QM9, our model could generate new
molecules that had chemical property values well exceeding the limits of the training molecules as well as
the limits of the whole QM9 of 133,885 molecules. Trained with 1000 molecules randomly selected from
QM9, our model could easily sample many molecules from any one logP value, providing a whole picture
of the bidirectional correlation between molecules and their logP values. Recall that the method in [1]
could only optimize one molecule and one logP value at a time because their network was not invertible,
and their model required retraining whenever a new logP value was used. Whereas our generative model
once trained could sample any number of molecules for any one logP value without the need of retraining.
Essentially, we treated inverse molecule design as an inverse regression problem, so our model could be
trained once and be sampled any multiple times for any logP values.

Our work confirmed two unique features of using invertible neural networks as generative models in
inverse molecule design: 1) the ability to learn from even a very tiny dataset and to generalize well beyond
the training data, 2) the bidirectional learning between molecules and their chemical properties, rendering
an easy and flexible way of generating novel molecules with desired chemical properties.

https://doi.org/10.4236/jbise.2021.147026

https://doi.org/10.4236/jbise.2021.147026 315 J. Biomedical Science and Engineering

ACKNOWLEDGEMENTS
We are grateful to the authors in [1] who made their code public.

CONFLICTS OF INTEREST
The author declares no conflicts of interest regarding the publication of this paper.

REFERENCES
1. Shen, C., Krenn, M., Eppel, S. and Aspuru-Guzik, A. (2021) Deep Molecular Dreaming: Inverse Machine

Learning for De-Novo Molecular Design and Interpretability with Surjective Representations. Machine Learn-
ing: Science and Technology, 2, Article ID: 03LT02. https://doi.org/10.1088/2632-2153/ac09d6

2. Behrmann, J., Grathwohl, W., Chen, R.T.Q., Duvenaud, D. and Jacobsen, J.-H. (2018) Invertible Residual Net-
works. https://arxiv.org/abs/1811.00995

3. Hu, W. (2021) Exploring Local Chemical Space in De Novo Molecular Generation Using Multi-Agent Deep
Reinforcement Learning. Natural Science, 13, 412-424. https://doi.org/10.4236/ns.2021.139034

4. Dinh, L., Krueger, D. and Bengio, Y. (2015) NICE: Non-Linear Independent Components Estimation. ICLR
2015 Workshop Track, San Diego, 7-9 May 2015.

5. Dinh, L., Sohl-Dickstein, J. and Bengio, S. (2017) Density Estimation Using Real NVP. ICLR 2017, Palais des
Congrès Neptune, Toulon, 24-26 April, 2017. https://dblp.org/db/conf/iclr/iclr2017.html

6. Song, Y., Meng, C.L. and Ermon, S. (2019) MintNet: Building Invertible Neural Networks with Masked Convo-
lutions. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver.

7. Ardizzone, L., Kruse, J., Wirkert, S., Rahner, D., Pellegrini, E.W., Klessen, R.S., Maier-Hein, L., Rother, C. and
Köthe, U. (2018) Analyzing Inverse Problems with Invertible Neural Networks. https://arxiv.org/abs/1808.04730

8. Ramakrishnan, R., Dral, P.O., Rupp, M. and Von Lilienfeld, O.A. (2014) Quantum Chemistry Structures and
Properties of 134 Kilo Molecules. Scientific Data, 1. https://doi.org/10.1038/sdata.2014.22

9. Krenn, M., Haese, F., Nigam, A.K., Friederich, P. and Aspuru-Guzik, A. (2020) Self-Referencing Embedded
Strings (SELFIES): A 100% Robust Molecular String Representation. Machine Learning: Science and Technolo-
gy, 1, Article ID: 045024. https://doi.org/10.1088/2632-2153/aba947

https://doi.org/10.4236/jbise.2021.147026
https://doi.org/10.1088/2632-2153/ac09d6
https://arxiv.org/abs/1811.00995
https://doi.org/10.4236/ns.2021.139034
https://dblp.org/db/conf/iclr/iclr2017.html
https://arxiv.org/abs/1808.04730
https://doi.org/10.1038/sdata.2014.22
https://doi.org/10.1088/2632-2153/aba947

	Inverse Molecule Design with Invertible Neural Networks as Generative Models
	ABSTRACT
	1. INTRODUCTION
	2. METHODS
	2.1 Normalizing Flows
	2.2. Invertible Neural Networks

	3. RESULTS
	3.1. Training Invertible Neural Networks on 100 Molecules
	3.2. Training Invertible Neural Networks on 1000 Molecules

	4. CONCLUSIONS
	ACKNOWLEDGEMENTS
	CONFLICTS OF INTEREST
	REFERENCES

