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Abstract 
Improved Weighted Essentially Non-oscillatory Scheme is a high order finite 
volume method. The mixed stencils can be obtained by a combination of r + 
1 order and r order stencils. We improve the weights by the mapping method. 
The restriction that conventional ENO or WENO schemes only use r order 
stencils, is removed. Higher resolution can be achieved by introducing the r + 
1 order stencils. This method is verified by three cases, i.e. the interaction of a 
moving shock with a density wave problem, the interacting blast wave prob-
lem and the double mach reflection problem. The numerical results show that 
the Improved Weighted Essential Non-oscillatory method is a stable, accurate 
high-resolution finite volume scheme. 
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1. Introduction 

The ENO idea proposed in [1] seems to be the first successful attempt to obtain 
a self-similar, uniformly high order accurate, yet essentially non-oscillatory in-
terpolation for piecewise smooth functions. The generic solution for hyperbolic 
conservation laws is in the class of piecewise smooth functions. The reconstruc-
tion in [1] was a natural extension of an earlier second order version of Harten 
and Osher [2]. In [1], Harten, Engquist, Osher and Chakravarthy investigated 
different ways of measuring local smoothness to determine the local stencil, and 
developed a hierarchy that begins with one or two cells, then adds one cell at a 
time to the stencil from the two candidates on the left and right, based on the 
size of the two relevant Newton divided differences. Although there are other 
reasonable strategies to choose the stencil based on local smoothness, such as 

How to cite this paper: Guo, S.G. and Li, 
W. (2021) Improved Weighted Essentially 
Non-Oscillatory Schemes by Mixed Sten-
cils. Open Journal of Fluid Dynamics, 11, 
153-165. 
https://doi.org/10.4236/ojfd.2021.113009 
 
Received: July 17, 2021 
Accepted: September 6, 2021 
Published: September 9, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojfd
https://doi.org/10.4236/ojfd.2021.113009
https://www.scirp.org/
https://doi.org/10.4236/ojfd.2021.113009
http://creativecommons.org/licenses/by/4.0/


S. G. Guo, W. Li 
 

 

DOI: 10.4236/ojfd.2021.113009 154 Open Journal of Fluid Dynamics 
 

comparing the magnitudes of the highest degree divided differences among all 
candidate stencils and picking the one with the least absolute value, experience 
shows that the hierarchy proposed in [1] is the most robust for a wide range of 
grid sizes, both before and inside the asymptotic regime. Especially, in 1994, Liu, 
Osher and Chan [3] introduced Weighted ENO schemes which use a convex 
combination of all candidates to achieve the essentially non-oscillatory property, 
Weighted ENO improves robustness of the essentially non-oscillatory schemes 
greatly. In [4], Jiang and Shu proposed a new way of measuring the smoothness 
of a numerical solution, and used a sum of the L2 norms of all the derivatives of 
the interpolation polynomial over the corresponding interval as a new smooth-
ness measurement, which improve the capacity in resolving shock and compli-
cated flow structures greatly. 

Since the WENO schemes were introduced, it has been improved greatly. Re-
cently, Bryson and Doron [5] used a suitable high-order WENO-type recon-
struction to develop a high-order semi-discrete central-upwind scheme. Kim, 
Jang [6] introduced a hybrid methodology to construct a hybrid central-WENO 
scheme. At the same time, the application of WENO schemes was expanded 
greatly, Johnsen and Colonius applied WENO schemes in compressible multi-
component flow problems [7], Caleffi, Valiani and Bernin [8] treated with 
fourth-order balanced source term in central WENO schemes for shallow water 
equations.  

But these schemes only used rth-order stencils ignore larger than rth-order 
stencils without reference to ENO or WENO. The resolution can improve by 
using a larger stencil in theory. So it is possible to construct new WENO schemes 
by introducing larger than rth-order stencils. Despite the (2r − 1)-order conver-
gence behavior often exhibited by WENO schemes, its actual rate of convergence 
is less than (2r − 1) order for many problems. In fact, the analysis done in [4] 
does not identify all the properties of the weights which are necessary for WENO 
schemes to converge at fifth-order. Furthermore, the incomplete set of proper-
ties given in [4] is not satisfied by the WENO weights when the first derivative of 
the solution vanishes [9] [10] [11] [12]. In particular, at critical points where the 
third derivative does not simultaneously vanish with the first, WENO schemes 
suffer a loss in accuracy.  

In this paper, we present the improved WENO schemes by introducing a large 
mixed stencil, which is constructed by combining rth-order stencil and (r + 
1)th-order stencil. Simultaneity, we improve the weights by the mapping method 
[9] [12]. The schemes are tested in three examples, respectively, the interaction 
of a moving shock with a density wave, the interacting blast waves problem and 
double mach reflection problem. The numerical results show improved WENO 
schemes are the high resolution difference methods. 

2. WENO Schemes 

Firstly, we present the conventional essentially non-oscillatory (ENO) [2] and 
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weighted essentially non-oscillatory (WENO) finite volume methodology [3] [13] 
[14], for solving nonlinear hyperbolic conservation laws  

( ) 0t xu f u+ =                         (2.1) 

Given cells 1 2 1 2,j i iI x x− + =    (intervals in one dimension), the partial discreti-
zation is written as 

 ( )1 2 1 2
d 1 ˆ ˆ 0
d t j ju f f
t x + −+ − =

∆
                 (2.2) 

where 1 2
ˆ

jf +  is a numerical approximation of ( )( )1 2jf u x + . Once the right- 
hand side of this expression has been evaluated, numerical techniques for solv-
ing ordinary differential equations, such as Runge–Kutta methods may be em-
ployed to advance the solution in time. To ensure stability, ( )f u  is generally 
split into ( )f u+ , which has a strictly non-negative derivative, and ( )f u− , 
which has a strictly non-positive one [4]. 

WENO schemes compute 1 2
ˆ

jf +
+  through interpolating polynomials on a 

number of overlapping candidate stencils, each containing r grid points. In Jiang 
and Shu’s method, there are r candidate stencils. The one most upwinded can-
didate stencil ranges over mesh point indices 1j r− +  to j, the fully down-
winded candidate stencil ranges over j to 1j r+ − , and the other candidate 
stencils fall in between. Figure 1 provides a schematic of this arrangement.  

If the flux approximation on stencil k, which contains r grid points, is desig-
nated r

kq  which is the interpolation polynomial on stencil kS  and the weight 
assigned to that stencil is kω , the final numerical approximation becomes 

1 2

1

0

r
r

j k k
k

f qω
−

+
=

= ∑                         (2.3) 

The weights kω  must adapt to the relative smoothness of each candidate 
stencil, the smoother the stencil is, the larger the weights are given. A disconti-
nuous stencil is assigned a zero weight (or close to zero), so the (2r − 1)th 
WENO schemes decrease to rth-order near shocks. At the same time, in [4], op-
timum weights r

kC  is introduced in the definition of kω  to make the WENO 
schemes achieve (2r − 1)th order accuracy in smooth domain. The optimum 
weights r

kC  is calculated as 

 
1

2 1
1

0

r
r r r

r k k
k

q C q
−

−
−

=

= ∑                        (2.4) 

the left term is a (2r − 1)th-order approximation of 1 2jh + . 
 

 
Figure 1. The assembly method of the 3th-order stencils in Jiang and Shu’s method. 
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0 1

k
k

r

α
ω

α α −

=
+ +

,                      (2.5) 

where 

( )
, 0,1, , 1

r
k

k p
k

C
k r

IS
α

ε
= = −

+


                (2.6) 

The constant ε  prevents division by zero, and 2p =  is chosen to increase 
or decrease WENO adaptation sensitivity. The smoothness measurement kIS  
becomes large when discontinuities are present within stencil k and remains rel-
atively small otherwise. The strict definition of kIS  as presented by Jiang and 
Shu [4] may be expressed in the form. 

( )1 2

1 2

2
1

2 1

1
d

j

j

x l rk
kl

k l
l x

q x
IS x x

x

+

−

−
−

=

 ∂
= ∆   ∂ 
∑ ∫                  (2.7) 

The corresponding stencil diagram for 1 2jf −
+
  is simply a mirror image of Fig-

ure 1 [10]. It is not overstated here. 

3. New WENO Scheme 

But if we take too high order stencils, it is probable that some grid points of dif-
ferent stencils overlap, so it is impossible to obtain high resolution. Of course, 
we can reduce the order of the stencils according to [15] [16], but a considerable 
amount of calculation will be needed. What’s more, this iterative calculation is 
often unsuccessful, because the iteration always begins with the (2r − 1)th-order 
stencil regardless of the structure of stencils (even obvious repetitive stencils). As 
for different equations or different grid points, it is usually impossible that rea-
sonable amount of stencils than rth-order stencils are selected. Now, we only se-
lect (r + 1)th-order to combine with rth-order to construct a new WENO schemes. 

Now, we introduce a large mixed stencil T which is combined by using all the 
rth and (r + 1)th order stencils: 

( )
( )

1 2

1
1 1 1 2

, , , , 0,1, , 1

, , , , 1, 2, , 1

r
k j k r j k r j k

r
k j k r j k r j k

S I I I k r

S I I I k r

+ − + + − + +

+
+ − + + + − + + +

= = −

= = −

 

 

       (3.1) 

1 1 1
0 1

k r k rr r
k kk k

T S S= − = − +
= =

= 

 

                  (3.2) 

The assembly method of the rth and (r + 1)th order stencils (take r = 3 for 
example) is shown in Figure 1 and Figure 2. 

The rth-order stencils: (Figure 2). 
The (r + 1)th-order stencils: (Figure 3). 
We can construct (2r − 2)th order polynomial ( )P x  in T, Based on the idea 

of the polynomial construction in [10]. Simple algebra gives the coefficients m
kC  

such that 

( ) ( )
0

1 2

1

1 2

2r
m m

j k k j
k

P x C q x
−

+ +
=

= ∑                  (3.3) 
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Figure 2. The assembly method of the rth-order stencils. 
 

 
Figure 3. The assembly method of the (r + 1)th-order stencils. 
 
here, ( )m

kq x  is the corresponding polynomial of the kth small stencil, for ex-
ample, when the stencil is (r + 1)th-order, ( )m

kq x  is the (r + 1)th-order poly-
nomial. Obviously, the methodology to obtain the coefficients m

kC  is similar to 
Weighted ENO schemes in [4]. 

When r = 3, there are the results of calculation in [17], obviously, there are 
five (2r − 1) small stencil ( ), 1m

kS m r r= + , and then we rearrange these small 
stencils and assemble a large stencil,  

( ) ( )
( ) ( )
( )

4 3
0 1 2 1 1 1 0 2 1

3 3
2 1 1 1 3 2 1 2

44
4 2 1 1 2 0

, , , , , , ,

, , , , , ,

, , , ,

j j j j j j j

j j j j j j

j j j j kk

S S I I I I S S I I I

S S I I I S S I I I

S S I I I I T S

− − + − −

− + + +

− − + =

= = = =

= = = =

= = =


       (3.4) 

The procedure of calculating numerical fluxes is similar to the WENO scheme 
proposed by Jiang and Shu [4], and the interpolation to obtain the cell-face flux-
es 1 2

ˆ
jf ±
+  is described in [4]. 

For brevity, we define a general flux 1 2
ˆ

jf +  that denote the positive flux f +  
or the negative flux f − , which is split by the Rusanov-type flux splitting me-
thod [18] [19] [20] as 

2 2 1 3

21 1 2

1 1

1 1 2

2 1 3 1

,

j j j j

j j j j

j j j j

j j j j

j j j j

g f g f

g f g f

g f g f

g f g f

g f g f

+ −
− − − +

+ −
− − +

+ −
+ +

+ −
+ + +

+ −
+ + + −

   = =
   
   = =
   

= =   
   

= =   
      = =   

                  (3.5) 

1 2 1 2 1 2
ˆ ˆ ˆ

j j jf f f+ −
+ + += +                       (3.6) 

We take 1 2
ˆ

jf +
+  for example, 1 2

ˆ
jf +
+  is calculated as 

j-2 j-1 j j+1 j+2 j+3
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j-2 j-1 j j+1 j+2 j+3
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0 2 1 1 1 2 1

2 2 1 3 2 1

4 1 2

2

1

1
1 5 13 1 1 7 11ˆ

12 12 12 4 3 6 6
1 5 1 1 5 1
6 6 3 3 6 6

1 13 5 1
4 12 12 12

j j j j j j j j

j j j j j j

j j j j

f g g g g g g g

g g g g g g

g g g g

ω ω

ω ω

ω

+
+ − − + − −

− − − −

− + +

   = − + + + − +   
   
   + − + + + + −   
   
 + + − + 
 

(3.7) 

In order to obtain the smallest truncation error, we write a Taylor series ex-
pansion for ( )g •  around 1 2ix + : 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2
2

1 22 2 2! 1 2 !n nn
j j j j jg g g h g h g h n+ + + +′ ′′= − + + + − +   (3.8) 

So, we can write the Taylor series expansion as the sum of all the term in (3.9): 

( ) ( )

( )

2 1 1

4 52 4 5

66
2

1 2 1 2 1

1

2 1 2

1 2

1 5 13 1
12 12 12 4

0.0416667 0.0512153 0.0416667

1 7 110.0216942
3 6 6

j j j j

j j j j

j j jj

g g g g

g h g h g h g

h g g g g

− − +

+ + + +

− −+

− + +

′′= − + −

+ + + − +

 

( )

( ) ( )

( )

( )

42 3 4

5 65 6
2

1 2 1 2 1 2 1 2

1 2 11 2

1 2 1 2 1
42 3 4

55

2 1 2

1 2

0.0416667 0.25 0.301215

1 5 10.197917 0.0946108
6 6 3

0.0416667 0.0833333 0.0321181

0.0104167 0.002

j j j j

j j jj j

j j j j

j

g h g h g h g

h g h g g g g

g h g h g h g

h g

+ + + +

− −+ +

+ + + +

+

′′ ′′′= − − +

− + + − + +

′′ ′′′= − + −

+ −



( )66
2 11 2

1 5 16114
3 6 6j j jjh g g g g− −+ + + + −

 

( )

( ) ( )

( ) ( )

1 2 1 2 1 2 1 2

1 2 1 2

42 3 4

5 65 6

1 1 2

1 2
4 62

2 1 2 2
6

1 1
4

0.0416667 0.0833333 0.0321181

0.0104167 0.0026114

1 13 5 1
4 12 12 12

0.0416667 0.0321181 0.0026114

j j j j

j j

j j j j

j j j j

g h g h g h g

h g h g

g g g g

g h g h g h g

+ + + +

+ +

− + +

+ + + +

′′ ′′′= − − −

− − +

+ + − +

′′= − − − +





(3.9) 

Firstly, Supposed that the coefficients of 1 2
ˆ

jf +
+  is A, 

( )

1 5 13 1 0
12 12 12 4

1 7 111 7 11 0 0
3 6 63 6 6
1 5 11 5 1 ,0 0

6 6 36 6 3
1 5 11 5 10 0
3 6 63 6 6

1 7 7 10
12 12 12 12

A Rank A Rank

− 
 
 

 − −   
   
    −−    = =    
    −−           

 − −
 
 

    (3.10) 

Here, the rank of matrix A is 3, so it is so impossible to get the solution of jC  
like WENO5 [4]. But we can obtain the optimal solution by complementary 
condition. The primary objective is to make the truncation error the least, so we 
make the term including 1 2jg +′′  of (3.9) equal to zero [17]. 

Now, we can calculate the coefficients m
kC , and the results is written as 
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4 3 3 3 4
0 1 1 0 2 1 3 2 4 20.2, 0.05, 0.3, 0.15, 0.3C C C C C C C C C C= = = = = = = = = = (3.11) 

Because of ( )i iC O hω = + , so the optimal coefficients can be tested by replacing 

jω  by jC . 

2 1 1 2 1

2 1 2 1

1 1 2

1 2
1 5 13 1 1 7 11ˆ 0.2 0.05

12 12 12 4 3 6 6
1 5 1 1 5 10.3 0.15
6 6 3 3 6 6

1 13 5 10.3
4 12 12 12

j j j j j j j

j j j j j j

j j j j

f g g g g g g g

g g g g g g

g g g g

+
+ − − + − −

− − − −

− + +

   ≈ − + + + − +   
   
   + − + + + + −   
   
 + + − + 
 

(3.12) 

Corresponding to m
kC , the smoothness coefficients m

kIS  is calculated by (2.7): 
4 3 3 3 4

0 1 1 0 2 1 3 2 4 2, , , ,IS IS IS IS IS IS IS IS IS IS= = = = =          (3.13) 

Here, 

( )(
( )

( ) )
( ) ( )

( ) ( )

0 2 2 1 1

1 1 1

2
1 1

2 2
1 1 2 1 2

2 2
2 1 1 1 1

267 1642 1602 494

2843 5966 1922

3443 2522 547 240

13 12 3 4
12 4
13 12
12 4

j j j j j

j j j j

j j j j

j j j j j j

j j j j j

IS g g g g g

g g g g

g g g g

IS g g g g g g

IS g g g g g

− − − +

− − +

+ +

− − − −

+ − + −

= − + −

+ − +

+ − +

= − + + − +

= − + + −

 

( ) ( )
( )(

( )
( ) )

2 2
3 2 1 1 2

4 1 1 1 2

1 2

3
1 1 2 2

13 12 3 4
12 4

547 2522 1922 494

3443 5966 1602

2843 1642 267 240

j j j j j j

j j j j j

j j j j

j j j j

IS g g g g g g

IS g g g g g

g g g g

g g g g

+ + + +

− − + +

+ +

+ + + +

= − + + − +

= − + −

+ − +

+ − +

       (3.14) 

Here, the weights m
kω : 

4

0
, 0,1, 2,3, 4k k k

k
kω α α

=

= =∑                  (3.15) 

( ) , 0,1, 2,3, 4k k kC IS kα ε= + =                 (3.16) 

To increase the accuracy of these weights, consider the functions [9]. 

( )
( )

( )
( )

2 2

2

3
, 0,1

1 2
k k k

k k
k k

g
ω ω ω ω ω ω

ω ω
ω ω ω

+ − +
= ∈

+ −
        (3.17) 

for 0,1,2,3,4k = . All of these functions have the following features: they are 
monotonically increasing with finite slope, ( )0 0kg = , ( )1 1kg = , ( )k k kg ω ω= , 

( ) 0k kg ω′ = , ( ) 0k kg ω′′ = . 
A more accurate approximation of the weights is given by 

( )k k kg wα∗ =                       (3.18) 

The modified weights are defined according to 
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*

4
*

0

k
k

i
i

w
α

α

∗

=

=

∑
                       (3.19) 

which satisfies 
4

0
1k

i
w∗

=

=∑ , Here a superscript (∗ ) has been added to signify the 

improved weights, which is called MWENO. 

4. Numerical Results 

Calculations are carried out for three different examples of compressible flows. 
Example 1 is the interaction of a moving shock with a density wave, example 2 is 
interacting blast waves, example 3 is double mach reflection problem.  

Example 1: Interaction of a moving shock with a density wave.  
We applied the developed improved Weighted essentially non-oscillatory 

scheme to the Shu and Osher’s 1D shock/turbulence interaction model problem 
[21]. This problem describes the interaction between a moving Mach 3 shock 
wave and a fluctuating density since wave [22]. The initial flow condition is giv-
en by: 

( )
( )( )

( )
T

T

1 0.2sin 5 ,0,1 4.0
, ,

3.857143,2.629369,10.33333 4.0

x x
u p

x
ρ

 + ≥ −= 
< −

. 

The computational domain, 5 15x− ≤ ≤ , is covered with 400 nodes. We obtain 
a reference solution with 3200 grid points by WENO5 schemes. The Roe scheme 
is used for calculating the fluxes in the system of hyperbolic conservation laws 
and the third-order Runge–Kutta scheme is used to advance in time, and the 
CFL number is 0.2. The solutions at t = 4.5 are given in Figure 4 and Figure 5 
for the WENO5 and the present WENO5 schemes, respectively. It is clear that 
the present scheme resolves the salient features of the flow with higher fidelity. 
 

 
Figure 4. Density distributions of the 1D shock/turbulence interaction at t = 4.5 (WENO5). 
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Figure 5. Density distributions of the 1D shock/turbulence interaction at t = 4.5 (Present). 

 
Example 2: Interacting blast waves. 
The interacting blast wave example [23] is another difficult test of shock cap-

turing schemes. The Euler equation is solved with initial conditions with reflec-
tion boundary conditions  
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Again, the Roe scheme and third-order Runge–Kutta are too used in construct-
ing the numerical solution. The solutions at t = 0.038 are given in Figure 6 and 
Figure 7 for the WENO5 and the present schemes, respectively. Each computa-
tional cells is N = 400. Careful examination reveals that the present scheme has 
better agreement with the exact solution in resolving the salient features of the 
flow. The three contact waves, near x = 0.595, 0.765, 0.799, are better resolved as 
are the various peaks and valleys. 

Example 3: Double mach reflection problem of a shock wave. 
This problem was initially proposed and studied in detail by Woodward and 

Colella [23]. It has been used extensively in the literature as a test case for high 
resolution schemes. In this case, a strong shock wave impinges on a ramp with a 
30˚ angle. The inlet flow is strong shock wave whose mach number is 10. In or-
der to simplify the problem, the inlet shock wave is inclined with a 60˚ angle with 
a reflecting wall, and the computational domain is beginning with x = 1/6. The 
computational domain for this problem is chosen to be (0, 4) × (0, 1). For the top 
boundary of the computational domain, the solution is set to describe the exact mo-
tion of the Mach 10 shock. The left boundary is set as the exact post-shock con-
dition, while the right boundary is set as outflow boundary. The initial condition  
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Figure 6. Interacting blast waves. Density plot of WENO5 solution at t = 0.038 with N = 
400, and WENO5 solution with N = 6400, solid line. 
 

 
Figure 7. Interacting blast waves. Density plot of the present solution at t = 0.038 with N 
= 400, and WENO5 solution with N = 6400, solid line. 
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and computational grid number is 960 × 240. All data are obtained at t = 0.2 and 
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the CFL number is set to 0.5. 
Figure 8 shows density contours using the WENO5 scheme, which shows the 

result of using the WENO5 scheme with a 960 × 240 uniform grid system. Fig-
ure 9 shows the results of using the present scheme with the same uniform grid 
systems. The complicated flow features in the ‘‘blow-up’’ region around the 
double Mach stems are resolved better by the present scheme. The present 
scheme can capture the vortical flow structures along the slip line very well. The 
close-up view around the ‘‘blow-up’’ region is shown in Figure 10(a) and Figure 
10(b). It is seen that the present scheme gives greatly improved resolution com-
pared with the WENO5 scheme. 

 

 

Figure 8. Double mach reflection problem (WENO5), t = 0.2, density contours (960 × 
240). 

 

 
Figure 9. Double mach reflection problem (the present scheme), t = 0.2, density contours 
(960 × 240). 

 

 
(a)                                          (b) 

Figure 10. Close-up view of Figure 8 and Figure 9, WENO5 (Left), the present scheme (right). 
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5. Conclusion 

A new WENO method is developed by combined (r + 1)th-order stencil and 
rth-order stencil to construct multiple stencils. The method is tested by three 
customary cases: interaction of a moving shock with a density wave, the inte-
racting blast waves problem, and the double mach reflection problem. The nu-
merical results have shown the method is the stable, accurate difference scheme. 
Furthermore, in the high-velocity area and complicated boundary layer, the 
scheme can distinguish and capture discontinuous physical phenomena like 
shock waves, and can obtain higher resolution and restrain numerical oscillation 
effectively. Especially, the improved WENO schemes make full use of the se-
lected stencils over the general WENO schemes in the smooth domain, and the 
schemes improve the capacity of capturing discontinuities by introducing the 
higher order stencils. 
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