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Abstract 
Wide area multilateration algorithms suffer from stability issues related to the 
fact that the reference points are nearly coplanar. This paper presents a me-
thod to add elevation angle measurements to a multilateration problem and 
thereby reduce the error perpendicular to the plane where the measurements 
are taken. The resulting measurement error is significantly reduced for co- 
planar and nearly coplanar reference points. 
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1. Introduction 

One of the goals in aviation is to detect and track aircraft in flight. This is tradi-
tionally done using radar, which measures the distance and direction to a target 
from a known position ([1], p. 3). The use of radar presents a number of limita-
tions. Radar requires high power transmitters, large antennas, and sensitive re-
ceivers. It is dependent on receiving a reflected signal that is strong enough to 
detect the target. 

One method to overcome some of these limitations is to use signals transmit-
ted by the aircraft to determine its position. By using a number of receivers at 
known points, relative distances to the target can be determined, from which the 
position of the aircraft can be calculated. This approach is called multilateration. 

In physical multilateration implementations with ground-based receivers spread 
over a wide area, the target and receivers are often nearly coplanar. This arrange-
ment is numerically unstable in multilateration algorithms and typically pro-
duces significant error in the vertical position of the aircraft. 

This paper presents a hybrid multilateration (HM) algorithm for incorporat-
ing triangulation measurements into a multilateration calculation to improve the 
accuracy of the calculated positions. This is done by adding measurements of the 
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elevation angle of the target at each receiver and using those measurements to 
triangulate the vertical position of the aircraft while using multilateration to de-
termine its horizontal position. Elevation angle can be determined using a linear 
monopulse array [2], phase difference measurements, time difference of arrival 
measurements [3] [4], or any other method ([1], p. 471, 474) as long as it pro-
vides sufficient resolution for this algorithm. This paper focuses on the deriva-
tion of the HM algorithm rather than on the methods of collecting the measure-
ments used in the algorithm. The algorithm does not depend on the method of 
data collection. 

The development of the HM algorithm starts with the derivation of an algo-
rithm that only uses multilateration and similar terms for using triangulation data. 
The multilateration and triangulation equations are combined to produce hybrid 
equations that use both multilateration and triangulation information to more 
accurately determine the position of a transmitter. The effects of errors and re-
ceiver location are analyzed. 

The HM algorithm improves the accuracy of position calculations for scena-
rios with receivers that are coplanar or nearly coplanar. This allows for more 
precise measurement of the 3-dimensional position of aircraft in flight over a 
wide area. Most wide area multilateration systems only measure the position of 
objects on the ground or measure the ground position of targets in flight. This is 
done using ground-based sensors that are approximately coplanar and are there-
fore unable to distinguish between aircraft above or below the ground. Methods 
to measure the altitude of aircraft in flight through passive signal detection typi-
cally rely on triangulation only [5] [6]. 

2. Algorithm 

Let ( ), , , 0,1, , 1i i i ix y z i N= = −�P  be the position of N receivers and  
( ), ,s s s sx y z=P  be the position of a transmitter. The transmitter emits a signal 

at time st  that is received at iP  at time it . For each receiver, a pseudo-dis- 
tance i id ct=  is calculated, where c is the speed of light. This pseudodistance is 
used instead of time in the multilateration equations. For each iP , the angle 
of arrival of the transmitted signal relative to the x-y plane, iθ  is measured. 
Variables with two subscripts and a tilde are the difference between that para-
meter for the two indexed points, i.e. ,i j i jx x x= −� , ,i j i jy y y= −� , ,i j i jz z z= −� , 
and ,i j i jd d d= −� . 

The following sections present the HM algorithm by first deriving a multi- 
lateration algorithm, and then incorporating the measured angle information. 

2.1. Multilateration Algorithm 

Given pseudodistances between fixed points and an unknown transmitter loca-
tion, the possible solution space is the intersection of a number of hyperbolic 
surfaces. To make an algorithm that is efficient and stable the goal is to reduce 
the hyperbolic intersection problem into a system of linear equations. 
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The first step in producing the HM algorithm is to derive an algorithm for 
multilateration using the given measured pseudodistances. This is done by elimi-
nating the unknown quadratic terms from the pseudodistance equations, leaving 
linear equations in terms of the unknown transmitter location. 

The distance between points iP  and sP  is  

( ) ( ) ( )
( )

2 2 2
,

.
i s i s i s i s i s

i s i s

d x x y y z z

c t t d d

= − = − + − + −

= − = −

P P�
           (1) 

Squaring both sides gives  
2 2 2 2 2 2 2 2 2
, 2 2 2 2i s i i s s i i s s i i s s i i s sd d d d d x x x x y y y y z z z z= − + = − + + − + + − +�   (2) 

which can be rearranged to yield  
2 2 2 2 2 2 2 22 2 2 2 .i i i s s i i s s i i s s i s sd x x x x y y y y z z z z d d d= − + + − + + − + + −     (3) 

Taking the difference between the squared pseudodistance for two points iP  
and jP  gives  

2 2 2 2 2 2

2 2

2 2 2 2

2 2 2 2 .
i j i j i s j s i j i s j s

i j i s j s i s j s

d d x x x x x x y y y y y y

z z z z z z d d d d

− = − − + + − − +

+ − − + + −
        (4) 

This can be rearranged to produce a linear equation in terms of four unknowns, 

sx , sy , sz , and sd .  

( ) ( ) ( ) ( )

2 2 2 2 2 2 2 2

2 2 2 2 .
i j i j i j i j

i j s i j s i j s i j s

x x y y z z d d

x x x y y y z z z d d d

− + − + − − +

= − + − + − − −
       (5) 

Observing that 
222 2 2 2 2 2

i j i j i j i jx x y y z z− + − + − = −P P  and using the differ-
ence forms of the variables, Equation (5) can be rewritten as  

22 2 2
, , , ,2 2 2 2 .i j i j i j s i j s i j s i j sd d x x y y z z d d− − + = + + −P P �� � �         (6) 

Normally, one point is chosen as the reference point and used as jP . For this 
derivation let 0P  be the reference point. Applying Equation (6) across at least 4 
independent pairs of sensors gives a multilateration matrix equation  

M s M=A x b                             (7) 

where  

[ ]

1,0 1,0 1,0 1,0

2,0 2,0 2,0 2,0

1,0 1,0 1,0 1,0

T

22 2 2
1 0 1 0

22 2 2
2 0 2 0

2 2 2 2
1 0 1 0

2 2 2 2

2 2 2 2

2 2 2 2

.

M

N N N N

s s s s s

M

N N

x y z d

x y z d

x y z d

x y z d

d d

d d

d d

− − − −

− −

 −
 

− =  
 
 − 

=

 − − +
 
 − − +

=  
 
 − − + 

A

x

P P

P Pb

P P

�� � �
�� � �

� � � �
�� � �

�

            (8) 
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Using the method of least squares, the estimate of the position of the trans-
mitter sx  is  

( ) 1T T .s M M M M

−
=x A A A b                    (9) 

2.2. Triangulation 

The triangulation algorithm uses the measured values of the angle of the trans-
mitter relative to vertical for each receiver, as shown in Figure 1. Adding this 
one-dimensional triangulation to the multilateration equations can help to sig-
nificantly improve the solution in the z direction.  

The elevation angle to the target at point iP  is iθ . This angle can be meas-
ured using a large, directional antenna such as a monopulse radar antenna, or by 
using time difference of arrival or received phase difference for two vertically 
aligned antennas. Recall that this paper focuses on the algorithm to use the meas-
ured angle to estimate height rather than the method of obtaining the measure-
ments. 

For a given point and angle, the vertical position of the target can be given as  

( )coss i i s iz z d d θ= + −                      (10) 

which can be rearranged to give a linear equation in two unknowns,  

cos cos .s s i i i iz d z dθ θ+ = +                    (11) 

This gives a triangulation matrix equation T s T=A x b  with terms  

0

1

1

0 0 0

1 1 1

1 1 1

0 0 1 cos
0 0 1 cos

0 0 1 cos

cos
cos

.

cos

T

N

T

N N N

z d
z d

z d

θ
θ

θ

θ
θ

θ

−

− − −

 
 
 =
 
 
 

+ 
 + =
 
 

+ 

A

b

� � � �

�

                   (12) 

 

 
Figure 1. Angle measurement for triangula-
tion algorithm. The measured angle describes 
a cone containing the transmitter. 
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With two columns that are all zero, the equation T s T=A x b  is clearly defi-
cient and cannot be used by itself to solve for sx . It can be combined with MA  
and Mb , which are not deficient, to produce a linear equation MT s MT=A x b  
using augmented matrices  

M M
MT MT

T Tw w
   

= =   
   

A b
A b

A b
                  (13) 

where w is a weighting factor. The weighting factor is included to control the 
relative contribution of the triangulation equations to the final solution. Using 

1w =  would result in the multilateration terms in Equation (8) dominating the 
solution so that the triangulation terms do not contribute to the result. If w is 
too large then the triangulation terms will dominate the solution, skewing the x 
and y values to correspond to the z value determined by the triangulation terms. 
For the best result the weight w should be chosen so that the magnitude of the 
terms in MA  and TwA  are approximately the same size. The coefficients of 

TA  are between 0 and 1 so reasonable values for w would be the same size as 
the coefficients in MA . The coefficients have the same magnitude as the average 
distance between the receivers iP  or the average distance from the receivers to 
the transmitter1. 

2.3. Hybrid Multilateration/Triangulation 

Equation (6) can be rewritten so that the x and y dimensions are solved using 
multilateration and the z dimension is solved solely by triangulation. This is 
done by substituting Equation (10) into Equation (6),  

( )( )

2 2 2 2
0 0

,0 ,0 ,0 ,2 2 2 cos 2 ,
i i

i s i s i i i s i i j s

d d

x x y y z z d d d dθ

− − +

= + + + − −

P P
�� � �

        (14) 

which can be expressed in linear terms of the unknown variables as  

( )
( )

2 2 2 2
0 0 ,0

,0 ,0 ,0 ,0

2 cos

2 2 2 cos .
i i i i i i

i s i s i i i s

d d z z d

x x y y z d d

θ

θ

− − + − +

= + − +

P P �

�� � �
              (15) 

Equation (15) is a linear equation of the unknown terms, which can be com-
bined with Equation (11) and expressed as  

( )
( )

( )

1,0 1,0 1,0 1 1,0

2,0 2,0 2,0 2 2,0

1,0 1,0 1,0 1 1,0

1

2

1

2 2 0 2 cos

2 2 0 2 cos

2 2 0 2 cos=
0 0 1 cos
0 0 1 cos

0 0 1 cos

N N N N NH

N

x y z d

x y z d

x y z d

θ

θ

θ

θ
θ

θ

− − − − −

−

 − +
 
 − +
 
 
 
 − +
 
 
 
 
 
 
 

�� � �

�� � �

� � � �
�� � �

� � � �

A  

 

 

1For example, in the scenarios in Section 1 the transmitters are spaced 5000 m from the center of the 
figure so 5000w ≈  produces a good balance between the multilateration and triangulation terms. 
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( )
( )

( )

22 2 2
1 0 1 0 1,0 1 1 1

22 2 2
2 0 2 0 2,0 2 2 2

2 2 2 2
1 0 1 0 1,0 1 1 1

1,0 1,0 1

2,0 2,0 2

1,0 1,0 1

2 cos

2 cos

2 cos
cos
cos

cos

N N N N N NH

N N N

d d z z d

d d z z d

d d z z d
z d
z d

z d

θ

θ

θ
θ
θ

θ

− − − − − −

− − −

 − − + − +
 
 − − + − +
 
 
 − − + − +=  
 +
 

+ 
 
 

+  

�

�

P P

P P

P Pb     (16) 

and  

H s H=A x b                           (17) 

the solution of which is  

( ) 1T T .s H H H H

−
=x A A A b                      (18) 

3. Stability  

Multilateration algorithms are sensitive to the positions where the measurements 
are taken. If the reference point locations are not sufficiently distributed, then 
the algorithm can fail. This is a problem with terrestrial multilateration systems 
that are tracking aircraft over a large area. In a system, the reference points are 
likely to be approximately coplanar, which makes it difficult for a multilateration 
algorithm to distinguish between points that are at orthogonally opposite posi-
tions relative to that plane. 

In analyzing the algorithm, it is assumed that the reference points are copla-
nar or nearly coplanar. For most scenarios the transmitter is not in the same 
plane. The stability of the approach depends on the stability of the matrix  

( ) 1T −
A A  given by  

( )
( )

( ) ( ) ( )

T

2
,0 ,0 ,0 ,0 ,0 ,0

2
,0 ,0 ,0 ,0 ,0 ,0

1

2

,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

2

0

0
4

0 0 0 0

0

0 0 0 0
0 0 0 0
0 0 1 cos
0 0 cos cos

i i i i i i i

N i i i i i i i

i

i i i i i i i i i i i

i i

i i

x x y x d z C

x y y y d z C

x d z C y d z C d z C

θ
θ θ

=

 − +
 
 − +
 =
 
 
 − + − + + 
 
 
 +
 
 
 

∑

∑

A A
�� � � � �

�� � � � �

� � �� �� � �

(19) 

for the ,0 0i ix x x= −� , ,0 0i iy y y= −� , ,0 0i iz z z= −� , ,0 0i id d d= −� , and  
cosi iC θ=  values used. 

The following sections analytically demonstrate the instability of the algorithm 
for a few specific special cases of receiver layouts. It also considers several other 
receiver configurations to gain insight into the stability of the algorithm. 
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3.1. Linear Deployment 

If the receivers are in a line where ,i jx x i j= ∀  then the first row and column 
of TA A  are uniformly zero, and TA A  has no inverse. The same holds for 
when ,i jy y i j= ∀ , which leads to all zeros in the second row and column. 

For other linear arrangements, consider a line of receivers located at  
( ) ( )0 0, , , ,i i i i i ix y z ak x bk x z= + +  for some 1, , , , na b k k�  where ik  is a scalar 
representing the location of the receiver on the line. Then ,0i ix ak=�  and  

,0i iy bk=� . Let 2
iK k= ∑ . Then  

( )

2
,0

2
,0T

2
,0 ,0 ,0

4 4 0

4 4 0
0 0 cos

cos cos

i ii

i ii

ii

i i i i i i ii i i i

a K abK ak d

abK b K bk d
N

ak d bk d d

θ

θ θ

 ′−
 

′− 
=  
 
 ′ ′ ′− − + 

∑
∑
∑

∑ ∑ ∑ ∑

A A

�

�

� � �

    (20) 

where ,0 ,0 ,0 cosi i i id d z θ′ = +� � � . The first two columns of that matrix are ax  and 
bx  where  

T

,04 4 0 .i iiaK bK k d ′= − ∑x �                (21) 

This means that those two columns are not linearly independent and that  
TA A  is deficient. Therefore any linear arrangement of sensors produces a defi-

cient TA A  matrix. 

3.2. Circular Deployment 

Let the receivers be located on a circle, such that the location of each sensor is 
( )ˆ ˆ ˆcos , sin ,i ix r y r zφ φ+ + , and the transmitter located at ( )ˆ ˆ, , sx y z . The values 

of ( )22
, ˆi s sd r z z d= + − +�  are the same for all of the sensors, so that ,0 0id =� . 

Similarly, ,0 0iz =�  for all sensors. Since the horizontal and vertical distance from 
the transmitter to each sensor is the same,  

1 ˆ
tan s

i
z z

r
θ − −

=  

is the same for all sensors. This results in  
2
,0 ,0 ,0 ,0 ,0

2
,0 ,0 ,0 ,0 ,0T

1

2 2
,0 ,0 ,0 ,0 ,0

2
,0 ,0 ,0

2
,0 ,0 ,0

1

4 4 0

4 4 0
0 0 1 cos

cos cos

4 4 0 0
4 4 0 0

0 0 1 cos
0 0 cos cos

i i i i i

N
i i i i i

i i

i i i i i i i

i i i
N

i i i

i i

i

x x y x d

x y y y d

x d y d d

x x y
x y y

θ

θ θ

θ
θ

=

=

 ′−
 

′− =  
 
 ′ ′ ′− − + 

=

∑

∑

A A

�� � � �
�� � � �

� � �� �

� � �
� � �

2

2
,0 ,0 ,01 1

2
,0 ,0 ,01 1

0
2

0 0

4 4 0 0

4 4 0 0
0 0 cos
0 0 cos cos

i

N N
i i ii i

N N
i i ii i

x x y

x y y
N N

N N

θ

θ
θ θ

= =

= =

 
 
 
 
 
  

 
 
 =  
 
  

∑ ∑
∑ ∑

� �

� �

      (22) 
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where ,0 ,0 ,0 cos 0i i i id d z θ′ = + =� � �  for all i. The third and fourth columns of that 
matrix are equal to [ ]T00 0 1 cosN θ  and [ ]T0 0cos 0 0 1 cosN θ θ , so 
the columns of TA A  are linearly dependent and TA A  is deficient. 

Therefore, an arrangement of receivers on a circle cannot produce a solution 
when the transmitter is located exactly equidistant from the receivers at the cen-
ter of the circle. This holds whether the receivers are evenly or unevenly spaced, 
and whether the receivers are around the whole circle or located exclusively 
along an arc of the circle. This pole of instability is only present when the trans-
mitter is at the center of the circle. As the transmitter moves away from the cen-
ter of the circle the instability disappears. 

The behavior of the HM algorithm with a circular configuration of receivers 
can be seen in Figure 2. The HM algorithm is compared to a similar algorithm 
that only uses multilateration (ML) [7]. Both plots show the deviation as a func-
tion of transmitter position relative to the receivers at the positions shown. 
Gaussian error with a standard deviation of 1 m was added to the true pseudo-
distances and a Gaussian error with a standard deviation of 1˚ was added to the 
true elevation values2. Note that the scales are different for the two images.  

This shows a problem with using a multilateration algorithm in that scenario 
that needs to be corrected to give realistic comparable results between the two 
algorithms. A comparison of the scales in Figure 2 shows that HM algorithm 
out-performs the ML algorithm by at least 60 dB meters, which is a factor of 
1,000,000:1. This is due to the fact that the receivers were coplanar. In any algo-
rithm that relies solely on multilateration, having all of the reference points in a 
single plane creates an ambiguity. The algorithm cannot distinguish between 
points above the plane and points below the plane. To resolve the simulations 
were performed using receiver locations with 20 mzσ =  of Gaussian random 
variation added to their height. This is the near-coplanar configuration used in 
all of the remaining simulations in this paper. The results are shown in Figure 3. 
The HM algorithm still produces significantly lower error except at its point of 
instability. 

The choice of 20 mzσ =  is based on the underlying scenario that the ground 
level varies by less than 20 m. The performance of both algorithms is affected by 
this vertical perturbation of receiver positions, but for small variation of height 
only the ML algorithm is significantly affected. A plot of the position error as a 
function of zσ  is shown in Figure 4. Accuracy of the ML algorithm increases 
as the vertical separation between receivers increases. The HM algorithm per-
forms equally well across a range of local topological variation. This means that 
the HM algorithm performs better than the ML algorithm when the receivers are 
more planar and the ML performs better when the receivers have significant ver-
tical variation. In the scenario analyzed in Figure 4 the vertical relief must have 
a standard deviation of about 500 meterszσ =  (27 dBmeters) before the two 

 

 

2Additionally, a Gaussian error with a standard deviation of 100 m was added to the pseudodistances 
used by the HM algorithm. This term did not affect the results because it was constant across all of 
the pseudodistances and therefore cancelled when the ,i jd�  terms were calculated. 
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algorithms perform equally well. The near-coplanar simulations in this paper 
use vertical standard deviation of 20 meterszσ =  (13 dBmeters).  

 

 

Figure 2. Standard deviation of a multilateration (ML) algorithm and the hybrid multi- 
lateration (HM) algorithm error as a function of transmitter location with coplanar re-
ceivers. The ML algorithm has sizeable error with all receivers on the same plane. It can-
not distinguish between transmitters with a positive z coordinate and those with a nega-
tive z coordinate. Note that the two figures use different scales for the standard deviation 
of the error. 

 

 

Figure 3. Standard deviation of ML and HM algorithm error as a function of transmitter 
location with near-coplanar receivers. The ML error is about 6 to 10 times larger at all 
points apart from the center where the HM algorithm is unstable. 

 

 

Figure 4. Algorithm comparison as a function of vertical variance 
using a central receiver in the same configuration shown in Fig-
ure 6 with the transmitter directly above the central receiver. 
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Moving one of the sensors outward from the circle by a small distance creates 
two poles of instability along the axis that contains the point that was moved. Mov-
ing one sensor inward by a small distance creates two poles of instability that are 
located on a line perpendicular to the axis that contains the point that was moved. 
Plots of the convergence are shown in Figure 5. This shows that small changes 
from a strictly circular configuration aren’t enough to remove the instability.  

The circular non-convergence problem can be resolved by moving one of the 
sensors to the center of the circle and rearranging the other sensors evenly 
around a circle. This eliminates the pole of instability at the center of the circle, 
as shown in Figure 6. The HM algorithm performs better than the ML algo-
rithm in this configuration, producing errors less than 5% of the ML algorithm 
errors at most points.  

3.3. Other Receiver Configurations 

Circular or near-circular receiver arrangements are undesirable because they 
create a pole of instability. This instability isn’t present in other receiver confi-
gurations. This section considers the stability of the HM algorithm with other 
receiver configurations. 

 

 

Figure 5. Standard deviation of the HM algorithm error. The right-most point is dis-
placed 400 m in the x-direction from the circle containing the other points. This shows 
that the HM algorithm still has points of instability when small changes are made to the 
circular receiver configuration. 

 

 

Figure 6. Comparison of the standard deviation of the ML and HM algorithm error for 
near-coplanar receivers with a central receiver. The HM algorithm no longer has a point 
of instability. The ML error is 10 times larger than the HM error at every point. 
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A delta, or V, configuration places the receivers along two lines that meet at a 
point. This works relatively well with the ML algorithm, which performs roughly 
the same as it did in the circular configurations. With the HM algorithm this 
configuration induces a line of relative instability in the direction that the V is 
pointing, as shown in Figure 7. The HM algorithm still out-performs the ML 
algorithm, producing about 10% as much error even in the places where it was 
not performing as well. 

Another configuration is a wye or Y configuration. This consists of a central 
point and the receivers placed on three lines radiating outward from the center. 
The Y configuration is very similar to the circular configuration with a receiver 
in the center, as seen in Figure 8. The HM algorithm produces significantly less 
error at every point. 

The performance of the scenarios in this section and Figure 9 is summarized in 
Table 1. Note that these ranges include the values from outside the sensor perimeter.  

4. Implementation Factors 

A number of factors should be taken into consideration when implementing the 
HM algorithm. They include the desired coverage area, the number and location 
of receivers, and the utilization of those receivers in the calculations. Each of 
these are addressed in the following section. 

 
Table 1. Range of error in the scenarios presented in this section. All values are standard 
deviation of error and are given in dB meters. 

Scenario Fig ML min ML max HM min HM max 

Circular 3 29.1 36.1 18.0 30.1 

Circular (outward) 4 --- --- 17.9 31.8 

Circular (inward) 4 --- --- 18.0 32.0 

Eye 6 28.9 34.5 17.3 22.4 

Delta 7 26.8 34.8 15.4 24.3 

Wye 8 29.1 39.3 15.3 22.6 

Lattice 9 25.8 41.0 17.0 24.5 

 

 

Figure 7. Comparison of the standard deviation of the ML and HM algorithm error for 
near-coplanar receivers in a delta configuration. The HM algorithm performs well over 
most of the area, but is relatively unstable as the transmitter moves away from the receivers 
in one direction. It still outperforms the ML algorithm at every point. 
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Figure 8. Comparison of the standard deviation of the ML and HM algorithm error for 
near-coplanar receivers in a Y configuration. The HM algorithm performs better at every 
point. 

 

 

Figure 9. Comparison of the standard deviation of the ML and HM algorithm error for 
near-coplanar receivers in a triangular lattice configuration. The patterns in the ML fig-
ure are a result of the vertical deviation that was added to the receiver locations. Both al-
gorithms show an increase in error as the transmitter moves outside the region contain-
ing the receivers. 

 
The HM algorithm works best when the transmitter is located somewhere 

between the receivers. As such, the optimal arrangement is to have receivers sur-
rounding the area of interest. 

4.1. Coverage Area 

The coverage area places some requirements or constraints on the employment 
of this algorithm. The algorithm is built around the assumption that all of the 
angles are measured relative to a common vertical direction. This can be a prob-
lem if the coverage area gets wide enough for the curvature of the Earth to start 
introducing error into the angle measurements. The two solutions to this are to 
limit the coverage area or to orient the receivers to a shared vertical that may be 
different from the local vertical. 

The alternative is to orient all the sensors so that they measure angle with re-
spect to parallel vertical axes. This presents a significant challenge installing and 
maintaining the receiver antennas as it is relatively easy to measure whether an 
object is aligned to vertical and difficult to align it to a specific deviation from 
vertical. In a wide area deployment the receivers need to be aligned to an angle 
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that is slightly off from vertical or bias is introduced to the resulting measured 
angles which produces more position error from the algorithm. 

The size of a limited coverage area affects the accuracy of the calculated posi-
tion. An inherent problem with triangulation is that triangulation errors are 
proportional to the error in measuring the angle and to the distance from the 
vertex of the measured angles. This triangulation error must be considered when 
determining the size of the coverage area and the spacing of sensors within it. A 
denser deployment of sensors allows for more angular error because the distance 
from transmitter to receiver does not contribute as much to the overall triangu-
lation error. Receivers deployed less than 44 km apart have less than 1˚ differ-
ence in their local vertical direction which may be sufficient for a given applica-
tion, depending on the tolerance for angular error. 

Coverage area can also be expanded by using a wider array of receivers and 
then only including the closest measurement to the transmitter, determined by 
the time of arrival of the signal, in the calculations. This keeps the triangulation 
error in any given calculation small while allowing for a larger coverage area at 
the expense of requiring more receivers. 

4.2. Receiver Positions 

The stability analysis in Section 1 demonstrated that the algorithm works best 
when the transmitter is within a polygon surrounding the receivers. Some cov-
erage outside that boundary may be possible, any positions calculated outside 
the perimeter contain additional error due to the geometric problems with mul-
tilateration and the fact that a fixed angular measurement produces more error 
the farther it is from the point of measurement. 

Spacing of sensors affects the accuracy of the algorithm. The inclusion of tri-
angulation in the algorithm means that more distance between the transmitter 
and receiver induces a larger position error for the same angle error. The optim-
al spacing depends on the accuracy of angular measurements and the required 
positional accuracy. 

4.3. Number of Receivers 

The best performance is achieved when the transmitter is inside the perimeter 
created by the receivers. The performance is also affected by the spacing between 
the receivers. These two constraints will dictate the number of receivers re-
quired. 

The most efficient spacing may be an equilateral triangular lattice pattern, 
which puts receivers close to any transmitter within its coverage area. A plot of 
this type of scenario and the resulting stability is shown in Figure 9. The simula-
tions show that this lattice arrangement gives consistent coverage over the area 
bounded by the sensors, with less stable responses outside of that area.  

4.4. Selection of Sensors 

The HM algorithm requires at least 5 receivers to accurately calculate the posi-
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tion of a transmitter. If a system has more than 5 receivers then there are three 
options for dealing with the extra sensors.  

1) The extra sensors can be omitted from the calculations. In this case, the sen-
sors with the highest signal-to-noise ratio are typically the best ones to use in the 
calculation.  

2) The extra sensors can be included in the calculations. The algorithm can 
easily accommodate additional measurements. If there is error in the extra mea-
surements it could degrade the quality of the calculations.  

3) The calculations can be done using weighted measurements. Weighting the 
measurements according to a factor such as the signal to noise ratio can be a way 
to include the extra information from additional sensors without harming the 
calculated result. This is done by weighting each row of HA  and Hb  accord-
ing to the quality of the data in that row.  

5. Conclusions 

Incorporating triangulation measurements into a multilateration system produces 
significant improvement in the accuracy of the ML algorithm. Its ability to ac-
curately calculate height while using sensors on or near the ground makes it 
useful in real-world scenarios where objects are being tracked in 3 dimensions. It 
can make multilateration useful for tracking aircraft in flight over a wide area. 
This could include tracking aircraft in flight near airports or drone swarms. 

Except for a few particular cases the algorithm performs well in a variety of 
sensor configurations. When the receivers are nearly coplanar it consistently 
out-performs a multilateration-only algorithm. Adapting the algorithm for re-
ceivers that do not share a common vertical direction is an area for further re-
search. 
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