
Open Journal of Applied Sciences, 2021, 11, 1016-1027 
https://www.scirp.org/journal/ojapps 

ISSN Online: 2165-3925 
ISSN Print: 2165-3917 

 

DOI: 10.4236/ojapps.2021.119074  Sep. 17, 2021 1016 Open Journal of Applied Sciences 
 

 
 
 

Analysis of the Relationship between Image 
and Blood Examinations in an Artificial 
Intelligence System for the Molecular Diagnosis 
of Breast Cancer 

Natsumi Wada1, Maoko Nakashima1, Yoshikazu Uchiyama2 

1Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan 
2Department of Medical Image Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan 

 
 
 

Abstract 
Molecular subtype classification based on tumor genotype has recently been 
used for differential diagnosis of breast cancer. The shift from conventional 
tissue classification to molecular genetics-based classification is primarily be-
cause objective genetic information can ensure a biologically clear classifica-
tion system and patient groups may be created for a given set of diagnoses 
and suitable treatments. Given the stressful nature of biopsy, radiomic studies 
are conducted to determine breast cancer subtypes using non-invasive imag-
ing tests. Minimally invasive blood tests using microRNAs (miRNAs) con-
tained in exosomes have been developed. We investigated the usefulness of 
radiomic features and miRNAs in distinguishing triple-negative breast cancer 
(TNBC) from other cancer types. Fat suppression T2-weighted magnetic re-
sonance images and miRNAs of 60 cases (9 TNBC and 51 others) were re-
trieved from the Cancer Genome Atlas Breast Invasive Carcinoma. Six radi-
omic features and six miRNAs were selected by least absolute shrinkage and 
selection operator. Linear discriminant analysis was employed to distinguish 
between TNBC and others. With miRNAs, TNBC and others were completely 
separated, whereas with radiomic features, TNBC overlapped with other 
types of breast cancer. Receiver operating characteristic curve analysis results 
showed that the area under the curve of radiomic features and miRNAs was 
0.85 and 1.0, respectively. miRNAs showed a higher discrimination perfor-
mance than radiomic features. Although gene analysis is expensive and facili-
ties for performing it are limited, miRNAs for blood tests may be useful in ar-
tificial intelligence systems for the molecular diagnosis of breast cancer. 
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1. Introduction 

Medical treatment for cancer is performed in the following order: detection of 
the lesion, differential diagnosis, and treatment. Research on computer-aided 
diagnosis (CAD) has led to the development of techniques that detect lesions in 
medical images and distinguish between benign and malignant lesions [1] [2] 
[3]. In contrast, radiomics analyzes the relationship between imaging phenotype 
and genotype of lesions. Radiomics differs from the CAD research in that it 
supports the medical process after the detection of lesions. Therefore, CAD can 
be classified as an artificial intelligence (AI) system that supports the first half of 
medical care, and radiomics is an AI system that supports the second half of 
medical care. 

With the progress in post-genome research, the molecular and genetic back-
grounds of various cancers have been clarified. This knowledge not only facili-
tated molecular classification but also aided in the development of molecu-
lar-targeted drugs. Molecular diagnosis of cancer using genetic information 
enables a clear biological classification, whereas the molecular classification me-
thod remains directly associated with the selection of appropriate molecu-
lar-targeted drugs. However, for the molecular diagnosis of cancer, tumor cells 
need to be collected via biopsy, which imposes a significant burden on the pa-
tient. Additional constraints include limited availability of facilities for perform-
ing gene analysis and the high cost of gene analysis. Therefore, the possibility to 
easily determine the tumor genotype from non-invasive imaging using radio-
mics would be advantageous. 

A minimally invasive examination using liquid biopsy, such as cell-free DNA, 
circulating tumor cells, and exosomes, has been performed. In particular, it has 
been reported that microRNA (miRNA) contained in exosomes derived from 
cancer cells can be used to detect the presence of cancer with high accuracy [4] 
[5] [6] [7]. Further, information on tumor genotype can also be obtained. Given 
the growing demand for molecular diagnosis techniques, studies to clarify the 
relationship between imaging and genetic examinations are considered impor-
tant. 

Radiomic studies on breast cancer have estimated breast cancer subtypes from 
various imaging tests [8]-[19] and have predicted the prognosis or recurrence 
[20] [21] [22]. Of the different subtypes, triple-negative breast cancer (TNBC) 
accounts for approximately 20% of all breast cancers. TNBC has a very high re-
currence rate within 3 years and a shorter survival time after recurrence than 
that with other breast cancer types. Furthermore, because only anticancer drugs 
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are expected to have therapeutic effects, it is important to distinguish between 
TNBC and other types of breast cancer [8] [9]. The main contribution of this 
study is to evaluate the usefulness of radiomic features and miRNAs in distin-
guishing TNBC from other breast cancer types, in order to construct an AI sys-
tem that considers the division of roles between genetic testing and imaging 
tests. If radiomic features and miRNAs have an inclusive relationship, AI sup-
porting second half of the medical care can be realized using either imaging or 
blood tests. 

2. Materials and Methods 
2.1. Imaging and Clinical Data 

In this study, we used the Cancer Genome Atlas Breast Invasive Carcinoma 
(TCGA-BRCA) database in the Cancer Imaging Archive [23]. TCGA-BRCA 
contains data from 139 patients with breast cancer. However, magnetic reson-
ance (MR) images and genetic information were not available for all cases. 
Therefore, we selected 60 cases for which fat-suppressed contrast-enhanced 
T1-weighed images and miRNAs were available. The public database also in-
cludes information on whether the hormone receptor was positive or negative, 
human epidermal growth factor receptor 2 was positive or negative, and Ki67 
was high or low. Based on the information, 60 cases were classified into two 
groups: TNBC (9 cases) and others (51 cases) (Table 1). The study protocol was 
approved by the Ethics Review Committee. 

2.2. Gene Data 

Each miRNA comprises 10 - 100 base sequences. Because miRNAs contained in 
exosomes are used in liquid biopsy, miRNA was adapted as the genetic informa-
tion for this study. From the TCGA-BRCA database, we obtained miRNAs, 
which were taken from tumor cells. The obtained miRNA were used by adding 
read per million corrections to the read count. This correction is performed 
when comparing samples and is the number of counts divided by the total 
number of reads and multiplied by a constant. There were 1325 miRNAs, but 
most of the data contained zero elements. Therefore, 255 miRNAs with all 
non-zero elements in the 60 selected cases were used for this study. 

2.3. Radiomic Features 

The slice with largest tumor diameter was selected from the MR images. The MR  
 

Table 1. Immunohistochemistry-defined subtype classification. 

 Ki67 Hormone receptor Positive Hormone receptor Negative 

HER2 
Negative 

Low value Luminal A Triple Negative Breast Cancer 
(TNBC) High value Luminal B (HER2 Negative) 

HER2 Positive Luminal B (HER2 Positive) HER2 Type 
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image was converted to 512 × 512 pixels using linear interpolation. As per the 
rules for tumor region marking, when there were multiple tumors in an MR im-
age, the one with largest tumor area was selected. When there were spicules and 
incorrect edges, they were marked as the tumor region to accurately quantify the 
radiomic features related to shape. An example of tumor region marking is 
shown in Figure 1. 

To normalize the pixel value, we performed a linear density transformation on 
all MR images. Because the MR images had noise with extremely high pixel val-
ues, when linear density transformation was applied, the maximum pixel value 
after the transformation was affected by noise. To solve this problem, we calcu-
lated the upper 0.05% pixel value of the density histogram and set the pixel value 
above that pixel value as 1023 and then performed linear density transformation 
so that the minimum and maximum pixel values were 0 and 1023, respectively. 
Here, we assumed that noise existed in 0.05% of the entire image and thereafter 
empirically determined the value. 

We calculated 298 radiomic features from the tumor region of the MR image 
after linear density transformation. Free software MaZda [24] [25] [26] was used 
to calculate the radiomic features. These features comprise 1 size feature, 9 his-
togram features, 272 texture features, and 16 resolution features. The default 
values of MaZda were adopted as parameters for calculating these radiomic fea-
tures. For example, the parameters when calculating the density co-occurrence 
matrix of texture features were 16 density gradations; 1 - 5 in distance between 
pixels; and 0˚, 45˚, 90˚, and 135˚ in direction. 

2.4. Selection of Radiomic Features and miRNAs 

The numbers of radiomic features (298) and miRNAs (255) were greater than 
the number of cases (60). Hence, selection of useful radiomic features and 
miRNAs is necessary to distinguish between TNBC and other cancer types. In  

 

 
Figure 1. An example of manually segmented tumor region. 
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this study, radiomic features and miRNAs were selected using the least absolute 
shrinkage and selection operator (LASSO) [27], which is obtained by the fol-
lowing equation: 

2

0
1 1 1

1ˆ arg min
2

p pN
lasso

i ij j j
i j j

y x
β

β β β λ β
= = =

   = − − +     
∑ ∑ ∑          (1) 

By switching the input data to radiomic features or miRNAs, radiomic fea-
tures and miRNAs were selected separately. Here, yi is TNBC or others of the ith 
patient. xj indicates radiomic feature or miRNA. βj are coefficients and β0 is a 
constant term. λ ≥ 0 is a complexity parameter that controls the degree of reduc-
tion. p represents the total number of radiomic features and miRNAs. The pa-
rameter βj can be obtained by solving the quadratic programming problem in 
Equation (1). In this study, λ was set in such a manner that the number of ra-
diomic features or miRNAs with a non-zero coefficient βj was 6. Three-fold 
cross validation was performed to determine the value of λ that minimizes the 
average deviation. When the values of λ obtained in the process of this calcula-
tion were used in order, the value of λ was adopted so that the number of radi-
omic features or miRNAs with non-zero coefficients was 6. At this instance, de-
pending on the input data, six features could not be selected, whereas five or 
seven features could be selected. 

2.5. Visualization by Multidimensional Scaling (MDS) 

Although LASSO can reduce the dimension of radiomic features or miRNAs, 
they are still multidimensional data. Thus, it is not easy to understand the rela-
tionship between these multidimensional data and breast cancer subtypes. If the 
number of dimensions can be reduced to two, the relationship can be visualized 
because it can be displayed as a scatter plot. Therefore, in this study, we used 
MDS [27] to reduce the radiomic features or miRNAs to two dimensions. MDS 
is also called principal coordinate analysis, and a new axis is constructed using 
the following procedure. First, the distance matrix dij comprising the Euclidean 
distance of input i and input j was calculated, and the transformation matrix zij is 
then obtained, which is defined by 

2 2 2
2

2
1 1 1 1

1
2

n n n n
ij ij ij

ij ij
i j i j

d d d
z d

n n n= = = =

 
= − − − +  

 
∑ ∑ ∑∑               (2) 

The transformation matrix is used to move the origin to the center of gravity 
for n input data. Finally, the new coordinate points were determined as the 
coordinate values on the axis given by the eigenvector of matrix zij. Because MDS 
is a linear transformation that maintains the Euclidean distance between data, it 
can be interpreted by reproducing the relative positional relationship of multi-
dimensional data in a low-dimensional space. 

2.6. Differentiation between TNBC and Others 

We employed linear discriminant analysis (LDA) [28] to distinguish between 
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TNBC and other cancer types. Six radiomic features or six miRNAs selected by 
LASSO were used as input data for LDA. LDA determines the hyperplane that 
best discriminates the two groups of TNBC and others, assuming the variances 
of each group of TNBC and others are the same in the feature space. The hyper-
plane is defined as follows: 

1 1 2 2 0i iz a x a x a x a= + + + +�                    (3) 

Here, z is the discrimination score, xi are the radiomic features or miRNAs, ai are 
the coefficients, and a0 is a constant value. A high discrimination performance 
with LDA indicates that radiomic features or miRNAs can be used as biomarkers 
to discriminate TNBC and others as LDA input/output is a simple relational ex-
pression. The leave-one-out method has been used to learn and test LDA [28]. 
The discrimination performance was evaluated by the area under the curve 
(AUC) of receiver operating characteristic (ROC) curve analysis. The LABROC4 
algorithm [29], developed at the University of Chicago, was used for ROC curve 
analysis. 

3. Experimental Results 

The six miRNAs and six radiomic features selected by LASSO are listed in Table 
2. A scatter plot projecting these features into two dimensions using MDS is 
shown in Figure 2. When miRNA was used, TNBC and others were completely 
separated. However, when radiomic features were used, TNBC overlapped with 
other types of breast cancer. Results of LDA when the number of radiomic fea-
tures or miRNAs was changed are demonstrated in Figure 3. In this figure, three 
radiomic features were not selected by LASSO, and the number next to 2 was 4. 
With three miRNAs, the highest AUC value was 1.0, whereas with six radiomic 
features, the highest AUC value was 0.881. These results indicated that miRNAs 
have a higher discrimination performance than radiomic features. Results of 
plotted output values of LDA with three miRNAs and six radiomic features on 
the horizontal and vertical axes, respectively, are demonstrated in Figure 4. 
When miRNAs on the horizontal axis were used, TNBC and others could be 
completely separated. However, when radiomic features on the vertical axis were 
used, a significant overlap was observed. When the output values of miRNA and  

 
Table 2. Six micro RNAs and six radiomic features selected by least absolute shrinkage 
and selection operator. 

 miRNA Radiomic feature 

#1 has-mir-146b Perc.99% 

#2 has-mir-18a S(4,-4)InvDfMom 

#3 has-mir-378c Horzl_RLNonUni 

#4 has-mir-445 GrSkewness 

#5 has-mir-9-2 GrKurtosis 

#6 has-mir-942 WavEnLL_s-3 
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Figure 2. Scatter plot in two dimensions using multidimensional scaling. (a) Micro RNA; (b) Radiomic features. 
 

 
Figure 3. Area under the curve of receiver operating characteristic curve analysis for dis-
criminating between triple-negative breast cancer and others using micro RNAs and ra-
diomic features. 

 
radiomic features were integrated, the discrimination boundary could be gener-
ated in the diagonal direction; thus, the separation between TNBC and others 
tended to be larger. 

4. Discussion 

In this study, miRNA was identified to be a more potent factor than radiomic 
features in distinguishing TNBC from other cancer types. Therefore, if exosomes 
derived from breast cancer cells are isolated and miRNA contained in the ex-
osomes are analyzed, TNBC can be detected with high accuracy via liquid biop-
sy. If the data on genetic properties of breast cancer can be obtained by a mini-
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mally invasive blood test, the superiority of radiomics, which can easily estimate 
the genotype of cancer by a non-invasive imaging test, would be compromised. 
However, it is difficult to obtain information on the anatomical location and ex-
tent of the lesion using genetic testing. Hence, in addition to genetic testing, it is 
important to study the radiomic features and search for measures to integrate 
them to improve accuracy. Herein, the integrated analysis of miRNA and radi-
omic features improved the discrimination performance (Figure 4). 

This study aimed to discriminate between TNBC and other cancers, which are 
classified based on the genetic nature of breast cancer. Notably, genetic testing is 
conducted under conditions that are more favorable than those for imaging 
tests. Studies have reported the use of predict PCR using radiomic features after 
classifying breast cancer into subtypes by genetic testing [30] [31] [32] [33] [34]. 
These studies established the division of roles between genetic testing and imag-
ing. One by one clarification is warranted to determine the part of medical care 
to which the concepts of radiomics and liquid biopsy can be applied to realize an 
AI system that supports personalized medicine. 

The present study has certain limitations owing to the small number of cases 
included as the experiment was conducted using a public database. Another li-
mitation is that we could not compare blood tests and imaging tests directly as 
miRNAs obtained from exosomes derived from breast cancer cells in the blood 
were not used. Future studies are warranted to address these concerns. 

 

 
Figure 4. Relationship of linear discriminant analysis outputs between microRNA and 
radiomic features. 
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5. Conclusion 

The study identified miRNA as a more potent factor than radiomic features in 
distinguishing TNBC from other cancers. However, because it is difficult to ob-
tain information on the anatomical location and extent of the lesion by genetic 
testing, it is important to clarify the radiomic features that are complementary to 
the genetic data. Research in this regard is believed to be important for con-
structing an AI system that considers the division of roles between genetic test-
ing and imaging tests in the near future. 
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