
Journal of Software Engineering and Applications, 2021, 14, 442-453
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2021.148026 Aug. 30, 2021 442 Journal of Software Engineering and Applications

Towards a Framework for Evaluating
Technologies for Implementing
Microservices Architectures

Aristide Massaga*, Georges Edouard Kouamou

Department of Computer Engineering, National Advanced School of Engineering, Yaoundé, Cameroon

Abstract

Microservice architecture is an architectural style, which allows structuring
software as a suite of fine-grained services, each running in its process and
deployed independently. Knowing the strengths and limitations of this archi-
tectural style, the development team is responsible to select the appropriate
technologies which guarantee the consistency between the implementation
and the design. This study proposes an evaluation framework which consists
of a set of evaluation criteria that are architectural patterns recognized by the
community and covering all the implementation aspects of software; and an
evaluation function which combines these criteria for a given technology to
determine its compatibility score with the microservice style, while taking in-
to account the specific requirements of the software under development. Ap-
plying this approach to Spring Boot and JAVA EE technologies, we found
that Spring Boot scores 96.3% while JAVA EE scores 44.4%. These scores re-
flect the effort required to conform software with the principles of this devel-
opment style.

Keywords

Microservice Architecture, Evaluation Criteria, Architectural Patterns,
Spring Boot, JAVA EE

1. Introduction

Like all architectural styles, the microservice style is a solution to a software
structuring problem that the software industry has faced. A microservice is a
lightweight, independent service that performs unique functions and collabo-

How to cite this paper: Massaga, A. and
Kouamou, G.E. (2021) Towards a Framework
for Evaluating Technologies for Implement-
ing Microservices Architectures. Journal of
Software Engineering and Applications, 14,
442-453.
https://doi.org/10.4236/jsea.2021.148026

Received: July 13, 2021
Accepted: August 27, 2021
Published: August 30, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2021.148026
https://www.scirp.org/
https://doi.org/10.4236/jsea.2021.148026
http://creativecommons.org/licenses/by/4.0/

A. Massaga, G. E. Kouamou

DOI: 10.4236/jsea.2021.148026 443 Journal of Software Engineering and Applications

rates with other similar services using a well-defined interface [1]. Microser-
vice architecture is an architectural style that structures software as a collec-
tion of services: Highly maintainable and testable; loosely coupled; indepen-
dently deployable; organized around enterprise capabilities; developed by a small
team [2].

With the emergence of cloud computing and the increasing use of agility in
software development processes, the microservice architecture offers many ad-
vantages, such that it becomes one of the most suitable styles for these new in-
dustry needs, as it offers developers: 1) Ease of integration and automatic dep-
loyment; 2) Freedom to develop and deploy independently; 3) Ease of under-
standing and modification for developers, allowing a new team member to be
productive quickly. However, the decomposition of a monolithic software, into
microservices also causes problems: 1) Due to distributed deployment, testing
can become complicated and tedious; 2) Increasing the number of services can
lead to information barriers; 3) Splitting the software into microservices is a
highly complex operation.

Knowing the strengths and limitations of this architectural style, the responsi-
bility is given to the development team to make the right technological choices
so that the implementation is as consistent as possible with the design. This re-
quires being able to verify that a technology retains the strengths of the style,
that it provides optimal solutions to the problems underlying the style, and that
it respects the development standards of the style. The reflection that we carry
out in this work is part of this same problem, which is to know how to evaluate
the contribution of technology for the implementation of a microservice
oriented architecture.

In the literature, research is mainly oriented towards the verification of the
architectural conformity of software [3] [4] [5]. Several approaches have been
proposed [6] based on the recognition of code structuring (packages), design
patterns or architectural patterns present in software.

Weinreich et al. [7] address the problem of verifying the conformity of soft-
ware with the SOA architectural style. Their three-step approach is based on the
identification of architectural patterns in software.

The main contributions of this paper are: 1) A catalog of microservice imple-
mentation architectural patterns; 2) A correlation between microservice (distri-
buted systems) issues and architectural patterns; 3) An evaluation function tak-
ing as parameters a technology and the requirements of the developed software
to assign a compatibility score.

In the reminder of this paper, Section 2 describes the methodology applied
in this study, which consists of the identification of the criteria and the con-
struction of the evaluation function. Section 3 presents an illustration based on
the evaluation of two technologies Spring Boot and JAVA EE from the con-
structed framework. Section 4 concludes the paper, then discusses the future
works.

https://doi.org/10.4236/jsea.2021.148026

A. Massaga, G. E. Kouamou

DOI: 10.4236/jsea.2021.148026 444 Journal of Software Engineering and Applications

2. Methodology

Evaluating the compatibility of an architectural style with a certain technology
(programming language or framework), consists in verifying that this technolo-
gy preserves the assets of the style, that it brings solutions to the underlying
problems but especially that it respects the standards on which the style is built.
The evaluation framework that we propose is articulated in 2 parts:

1) Choice of Evaluation Criteria: A list of architectural criteria that technol-
ogy must verify. This checklist is made up of architectural patterns universally
recognized and accepted by the microservice community. They are solutions to
implement the style at the service level and in their relationships. In fact, if they
are respected, they cover all the aspects of the implementation of microservice
software, lead to the conservation of the assets of the style, and are solutions to
the problems presented.

2) Evaluation Function: This is a parametric function that: a) For a candidate
technology t; b) A set of architectural patterns P from the identified architectural
patterns deemed necessary for the software under development; c) And a vector
of weighting coefficients E to express the levels of importance varying from one
architectural pattern to another. This function returns a score, expressing the
degree of compatibility of the studied technology according to the past parame-
ters.

2.1. Choice of Evaluation Criteria

In terms of implementation, the architectural requirements of software vary
greatly from one software to another. Therefore, the evaluation criteria to be es-
tablished must cover as many implementation cases as possible. To achieve this
goal, we proceeded in two steps:

1) Divide the implementation of software into design domains following the
domain-driven design (DDD) methodology. At the end of this step, 11 main
domains were identified, covering the main crosscutting concerns in the imple-
mentation of the microservice style.

2) Research the architectural patterns that serve as best practices for the im-
plementation of each design domain. At the end of this step 27 main architec-
tural patterns have been identified.

From this process we obtain the following Table 1 consisting of 3 columns:
 The identified domains;
 The problem covered by the domain: this is stated in the form of a question;
 Architectural patterns/evaluation criteria: these are the patterns that fall within

this domain.

2.2. Evaluation Function

Let P be the set of evaluation criteria to study the compatibility of a technology.
The elements of this set are taken from the 27 architectural patterns determined
in Section 2.1, so we have: { }1 2, , , nP p p p=  with 27n ≤ .

https://doi.org/10.4236/jsea.2021.148026

A. Massaga, G. E. Kouamou

DOI: 10.4236/jsea.2021.148026 445 Journal of Software Engineering and Applications

Table 1. Table of evaluation criteria.

Domains Issues covered
Architectural

patterns/evaluation criteria

Data management
Which architecture to adopt

for data management
(reading, writing)?

Database per service

API Composition

SAGA

Domain Event

Event sourcing

Test management
(Testing)

How to test processes involving
several microservices?

Testing of service components

Service Integration
Contract Testing

Deployment
How to deploy services written

in different languages while
ensuring devops requirements?

Multiple service
instances per host

Service instance per container

Serverless deployment

Cross-cutting concerns
How to allow a service to

run in multiple environments
without modification?

Externalized configuration

Communication style
How to make services

communicate?

Remote Procedure
Invocation (RPI)

Message exchange
(Messaging)

External API
How do clients access
individual services?

API Gateway

Backends for frontends

Service discovery

How does the client of a
service, the API gateway or

another service, discover the
location of a service instance?

Service Registry

Client-side service discovery

Server-side service discovery

Self-registration

Reliability
How do you prevent a

network or service failure from
affecting other services?

Circuit breaker

Security

How do you communicate
the identity of the applicant

to the departments
processing the software?

Access token

Observability
How to understand the
behavior of a software
and solve problems?

Log aggregation

Implementation measures

Distributed tracing

API Health Check

User interface templates
How do you implement a

screen or UI page that displays
data from multiple services?

Composition of the page
fragment on the server side

Composition of the
client-side user interface

https://doi.org/10.4236/jsea.2021.148026

A. Massaga, G. E. Kouamou

DOI: 10.4236/jsea.2021.148026 446 Journal of Software Engineering and Applications

Let { }1 2, , , nE e e e=  with { }1,2,3,4,5ie ∈ where ie represents the
weighting coefficient associated with the architectural pattern ip . It is used to
express the level of importance of the pattern ip with respect to the other pat-
terns, for the software that is under development. Thus, the least important pat-
terns will have the value 1 and the most important value 5.

Let h be the function whose role is to indicate if an architectural pattern is im-
plemented or not in technology. It receives as input two parameters: the tech-
nology t and a pattern ip . If this pattern is implemented in the given technolo-
gy, then (), 1ih t p = , otherwise (), 0ih t p = .

The evaluation function is thus of the form (), ,f t P E , where t is a candidate
technology for implementation of a microservice software.

The output of this function is a score, which indicates the level of compatibil-
ity of the technology with the microservice style according to the parameters re-
ceived as input. Figure 1 shows a graphical representation of this function.

Our evaluation function is therefore as follows:

() () () ()1 1
1

, , , , ,
n

n n i i
i

f t P E e h t p e h t p e h t p
=

= + ⋅⋅⋅ + = ×× × ∑ (1)

Knowing that:

()0 , 1ih t p≤ ≤ and 1 5ie≤ ≤

()0 , 5i ie h t p⇒ ≤ × ≤

()
1 1 1
0 , 5

n n n

i i
i i i

e h t p
= = =

⇒ ≤ × ≤∑ ∑ ∑

()
1

0 , 5
n

i i
i

e h t p n
=

⇒ ≤ × ≤∑ since 27n ≤ .

Therefore, the frame of the function f is:

() (), , 0,f t P E Max E n∈ × ⊂    (2)

From this, we see that the degree of accounting of technology according to the
evaluation function varies between 0 and 135.

3. Illustration

In this section, we illustrate the evaluation of two technologies for the imple-
mentation of the microservice style: Spring Boot 2.2.2 and JAVA EE 7. The rea-
sons for this choice are: 1) They are technologies based on the same language; 2)
The widely used language [8]; 3) They are backend technologies; 4) The Spring

Figure 1. Evaluation function.

https://doi.org/10.4236/jsea.2021.148026

A. Massaga, G. E. Kouamou

DOI: 10.4236/jsea.2021.148026 447 Journal of Software Engineering and Applications

Boot framework and the JAVA EE platform are strongly used by the community
[8] [9].

Before the evaluation begins, it is necessary to make some assumptions:
 Assumption 1: Since we are doing a broad study, the set P will correspond to

the 27 patterns identified in Section 2.1.
 Assumption 2: All patterns ip P∈ have the same importance level equal to

1, , 1i ie E e∀ ∈ = .
 Assumption 3: The value of the function h, is obtained by checking whether

in the universe of official packages of the studied technology there is a pack-
age that implements the criterion passed as a parameter.

From hypotheses 1 and 2, it appears that the compatibility score resulting
from the evaluation function will vary between 0 and 27.

Any evaluation will be done in two steps:
 Search for the value of the function h, for each criterion;
 Calculation of the value of the evaluation function (), ,f t P E .

3.1. Evaluation of Spring Boot 2.2.2

Spring Boot is a project or a micro framework that aims to facilitate the confi-
guration of a Spring project and to reduce the time allocated to the start-up of a
project. To achieve this goal, Spring Boot is based on several elements [10]:
 A web site (https://start.spring.io/) that allows to quickly generate the project

structure;
 The use of “Starters” to manage the dependencies;
 Auto-configuration, which applies a default configuration at the start of the

software for all dependencies present in it.
Spring cloud [11] is a project based on Spring Boot, designed to address the

specific issue of microservices. It provides developers with tools to quickly create
some common patterns in distributed systems.

From Table 2 obtained by analysis of the Spring Boot technology, the value
obtained for the function f is:

(), , 26f t P E = .

Thus, Spring Boot is 96.3% compatible with the microservice architecture.

3.2. Evaluation of JAVA EE 7

JEE (Java Enterprise Edition) is a specification for Oracle’s Java platform for en-
terprise software. The platform extends Java Platform, Standard Edition (Java
SE) by providing an object-relational mapping API, distributed and multi-tier
architectures, and web services. The platform is primarily based on modular
components running on a software server as in Figure 2.

The JAVA EE platform proposes an organization of the code, according to the
MVC model (Figure 3). In the JAVA EE universe, each element has a specific
designation:
 The Controller is called Servlet;

https://doi.org/10.4236/jsea.2021.148026
https://start.spring.io/

A. Massaga, G. E. Kouamou

DOI: 10.4236/jsea.2021.148026 448 Journal of Software Engineering and Applications

Table 2. Table of values of the function h, for the Spring Boot 2.2.2 technology.

 Evaluation criteria h Justification

p1 Database per service 1
Since Spring offers packages for connecting to and
manipulating most existing DBMS, it is fully
compatible with this criterion.

p2 API Composition 1
Thanks to Spring’s data-flow starter, it is possible
to compose APIs to obtain data.

p3 SAGA 1
Thanks to the JMS and ActiveMQ starter, Spring
software can manage the events (transmission and
reception) necessary for this criterion.

p4 Domain Event 1
Thanks to the JMS and ActiveMQ starter, Spring
software can manage the events (transmission and
reception) necessary for this criterion.

p5 Event sourcing 1
Thanks to the JMS and ActiveMQ starter, Spring
software can manage the events (transmission,
reception, subscription) necessary for this criterion.

p6
Testing of

service components
1

Thanks to the Spring starter, especially the MOCK
tool.

p7
Service Integration
Contract Testing

1
Thanks to the cloud-contract starter, we test the
integration of services.

p8
Multiple service

instances per host
1

As soon as a JVM is installed on a host, Spring
software can be launched and the execution port is
dynamically assigned.

p9
Service instance

per container
1

Thanks to the web-starter, Spring embeds its own
web server, making deployment in a container
extremely easy.

p10 Serverless deployment 1
Thanks to the dependency managers that exist in
JAVA, it is possible to send just its source code
for deployment.

p11
Externalized
configuration

1

By a simple modification of the Spring configuration
file, it is possible to tell it where to go to get its
configuration, depending on the execution that
is done.

p12
Remote Procedure
Invocation (RPI)

1
As Spring uses JAVA, it embeds all the remote
procedure calling techniques.

p13
Message exchange

(Messaging)
1

Thanks to the JMS and ActiveMQ starter,
services can exchange messages and subscribe.

p14 API Gateway 1
Spring boot offers starters to return data in almost
any format including JSON, XML.

p15 Backends for frontends 1
Thanks to different starters allowing to create
controllers (MVC) according to the call method,
we can have several APIs per client.

p16 Service Registry 1
Several implementations are available including the
most used eureka-zuul of netflix.

p17
Client-side

service discovery
1

Several implementations are available including the
most used eureka-zuul of netflix.

p18
Server-side

service discovery
1

Several implementations are available including the
most used netflix service-registry.

https://doi.org/10.4236/jsea.2021.148026

A. Massaga, G. E. Kouamou

DOI: 10.4236/jsea.2021.148026 449 Journal of Software Engineering and Applications

Continued

p19 Self-registration 1
Several implementations are available including the
most used eureka-client of netflix.

p20 Circuit breaker 1
Several implementations are available including
the most used Hystrix from netflix.

p21 Access token 1
By combining the security starter and the jjwt
dependency of maven, we obtain a secure system
by token.

p22 Log aggregation 1
Thanks to the sleuth starter and RabbitMQ,
Spring allows a centralized management of the Log.

p23
Implementation

measures
1

Thanks to the Actuator starter, it is possible to
have the health status of the software at any time;
thanks to available URLs, REST.

p24 Distributed tracing 1
Thanks to the sleuth starter and RabbitMQ,
Spring allows for distributed log management.

p25 API Health Check 1
Thanks to the Actuator starter, it is possible to
have the health status of the software at any time;
thanks to available REST URLs.

p26
Composition of the page

fragment on the server side
1

Using the thymeleaf starter, we can do server-side
fragment composition and make a view functional.

p27
Composition of the

client-side user interface
0 Spring is server only.

Total h = 1, 26 times & h = 0, 1 time

Figure 2. JAVA EE software architecture [12].

 The Model is generally managed by Java objects or JavaBeans;
 The View is managed by JSP pages.

https://doi.org/10.4236/jsea.2021.148026

A. Massaga, G. E. Kouamou

DOI: 10.4236/jsea.2021.148026 450 Journal of Software Engineering and Applications

Figure 3. MVC architectural model.

From Table 3 obtained by analysis of the JAVA EE 7 technology, the value
obtained for the function f is:

(), , 12f t P E = .

Thus, JAVA EE is 44.4% compatible with the microservice architecture.

3.3. Discussion

For the Spring Boot platform, the score obtained is 96.3% of compatibility. This
can be explained on the one hand by the fact that it is a framework based on a
very popular, very rich language, with a great deal of maturity and a large com-
munity, and on the other hand by the very design of this framework, which
makes it capable of evolving rapidly and integrating new packages (starters) that
are configured automatically but that can also be configured as desired. These
packages make development very simple and cover a wide range of needs.

For the JAVA EE platform, the score obtained is 44.4% of compatibility.
However, this figure may vary depending on the software server used, which
may offer additional services. This score indicates an incompatibility of the spe-
cification with the microservice style. This incompatibility can be explained by
the very design of the platform. Indeed, the platform is designed in a purely SOA
style and therefore does not address any of the issues introduced by the micro-
service style, in particular the major issues such as distributed data management,
service discovery, API composition, etc.

At the end of this evaluation, one thing is clear: We have evaluated two tech-
nologies, both based on the JAVA language, but it is important to note the sig-
nificant difference in scores obtained by the two. While one is very compatible,
the other one is almost not. This difference can be explained in several ways.

https://doi.org/10.4236/jsea.2021.148026

A. Massaga, G. E. Kouamou

DOI: 10.4236/jsea.2021.148026 451 Journal of Software Engineering and Applications

Table 3. Table of values for the function h, for JAVA EE 7 technology.

 Evaluation Criteria h Justification

p1 Database per service 1
DBMS developers provide the necessary drivers
to connect to their servers. JAVA being very
popular, these drivers are available.

p2 API Composition 0 No implementation available

p3 SAGA 0 No implementation available

p4 Domain Event 1
The events are managed thanks to the ActiveMQ
service whose driver is available.

p5 Event sourcing 1
Events are handled by the ActiveMQ service,
whose driver is available.

p6 Testing of service components 0 No implementation available

p7
Service Integration
Contract Testing

0 No implementation available

p8
Multiple service

instances per host
0

The deployment is done in a software server and
only one instance of the server can be launched.
Moreover, the software runs on a port.

p9 Service instance per container 1 Software can be launched in a container.

p10 Serverless deployment 1
A JAVA EE software can be deployed without
a server. Because all dependencies can be
loaded on a repository.

p11 Externalized configuration 0 No implementation available

p12
Remote Procedure
Invocation (RPI)

1
JAVA native remote procedure calling
techniques are available.

p13
Message exchange

(Messaging)
1

JAVA EE, has an API, JMS for message
communication.

p14 API Gateway 1 JAVA EE, allows the implementation of REST API.

p15 Backends for frontends 0 No implementation available

p16 Service Registry 0 No implementation available

p17 Client-side service discovery 0 No implementation available

p18 Server-side service discovery 0 No implementation available

p19 Self-registration 0 No implementation available

p20 Circuit breaker 0 No implementation available

p21 Access token 1 Token-based API security is available.

p22 Log aggregation 0 No implementation available

p23 Implementation measures 1
Software control is done through the software
server.

p24 Distributed tracing 0 No implementation available

p25 API Health Check 1
The software is controlled through the software
server.

p26
Composition of the page

fragment on the server side
1

Thanks to JSPs, we can compose fragments
on the server side and make a view functional.

p27
Composition of the

client-side user interface
0 JAVA EE, is server only.

Total h = 1, 12 times & h = 0, 15 times

https://doi.org/10.4236/jsea.2021.148026

A. Massaga, G. E. Kouamou

DOI: 10.4236/jsea.2021.148026 452 Journal of Software Engineering and Applications

 The design of the two technologies is very different: Indeed, JAVA EE is de-
signed in a purely SOA logic, fixed, requiring many configurations. Spring
Boot, on the other hand, allows to create the desired software (SOA, micro-
service, REST API, command line) just by integrating the corresponding
starter; it adds all the necessary dependencies and configuration to start im-
mediately;

 The Spring Boot community is larger than the JAVA EE community: While
the JAVA EE specifications come from Oracle, the starters developed by the
Spring Boot community can be integrated into the official project, which
makes it possible to have starters addressing almost all the issues. This is the
case of Netflix, which is one of the pioneers in the field of microservices ar-
chitectures and has produced many starters dedicated to the style;

 Ease of use: Indeed, thanks to its auto-configuration system, the development
and deployment of Spring Boot software requires almost no configuration,
nor any server, all the elements are in the jar file resulting from the compila-
tion; whereas for JAVA EE, the configuration is manual, tedious and the
deployment requires the presence of a software server previously installed.

4. Conclusions and Further Works

In this paper, we propose an evaluation framework to guide the developers in
their tasks of selecting the technologies for the implementation of software-
oriented microservices architectures. The proposed framework is based mainly
on a set of evaluation criteria consisting of 27 architectural patterns from the
domain literature and an evaluation function. This function takes into account
the specific requirements of the software under development in order to assign a
score to a technology that expresses the level of its compatibility with the micro-
service style.

This evaluation framework is applied to the Spring Boot 2.2.2 framework and
the JAVA EE 7 platform under the assumptions that, all criteria have the same
level of importance so each is graded to 1 and the value of the function is ob-
tained by checking whether each criterium is implemented or not. Although
both are based on the Java language, they obtained very different scores respec-
tively 96.3% for Spring Boot and 44.4% for Java EE.

The future directions of this work are threefold. Firstly, the evaluation criteria
will be extended to improve the accuracy of the evaluation. Secondly, a bench-
mark making a classification of existing technologies and the implementation of
a support tool is necessary to automate the process of evaluating the conformity
of existing software with the microservice style.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/jsea.2021.148026

A. Massaga, G. E. Kouamou

DOI: 10.4236/jsea.2021.148026 453 Journal of Software Engineering and Applications

References
[1] Dmitry, N. and Sneps-Sneppe, M. (2014) On Micro-Services Architecture. Interna-

tional Journal of Open Information Technologies, 2, 4 p.

[2] Richardson, C. (2019) Microservices Pattern: Microservice Architecture Pattern.
http://microservices.io/patterns/microservices.html

[3] Herold, S. (2011) Architectural Compliance in Component-Based Systems: Founda-
tions, Specification, and Checking of Architectural Rules. Ph.D. Thesis, Clausthal
University of Technology, Clausthal-Zellerfeld, Germany.

[4] Weinreich, R., Miesbauer, C., Buchgeher, G. and Kriechbaum, T. (2012) Extracting
and Facilitating Architecture in Service-Oriented Software Systems. 2012 Joint Work-
ing IEEE/IFIP Conference on Software Architecture and European Conference on
Software Architecture, Helsinki, Finland, 20-24 August 2012, 81-90.
https://doi.org/10.1109/WICSA-ECSA.212.16

[5] Gampa, S., Yazhini, Senthilkumaran, U. and Narayanan, M. (2016) Methods for Eva-
luating Software Architecture-A Survey. International Journal of Pharmacy &
Technology, 8, 25720-25733.
https://www.researchgate.net/publication/316887447.

[6] Knodel, J. and Popescu, D. (2007) A Comparison of Static Architecture Compliance
Checking Approaches. 2007 Working IEEE/IFIP Conference on Software Architec-
ture (WICSA’07), Mumbai, India, 6-9 January 2007, 12 p.
https://doi.org/10.1109/WICSA.2007.1

[7] Weinreich, R. and Buchgeher, G. (2014) Automatic Reference Architecture Con-
formance Checking for SOA-Based Software Systems. 2014 IEEE/IFIP Conference
on Software Architecture, Sydney, NSW, Australia, 7-11 April 2014, 95-104.
https://doi.org/10.1109/WICSA.2014.22

[8] Stack Overflow Developer Survey 2020 (s. d.). Stack Overflow.
https://insights.stackoverflow.com/survey/2020/?utm_source=social-share&utm_m
edium=social&utm_campaign=dev-survey-2020

[9] (2021) Java EE Usage Statistics.
https://trends.builtwith.com/framework/Java-EE

[10] Craig, W. (2019) Spring in Action. 5 Edition, Manning Publications, Shelter Island,
New York.

[11] (2020) Spring Cloud. https://spring.io/projects/spring-cloud

[12] (2010) Distributed Multitiered Softwares—The Java EE 5 Tutorial.
https://docs.oracle.com/javaee/5/tutorial/doc/bnaay.html

https://doi.org/10.4236/jsea.2021.148026
http://microservices.io/patterns/microservices.html
https://doi.org/10.1109/WICSA-ECSA.212.16
https://www.researchgate.net/publication/316887447
https://doi.org/10.1109/WICSA.2007.1
https://doi.org/10.1109/WICSA.2014.22
https://insights.stackoverflow.com/survey/2020/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2020
https://insights.stackoverflow.com/survey/2020/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2020
https://trends.builtwith.com/framework/Java-EE
https://spring.io/projects/spring-cloud
https://docs.oracle.com/javaee/5/tutorial/doc/bnaay.html

	Towards a Framework for Evaluating Technologies for Implementing Microservices Architectures
	Abstract
	Keywords
	1. Introduction
	2. Methodology
	2.1. Choice of Evaluation Criteria
	2.2. Evaluation Function

	3. Illustration
	3.1. Evaluation of Spring Boot 2.2.2
	3.2. Evaluation of JAVA EE 7
	3.3. Discussion

	4. Conclusions and Further Works
	Conflicts of Interest
	References

