/
o Reenres
0.00 Publishing

American Journal of Computational Mathematics, 2021, 11, 189-206
https://www.scirp.org/journal/ajcm

ISSN Online: 2161-1211

ISSN Print: 2161-1203

Quartic Non-Polynomial Spline for
Solving the Third-Order Dispersive
Partial Differential Equation

Zaki Mrzog Alaofil2, Talaat Sayed Ali3, Faisal Abd Alaal4, Silvestru Sever Dragomir?

'Department of Mathematics, College of Science and Arts, King Khalid University, Muhayil Asir, Saudia Arabia

“Mathematics, College of Engineering & Science, Victoria University, Melbourne, Australia

*Department of Mathematics, Faculty of Sciences and Arts, Taibah University, Medina, Saudi Arabia

‘Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt

Email: zaki.alaofi@live.vu.edu.au, zaleawfi@kku.edu.sa, tdanaf@taibahu.edu.sa, faisal_ezz@sci.dmu.edu.eg,

sever.dragomir@vu.edu.au

How to cite this paper: Alaofi, Z.M., Ali,
T.S., Alaal, F.A. and Dragomir, S.S. (2021)
Quartic Non-Polynomial Spline for Solving
the Third-Order Dispersive Partial Differen-
tial Equation. American Journal of Computa-
tional Mathematics, 11, 189-206.
https://doi.org/10.4236/ajcm.2021.113013

Received: August 25, 2021
Accepted: September 25, 2021
Published: September 28, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

In the present paper, we introduce a non-polynomial quadratic spline method
for solving third-order boundary value problems. Third-order singularly
perturbed boundary value problems occur frequently in many areas of ap-
plied sciences such as solid mechanics, quantum mechanics, chemical reactor
theory, Newtonian fluid mechanics, optimal control, convection-diffusion proc-
esses, hydrodynamics, aerodynamics, etc. These problems have various im-
portant applications in fluid dynamics. The procedure involves a reduction of
a third-order partial differential equation to a first-order ordinary differential
equation. Truncation errors are given. The unconditional stability of the
method is analysed by the Von-Neumann stability analysis. The developed
method is tested with an illustrated example, and the results are compared
with other methods from the literature, which shows the applicability and
feasibility of the presented method. Furthermore, a graphical comparison
between analytical and approximate solutions is also shown for the illustrated
example.

Keywords

Non-Polynomial Spline, Third-Order Dispersive Partial Differential
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1. Introduction

The field of nonlinear dispersive waves has undergone enormous development
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since the work of Stokes, Boussinesq, and Korteweg and de Vries (KdV)—all of
whom studied water wave problems in the nineteenth century. In the 1960s, re-
searchers developed effective asymptotic methods for deriving nonlinear wave
equations, such as the KdV equation, which governed a broad class of physical
phenomena [1]. Some approaches for solving nonlinear partial differential equa-
tions have been addressed in recent literature; the most prominent of these were
the non-polynomial spline methods. The non-polynomial spline used for solving
nonlinear partial differential equations was employed by many researchers. The
most known and well-focused results are those presented by Ramadan et al
(2005), who used a numerical method for approximation of Burger’s equation [2].
Shock waves and blowup arising in third-order nonlinear dispersive equations
were studied in 2008 by Galaktionov, V.A. and Pohozaev, S.I. [3]. In [4] [5], the
criteria for deriving stability conditions of the different methods were consi-
dered for the numerical solution of a third-order linear dispersive equation. Re-
search by Tirmizi et al. (2008) used Quartic non-polynomial spline functions to
develop a class of numerical methods for solving self-adjoint singularly per-
turbed problems [6]. In 2011, Taiwo and Ogunlaran developed a numerical tech-
nique for solving linear fourth-order boundary-value problems, which were in-
itially reduced to a system of second-order boundary-value problems [7]. In re-
search by Lin (2014), a numerical method based on splines in tension was de-
veloped for solving the RLW equation. The method was tested by using single
solitary waves, the interaction of two solitary waves, and solitary waves with Max-
wellian initial condition [8]. In the same year, Mustafa and Ilhame discussed the
method of lines is applied to the boundary-value problem for the third-order
partial differential equation [9]. In 2017, El-Danaf et al considered the Genera-
lised Regularised Long Wave (GRLW) equation. They studied the interaction of
solitons, where no analytic solution is known during the interaction. The Max-
wellian initial condition for the GRLW equation was used [10]. A year later, Li et
al. solved the time-fractional nonlinear Schrédinger equation [11]. In 2018, Sul-
tana et al presented a new three-level implicit method, which was developed to
solve linear and nonlinear third-order dispersive partial differential equations
[12]. In 2019, Shahna demonstrated how to solve fourth-order boundary value
problems whose highest-order derivative was multiplied by a small perturbation
parameter [13]. In this paper, a novel approach, based on using non-polynomial
splines to solve a third-order dispersive partial differential equation is proposed.

The third-order dispersive partial differential equation we will use is [14].

3
on o
ot ox

=g(xt), a<x<h, t>0 (1)

where g(x,t) isasource term. The boundary conditions associated with Equa-

tion (1) are assumed to be of the form:
2(at)= A1), 7(0)=5,(1) 7o (b:)= A (1), t>0 @

and the initial condition is:
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n(x,0)= f(x), a<x<b. (3)

The spline functions proposed, as defined in [15], have the form
T, = span {1, X, X?,sin wX, cos wx} where @ is the frequency of the trigonome-
tric part of the spline functions, which will be used to increase the accuracy of

our method.

2. Analysis of the Method

The first step in the non-polynomial spline method is to create a grid with two
mesh constants 4 and & The grid points for this situation are (xl,t J) where
¥ =a+ih, i=01--,N+1 and t; = jk, j=01

Let z) be an approximation to 77(xi 't j) , obtained by the segment
P (x,t i ) of the mixed spline function passing through the points (Xi ,Z) ) and
(%2,

Each segment has the form:

P(xt;)=a (t;)coso(x—x)+b (t;)sino(x—x)+c (t;)(x=x )’

(4)
+d, (tj )(x—xi)+ei (tj).
for each i=0,1---,N . To obtain expressions for the coefficients of Equation (4)
interms of z', zJ,, M/, S),and S/**, we first define:
P(Xl’tj) Zij’ Pi(xi+1’t ) |+1! (X) ( )
5
R (xt;)=8!, R (x.ty)= S.Ll
Using Equations (4) and (5), we get:
a +e =2},
a,cos@+h sin@+h’c, +hd, +e =2},
bo+d =M/, (6)
-’ =S/,
a,0’sind—bw’cosd =51, .
where a =a(t;),b =b(t;).c =c(t;),d; =d,(t;).e =e(t;),and O=wh.
By solving the last five equations in (6), we obtain the following:
a _mﬂ b =_h3S_ij
@*sing " 6’
i _7i h(S!, +S))(1-cos@ i i
Ci Z|+l > Z| + ( 1 k )( )_ M h52 (7)
h 6 sing h 6
-S; cos@

s/
d—MJ+W ,Q=Z’h3
& 6’ sing
Using the continuity condition of the first and second derivatives at X=X,
that is Pi( )( - J)— P( )(X,,tJ) where n = 1 and 2, we get the following rela-
tions:

ob, +d, =-a,_,@sin@+b,_wcosf+2hc,_, +d,
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—w*a; +2¢, =—a,_,0° cosf—b,_®°sin@+2c, , (8)

Using expressions in Equation (7), then Equation (8) becomes:

Mij +Mij_1 =%(Zij _Zij_l)_g_z(sij_1+sij)+ (Sij—1+Sij)(1_C056) (9)

#*sing

M!-M!, = 'S, .COSH - h. (Sij_l + Siju)""l(zij—l -2z} +Zij+1)
dsin 20sin 0 h (10)
h? ; ; h? . ;
+m(1—cose)(si‘+1 - Si'_1)+?(sil_l -s/)
Adding Equations (8) and (10), we get:
YR :i(z.i -7} )_h_zs.i AL (1-cos0)(S!, +28) +S/,)
i 2h i+1 i-1 02 i 293 Sine i-1 i i+l (11)
2g1] 2 ) )
+h S, f:ose_ h. (Sij_lJrSiJﬂ).
20sin@  40sin@
Similarly,
M/ :i(z.j -z )——zs.l' +L(1—cose)(si +28),+8/)
i-1 2h i i-2 02 i-1 293 Sin¢9 i-2 i-1 i (12)

. h?s! cos6  h? (

. —(s),+8/).
20sing 40sin @

Using M/J and M/, in Equations (10) and (11) gives the following rela-

i-1

tion:
Z—lh(Zi‘;l -2}, +7] —zﬂ_z)—Z—z(sii +574)
+%(sﬁ_z +38), +38) +5],)
A
h (S.‘z;:jilg cosd 49:; : (51a+ 80,55 450)
=%(Zij _Zijl)_z_z(sijl +5) )+%(Sijl +S]) )(1—0056)
or:

_Zij_z_hssij_z(cosﬁ—lJr 1 j+3j

@°sind 20sind "1
1—30959_ co_se . 1 j_szij
g°sing@ 0sin@ 20sin6

(1—0059 cosd 1 j i

3 i - - + - + i+1
@°sin@ 06sing 20sind

—hssiiﬂ(cofe‘ﬂ L J:o,i=2,---,N.
0°sing@ 260sin@

—hg)

i-1

—h’s)

This equation can be rewritten in the following simple form:

-z),+3z2),-32) + 7} i=2--,N. (13)

i+l

=aS),+pS}, +BS} +as]

i+l

where:
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5[ c0s@—-1 1 s(1-cos@ cosd 1
a=h|——+ _ and B=h"| 40— —-——+ -
0°sin@ 260sin6 0°sind @sin@ 20sin6

h® 11h°

Remark 1. As @ >0, that is § >0, then (a,ﬁ)—)[z,z

j , and sys-

tem (13) reduces to ordinary quartic spline:

3
-2),+32),-32) +7}, :%(si{ , +118), +118) +81,),
Using Equation (1), we can write S/,, S/,, S} and S/,,in the form:
g/ :& =g/, - oz, Sl = 0’2}, =g/, - ozl
i-2 aX3 i-2 ot > i-1 aX3 i-1 ot

S,J':izij: g_i_aiij gl :asziju: gl oz},
i aX3 i 8t > i+1 8Xg i+l at

These equations can be discretised in the form:

. ) i _7i1 ) i i _7i1
S!, ~ (gilz _[%j} S, = (gill _(%J}
j i (Z -z ' ' z), -z}
S~ {gij _[TJJ,&JA ~ [gijﬂ _[—l " = ]J

The use of Equation (13) in Equation (14) gives us the following system:
-z}, +32), -32) +Z}

i+l

) zi _zit . zZi _zi1
= a[gijz _%j-’_ﬂ(gijl _%j

j Zij _Zij_l j Zij+ _Zij+_1
o122 oot 222,

AZ}),+BZ),+CZ)+DZ/

1<+l

—aZ 7+ B2+ pZI a1 451, i=2,- N,

i+1

(14)

or:
(15)

where:

A=-k+a, B =3k+p, C,=-3k+p, D =k+a
and:
é‘ij :k(agi{z +ﬂgij—1+ﬂgij +“gij+1)

System (15) consists of N-1 equations in unknowns Z],i=0,---,N +1. To get
a solution to this system, we need three additional equations. Two equations are

obtained from the first two parts in Equation (2).

Z)=n(at)=p(t), Zj..=n(bt)=5(t) (16)
The third equation can be obtained from the third part of Equation (2), that is
0°Z]
GX’;H =1, (b,t) =, (t), which can be discretised:
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-10Z), , +61Z) ,-156Z) ,+214z}  -154Z} +452) ,

27 17
o T2 panip, 20 w7
Writing Equations (15) - (17) in matrix form gives:
Q7' =Q 721 4y} (18)
where:
z’ =<Zoj le sz lel—l lel erul)t )
1 0 0 O 0 0 0 0 ]
A, B, C, D, 0 0 0 0
0 A B C, D 0 0 0
Q= . . . . . S
O O AN—l BN—l CN—l DN—l 0
0 0 o0 0 A By, Cy, Dy
0 0 -10 61 -156 214 -154 45
1 0 0 O 0 0 0 0 1]
[0 0 0O 0O 0 0 O 0]
a p a O 0
0 a p p a 0 O 0
0 . .o I :
Q = R I s
0 0 ¢ B p a O
0 0 0 0 o B f «
0 0 0 0 0 0O
i 0 0 0 0 0 0 0]

and r!= (ﬁl (tj ),52j ,---,5& ,thZﬂ3 (tj ),ﬁz (tj ))l . The initial condition

n(xt,)= f(x),foreach a<x<b,impliesthat Z = f(x), for each
i=0,1,---,N +1. These values can be used in Equation (2.15) to find the value of
Z!, for each i=0,1---,N+1. If the procedure is reapplied once all the ap-

proximations Z' are known, the values of Z?,Z%,-.- can be obtained in a

similar manner.

3. Error Analysis
Using Equation (14), we obtain the truncation error:
T = Anl, + Bl + Cop! + Dby —anly = prlS = gl ™ —anli - 5! (19)
where:
A=-k+a, B =3k+p, C,=-3k+p, D =-k+a

and:
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5ij = k(agij—z +ﬁgi{1+ﬂgij +agij+1)

Expanding Equation (19) in Taylor series, in terms of ry(xi t j) and its de-

rivatives, we obtain the following expression:

2h)? 2 _
T) A[l zl—hD ( )Df Jn,+B(1 hD, +2—D2 Jn.’

2!
h* 2 h* s -
+Cn) +D,|1+hD, +—D? +—D? +--- |/
2! 3!
1 2 i
—a(l+(—le—2th)+§(—th -2hD,) +---J77i‘

1 .
—,8(1+(—th - hD*)+§(_th ~hD,)’ +~-)ni’

k Dz k Df"'"')nij

~ | 1-kD,
ﬂ( TR

1 )
—a(l+(—th + hDX)+E(_th +hD, )2 +~--)77i’
2 2
—ka[l—Zth+%Df—uJ kﬁ[l hD, +h2—D2 ]gij

2
—kBg; —ka[l+ hD, +% D? +---jgii

where g/ = D7) + D3p/ . After simple calculations, we get:
. 2h . 2 .
T =—k —2—th (@n) f DZ—-- |n} +3k| —hD, +h—D2 )
1 2! 2!
2 3
+k{th I D? +h—Df +---J77ij
2! 3!
K 2 K s -
—2(ﬂ+oc)(—th+EDt _ED‘ +---]77iJ

+(B+a)h [2}( )kD m[kaZth—...]Dxnij

1(3 1(4), .2 2_j
+(B+5a)h [31( jth_E(Z]k D, +---JDX77i
+(B+T7a)h’? (;—f(gjkq +51'®|<sz —] Dl +

(

2h)’
k| -2np, + P e . J D, +D} )/

2!
—kp| -hD +h—202— (D, +D})

X 2' X t 77
h? 2, 3 3
~ka| hD, +. D} +- J(D +D})p! —2k(B+a)(D, + D} )
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T) =k(h*-2(8+a))Dn/ +kh(_—23+(ﬁ+a)Jfo7ij

1 kh? h—s—l(ﬂ+5a) Do +kh*| s (g1 7a) DE)
4 2 X 12 6 o

R _
+kh*| ———=(p+17a) |Din} +---

40 24
+2(,B+a)(—|;—2!Df +|;_th3 _...Jmi
+(B+ a)h(%@] k’D? —%@] k*D? +] D!
+(B+5a)h? {—%(gksz +é(2)k3D13 _] D27} (20)

5 6 .
+(B+T7a)h’? [é[gjksz —é(3jk3Dt3 +J Dip) +---

3
For fB+a= h? , the local truncation error is of order o(kh2 + k2h3) but for

h3
B+a = and @ =0 itisof o(kh*+k*h’).
Remark 2. The previous relations, which enable us to choose o and S, can
be obtained using simple calculations by expanding Equation (19) in terms of
ul and its derivatives, which is the local truncation error of Equation (19), as

follows:

T =—n),+3n), -3n) +nl,—aDinl, - D!, — BDin) —aDinl,,

T) =(h°-2(B+a)) Dy} +h(_—23+(ﬁ+a)j Dy}
h® 1

3
+h? [T—E(ﬂ+5a)] D) +h? [%+%(ﬂ+ 70:)] Dfp/

R 1 7§
+h E—ﬁ(ﬂ+17a) D/n) +---.

4. Stability

Using the Von Neumann method, the stability of the method can be investi-
gated. According to this method, the solution of the difference Equation (14) can

be written in the form:
zZ) = ¢ exp(qgin) (21)

where ¢ is the wave number, q=+/-1, A is the element size, and ¢/ is the
amplification factor at time level /. Inserting the latter expression for Z} in

scheme (14), we obtain the characteristic equation in the form:
! {A exp((i—2)agh)+ B, exp((i —1)agh)+C, exp(iagh)+ D, exp((i +1)q¢h)}
= {a exp((i—2)agh)+ Bexp((i—1)agh)+ Bexp(igph)+ a exp((i +1)q¢h)}
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A=-k+a, B =3k+p, C,=-3k+p, D=-k+a

After simple calculations, we obtain:
_ aexp(—2q¢ph)+ Sexp(—agh)+ B+ aexp(qgh) (22)
A exp(-2q¢h)+ B, exp(—qgh)+C; + D, exp(qgh)
Using Euler’s formula, that is:

exp[qe]=cosp+qsing, ¢ =g¢h,

Equation (22) becomes:

X" +qY”
gz—q (23)
X+qY
where:
X" =acos2p+(B+a)cosp+
Y" =—asin2p+(a - B)sin
@+(a-p)sing (24)

X =(a—k)cos2¢p+(B+a+4k)cosp+(B—3k)
Y =(k—a)sin2¢p+(-2k +a - B)sing

Using cos2¢ =1-2sin” ¢, and COSgo:l—ZSinz%, we can write the equa-

tions in (24) as:

X" = Z(COSZ gj(/ﬂa 4qsin? (;]

Y =-2[sinLcosZ || p+a-dasin?L
2 2 2

(25)
X =|2[cos? 2 || p+a—aasin?Z |-sksin* L |= X" +T
2 2 2
Y =-2[sinZcos? B+a—4asin® Z | -8k cos— Psint?=v"+G
2 2 2 2 2
where T =—8ksin* 2, G:—8005§sin3%,
Using (24), we obtain:
X2 4+Y"™
=, |— 26
The equations in (26) enable us to rewrite the last equation in the form:
[ X4y
= [
\j(x +T) +(Y"+G)
or:
X2 4y
=4== - . (27)
1 \/X 24T24Y2+G%+6

where & =2X'T +2Y G. Using Equation (27), § becomes:

5 =-32kcos? Zsin* 2| p+a—aasin? L
2 2 2

+32kcos? Zsin* 2| p+a—dasin?Z |=0
2 2 2
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This result enables us to write Equation (27) as:

|C|:\/ X2 1Y _ (28)

X?4Y?4T24+G?
For stability, we must have |¢|<1 (otherwise ¢’ in Equation (21) would

grow in an unbounded manner). Using Equation (28), we can say that the stabil-
ity condition, that is |§ | <1, is satisfied.

5. Numerical Example

In this section, we obtain numerical solutions of Equation (1) for a numerical
example.
Consider the non-homogeneous third-order dispersive partial differential eq-

uation [14]:

3
z—?+g—?:—sin(nx)sint—n3 cos(mx)cost, 0<x<1 t>0
X

with boundary conditions:

7(0,t)=n(Lt)=0, n,(0,t)=7,(Lt)=0, t>0

and the initial condition:

n(x,0)=sinmx, 0<x<1

The exact solution of this problem is:

n(x,t) =sinnxcost

The obtained numerical results are listed in the Tables 1-7, where all calcula-
tions are carried out using Mathematica. The accuracy of method is measured by
computing L..-error norm, Max. Absolute error, as shown in Tables 1-3 and Ta-
ble 5 illustrates numerical and er)](Bact solutions for:
h=0.025,k =0.0005, 8 =—a +—.

The reason that the accuracy ifi Table 1 is the best is because:

h3

=0,f=-a+—.
a p=—a 5

Table 1. The L, -error between the numerical and exact solutions when h=0.025,
3

k =0.0005, a=0, ﬂ:—a+h?.

Time 0.500 1.500 2.00 2.500

L, -error 4.59312%10°° 5.05911 * 1077 2.01782* 107 4.047* 107

Table 2. The L, -error between the numerical and exact solutions when h=0.025,

h? h?
k=0.0005, a=—7, f=—-a+—.
160 2

Time 0.500 1.500 2.00 2.500

L, -error 7.28473 * 107° 9.0094 * 10°° 3.09094 * 10~ 6.31829 ¥ 10
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Table 3. The L, -error between the numerical and exact solutions when h=0.025,

he he
k=0.0005, a=—, f=—a+L.
24 2
Time 0.500 1.500 2.00 2.500
L, -error 4.63835*10™* 5.7401 * 107° 1.9661 * 10™* 4.02159 * 10™*

Table 4. The comperasion between the numerical and exact solutions when h=0.025,
3

k=0.0005, t=2, a=0, ,B:—a+h?.

X Exact Solution Numerical Solution
0.1 —-0.128596 —0.129457
0.2 —-0.244605 —0.2446030
0.3 —-0.336669 —-0.3366680
0.4 —-0.395779 -0.3957770
0.5 -0.416147 —-0.4161450
0.6 -0.395779 -0.3957780
0.7 —-0.336669 -0.3366700
0.8 —0.244605 —-0.2446046
0.9 —0.128596 —-0.129457

T
Table 5. The L, -error between the numerical and exact solutions when h:%’

h® h®
k=0002, g=—, B=—a+—.
160 2
Time 1.9 2 2.1
L, -error 2.9822* 107 3.31405 * 107 3.68684 * 107

T
Table 6. The comperasion between the numerical and exact solutions when h :%,

h® h?
k=0.002, a=—, B=—a+—, t=2.
160 2
X Exact Solution Numerical Solution
0.1 -0.128596 —-0.129126
0.2 —-0.244605 —0.2445870
0.3 —-0.336669 —-0.3366450
0.4 -0.395779 —-0.3957500
0.5 -0.416147 -0.4161160
0.6 —-0.395779 -0.3957500
0.7 -0.336669 —-0.3366450
0.8 —0.244605 —0.2445870
0.9 —-0.128596 —-0.129126
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For, the local truncation error is of order o(kh4 + k2h3) but for:
3
p+a :h?,a #0 itis of order o(kh2 +k2h3).

The following figures from Figures 1-11 show the relation between the nu-
merical and exact solutions of the dispersive equation for virus time and discre-
tization’s (A).

The following figures from Figures 12-15 show the 3D of the numerical solu-

tions of the dispersive equation for virus time and the same discretization’s (A).

Table 7. The L, -error between the numerical and exact solutions when h:%’

h® h?
k=0002, a=—, f=-a+_.
160 2
Time 1.9 2 2.1
L, -errors 1.86724* 1073 2.08023 * 107° 2.31321*107°
u (x, 0.0005)
1.0
~ 0.8
%)
=}
S
S
o 0.6
X
E]
0.4
0.2
10 2‘0 30 40
h

Figure 1. The relation between the numerical and exact solutions of the dispersive equa-

3 3
tionat h=0.025,k =0.0005,& =, f = —a + 1t = 0.0005.
160 2

u(x, 0.5)

0.8
o 0.6
o
X
S 04

0.2-

10 20 30 40
h

Figure 2. The relation between the numerical and exact solutions of the dispersive equa-

3 3
tionat h=0.025k=0.0005,¢ = f=—a+ " t=05.
160 2
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u(x,1)
0.5
0.4
—_~
<
T 03
x [
N
S
0.2
0.1
10 20 30 40
h

Figure 3. The relation between the numerical and exact solutions of the dispersive equa-

3 3
tionat h=0.025,k =0.0005,0 = B = -+ t=1.0.
160 2

u(x, 1.5)
0.07
0.06
__0.05
T
" 0.04
X
S 0.03
0.02
0.01
10 20 30 40
h
Figure 4. The relation between the numerical and exact solutions of the dispersive equa-
h? h?
tionat h=0.025k =0.0005,0 =—,f=-a+—,t=15.
160 2
u(x, 2.0)
h
10 20 30 49
-0.1
S -02
o
X
5 -03
-0.4

Figure 5. The relation between the numerical and exact solutions of the dispersive equa-
3 3
tionat h=0.025k =0.0005,a = f= g+ t=20.
160 2
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u=(x, 2.5)
h
10 20 30 4

-0.2
o -04
N
X
S os

-0.8

Figure 6. The relation between the numerical and exact solutions of the dispersive equa-

3 3
tionat h=0.025k=0.0005,¢ = f=—a+ t-25.
160 2

u(x, 3.0)
h
10 20 30 40
-0.2
-0.4
S
™ 0.6
X
=
-0.8
-1.0

Figure 7. The relation between the numerical and exact solutions of the dispersive eation

3 3
at h=0.025,k =0.0005,¢ = f=—ar+ 1 t=30.
160 2

u(x, 3.5)
h
10 20 30 40

-0.2
0 -04
)
X
> -0.6

-0.8

Figure 8. The relation between the numerical and exact solutions of the dispersive equa-
3

3
tionat h=0.025k=0.0005¢ =" f=—g+ " t=35.
160 2
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u(x, 4.0)
h
10 20 30 40
-0.1
-0.2
S -03
<
X 04
S
-0.5
-0.6

Figure 9. The relation between the numerical and exact solutions of the dispersive equa-

3 3
tionat h=0.025k=0.0005,¢ = f=—a+ " t=40.
160 2

u(x, 4.5)
h
10 20 30 40

-0.05
[a_ -0.10
<
X
S -0.15

-0.20

Figure 10. The relation between the numerical and exact solutions of the dispersive equa-

3 3
tionat h=0.025k =0.0005,a = =g+ t-45.
160 2

u(x, 5.0)

0.25

0.20
S
2 0.15
x
3 010

0.05

10 20 30 40
h

Figure 11. The relation between the numerical and exact solutions of the dispersive equa-

3 3
tionat h=0.025,k =0.0005,& =", B = —gr + = t=5.00.
160 2
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Figure 14. The 3D for the numerical solutions of the dispersive equation from ¢= 20 to ¢
= 30.

Figure 15. The 3D for the numerical solutions of the dispersive equation from ¢= 30 to ¢
= 40.

6. Concluding Remarks

This paper is devoted to the quartic non-polynomial spline functions for solving
the third-order dispersive partial differential equation. Recent trends in compu-
tational mathematics, mathematical physics and mechanics have widely used
numerical methods to solve such problems. The results obtained using the quar-
tic non-polynomial spline functions are very encouraging. It has been shown

that the L-oo errors norm confirm the theoretical convergence. The convergence
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analysis of the method proved that our scheme is third-order convergent
o(kh2 + kzha). Also, the method is shown to be unconditionally stable. The nu-
merical example illustrates that the non-polynomial spline functions are more
adaptable in approximating functions. The graphs between exact and approxi-
mate solutions for the numerical examples show the superiority of our method

compared with [8].
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