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tion principle and the real representation of a complex matrix, a convergence
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1. Introduction

How to solve a matrix equation is a focus question of the applied mathematics

and engineering fields [1] [2]. Based on the classical iterative algorithm and the
hierarchical identification principle, some gradient-based and least squares
based iterative algorithms were established. This method has been developed in
solving other coupled matrix equations [3]. For example, to speed up the con-
vergence behavior, a shift-splitting hierarchical identification method was sug-
gested [4]. Different from the above work, Zhou and his coworkers determined
the optimal convergence factor using the object function and gradient search
method [5] [6].

Although achieving some fruitful results, there are still some problems that
need to be solved. For example, the gradient-based iterative algorithm for solv-

ing a class of complex matrix equations was established and the sufficient condi-
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tion for the convergence of the algorithm was obtained [3]. So far this conjecture
is still open. Although the convergence theory has been established for the real
linear matrix equations [5] [7] [8] [9], the corresponding convergence theory for
the complex matrix equations is still open especially for the complex matrix eq-
uations with conjugate transpose unknown matrices.

Inspired by the above work, this paper discusses gradient-based iterative algo-
rithm for a coupled complex conjugate and transpose matrix equation. Using the
real representation of a complex matrix, the convergence proof is given and the
optimal convergence factor is determined. An numerical test is offered to vali-
date the efficacy of the suggested algorithm.

We organized this paper as follows. Some preliminary lemmas and symbols
are listed in Section 2. Section 3 proves convergence of the gradient-based itera-
tive algorithm for solving a coupled complex conjugate and transpose matrix
equation. Section 4 brings a numerical test to validate the efficacy of the pro-

posed algorithm. Some concluding remarks are given in Section 5.

2. Preliminary Symbols and Lemmas

Let A be an mxn complex matrix, symbols 4, A", A", 2. [A4],
j’min [A]’

transpose, the maximal eigenvalue, the minimal nonzero eigenvalue, the spectral

|A||2 , ||A|| represents the conjugate, the conjugate transpose, the

norm, the Frobenius norm, respectively. I, denotes an identity matrix of size
nxn.Let A be mxn real matrixand rank[A]=r, symbol
o,(A),i=1,2,---,r represents the nonzero singular values that satisfy
0,(A)=20,(A4)2--->0,(A). col[X] denotes an mn-dimensional vector de-
fined by the formula col[X]|= [xlT,sz,- LX) T . Here,

X = [x1 ,xz,---,xn] e R™". The Kronecker product A® B of matrices 4 and
B is defined by formula A® B = [a,.jB] e R ") Here A= (a,.j)

Bz(bij)pxq'

Next lemma is a conclusion of the singular values decomposition of a complex

>
mxn

matrix, the proof can be found in a standard matrix theory book, we omit the
proof here.

Lemma 1. A4 is an mxn complex matrix and rank[A]:r. There exist
two unitary matrices U € C™ and V e C™™ such that

ViAU = z 0 (1)
1o of

where X :diag{G],Gza“',G

r

} withorder ¢0,>0,2--20,>0.
Refer to [10], we have the real representation of a complex matrix.
For a complex matrix 4 € C™", it can be exclusive signified as A= 4, +i4,,

where A,,4, e R™" are two real matrices. Now we use symbol A_ to

4 A
A= T e R )
Az _Al

represent it as
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with this symbol, in the following we use the following notation A = (Z) ,
Al = (AH) and A, :=(4, )_] . Because

- , AT 47 ][4 Azi_ :
(AT)U_(AIT+1A;)0_{A12T _‘;f}_{Az _Al:| _(Aa) ’

weuse A, torepresent (AT) and have symbols:

Al =(4") ,
A=) )
(),
A, =(4,)

Using symbols [10]

po|In 0 0 - 0 1,
G | TR S0 N N S I

We have the following lemma [10].
Lemma 2. The real representation possesses the following properties:
)If A, BeC™", aeR,then

(A+B)J =A,+B,_,

(aA)(r =aAd,_,
(47) = 4,.
2)If AeC™", then
Ao' = Qon'Qn’
ZO' = PmAO'I)VI’
A} =P, AP,

3)If AeC™, BeC"™, CeC™”,then
(AB) =A,P,B, = A,B P,
(4BC) =A4,B,C,.

The proof one can refer to [10] [11], we omit the proof here.

Next lemma describes the properties of the spectral norm and the Frobenius
norm.

Lemma 3. Let A4 be a complex matrix, we have

D [ =2]F,

2 |4, =14,

For the complex matrix equation AXB = F , referring to [12], we have the
following gradient-based iterative algorithm.

Lemma 4. For the complex matrix equation AXB=F , if A is a col-
umn-full rank matrix and B is a row-full rank matrix, then the iterative solu-

tion X (k) given by the gradient-based iterative algorithm
X (k)=X(k-1)+uA"[F-AX (k-1)B]|B"
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converges to the exact solution X. (ie, lim,_, X(k)=X.) for any initial
values X (0) if and only if

2
e | A" A 2, [ BB™ ]

‘max

O<u<

Moreover, the best convergence factor g, is

2
o (A" 4] A, [BB" |+ 4,,[A"4]4,,[BB" ]

3. Complex Coupled Conjugate and Transpose Matrix
Equations

In this section, we suggest the gradient-based iterative algorithm for solving the
complex coupled conjugate and transpose matrix equations. For convenience,

we introduce the following operator

L;(X,)=A,X B +C,X D +GX H +MX'N, ij=12 (4)

q

Using these operators, we consider the following complex coupled matrix equa-

tions

{EII(XI)+‘CIZ(X2):E’ (5)

L"ZI(XI)+£22(X2):F2’
where A4,,B,,C,,D;,G;,H;, M, N,,F
and X,,X, e C"™ are the matrices to be determined.

- eC”, i,j=1,2, are known matrices

3.1. The Exact Solution

According to the definition of the real representation of a complex matrix and
Lemma 2, the real representation of matrix (ﬁ.. (X f )) denoted as L; ( j)

ij ijo
can be rewritten as

£, (X))

jo

= (Efj (X, ))g =(4,X,B,+C,X,D, +G X H, + M XN, )U

=(4,X,B;) +(C,X,D;) +(G,X[H,;) +(M,X]'N,) (6)
=A4,X,B,, +C,,X, D, +G, X"H, +M, X' N,

joTijo joijo

-A4,PX, PB, +C, X D, +G, PX PH +M, X N,

jo " ijo ijo

Taking the vec-operator of the above equation gives

CO]|:£U'0 (Xj )]

=col[ 4,,P,X ,P,B,, |+col[ C;, X, D,, |

joTijo

+col[ G, P,X], P,H,, |+col| M;, XN, |

joon
ijo

~((n.B,,) 4,2, )0l X, ]+(D], ©C,, )col[ X, ]

ijc" n ijo

((PHW) ®G, P)col[XT] (N}, ®M,, Jcol| X7, |
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((PBW) ®AWPn)col[ J+(pL @c,, )eol[ X, ]

((PHM) ®GWP) (2n,2n)col[ X, |

7
+(Ny, ® M, ) P(2n,2n)c0l[ X, | v
=@, col X, |.
Here, symbol @, is defined as
®,, = ((P B,) ® AUUPK) ((P H,) ®GWPn) (2n,2n) o
+(D}, ®C,, )+(N;, ® M, ) P(2n,2n).
Taking the real representation of Equation (5) gives
{zm( )+ Lo (X,)= F o
Ly (X,)+ Lo (X,) = F
Taking the vec-operator of the above system, we have
{col[ﬁlw (X, )}+col[£,2(r (Xz)]:col[Fm], 10)
col[ £,,, (X,)]+col[ £,,, (X,)]=col[F,,].
Using notation @, gives
{ @, col[ X, ]+ ®,, col[ X, |=col[ X, ]. an
@, col( X, )+ @, col[X,, ]| =col[X,, ]
Setting
"o, o, |
Equation (11) can be rewritten in a compact one as
@, col[ X, X,,|=col[F,.F,]. (12)

For Equation (12), we have the following result.
Lemma 5. If matrix @_ is invertible, then Equation (12) has a unique solu-

tion and it can be given by formula
col[F,,F,, | =@, col[ X,,, X,, |.

According to Lemma 4, the gradient-based iterative algorithm

col[ X,, (k+1),X,, (k+1)]
13
=( I - ,u(I);d)G)col[Xla (k). X,, (k)]+ @) col[ X,,, X, ] =

converges to the exact solution pair col[X,,] and col[X,,]| for any initial
values X, (0) and X,(0) ifand only if

0<y<m.

Moreover, the best convergence factor g, is
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2
Do [ 030, [+ 2, [ @0,

Hy =

Clearly, if X,,X, eC"™ then we have [, eR™", @ R and

2 2
® e R" ™" . The increasing dimension leads to a computational difficulty due
to an excessive computer memory. To overcome this problem, next we construct
a gradient-based iterative algorithm by using the hierarchical identification

principle.

3.2. The Iterative Solution

For convenience, we introduce notation ¥, and ¥, as follows:
¥ = KL, (X, (K) - £ (X (K)), (19
¥, = F, - L, (X, (k))- L, (X, (k))- (15)

According to the hierarchical identification principle, we introduce the interme-

diate matrices:

F, =¥ +A4 XB,, F,=%+C,X,D,, (16)
F,=¥+G,X'H,, F, =% +M,X'N,, (17)
F, =¥, +A4,X,B,, F, =¥ +C,X,D,, (18)
F,=%+G,X,H,, F, =¥ +M,X,N,,, (19)
F, =%, +A4,X,B,, F,, =¥, +C, X,D,, (20)
F,=¥,+G,X'H,,, F,, =¥, +M,X/'N,,, (21)
F, =%, +A4,X,B,,, F,, =¥, +C,X,D,,, (22)
F, =¥,+G,X,H,,, F, =¥, + M,X\'N,,. (23)

Equation (5) can be decomposed into the following matrix equations

A,X,B,, =F,, C,X,D, =F,, (24)
G, X'H,=F,, M ,X"N, =F,, (25)
A,X,B, =F,, C,X,D,=F,, (26)
G,X,H,=F,, M,X)'N,, = F,, (27)
A,X,B,, =F,, C,,X,D, =F,, (28)
G,X'H, =F,,, M, X'N, =F,, (29)
A,X,B,, = F,;, C,X,D,, = F,, (30)
G,X,H, =F,,, M,,X)'N,, = F,,. (31)

According to Lemma 4, with proper manipulations, one can construct the fol-
lowing iterative algorithms for matrix equations in Equations (24)-(30) respec-

tively,
X, (k+1)= X, (k) +puA} (Fn -4,X,, (k)BH)Bﬁ, (32)
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w (k+1)= X,, (k) + uC}\ (F, - C, X, (k) D,, ) Dy}, (33)
s (k+1)= X, (k)+uH,, (F; - H\\X,, (k)G},)G,,, (34)
X, (k+1)= X, (k)+ uN,, (F} - NJ X, (k) M} ) M, (35)
X, (k+1)= X, (k)+uAf (F; — A,X,, (k) B, ) B, (36)
X, (k+1)= Xy, (k) + uC}, (Fs —C, X,, (k) D, ) DY), (37)
X, (k+1)= X, (k) + uH,, (F - H X, (k) G}, ) G,y (38)
X (k+1)= X, (k) + N,y (FY = N3 X, (k) M) M, (39)
X5 (k+1)= X5 (k)+ udy (F, — A, X s (k) B,, ) B}, (40)
X, (k+1)= X, (k) + uC), (Ez -C, X, (k) ‘21)1);, (41)
X, (k+1)= X, (k)+ uH,, (F; - H}\ X, (k) G}, )G, (42)
X (k+1)= X, (k) + 1N,y (Fyy = N3 X g (k) MDY ) M, (43)
X5 (k+1)= X, (k)+ 1Ay (Fys — 4, X, (k) By, ) By, (44)
X, (k+1) = X, (k) + uCy, (F26 Cp, X, (k)Dzz)Dsz, (45)
X, (k+1)=X, (k)+ pH, (F) - HY,X,, (k)G )G,y (46)
Xog (k+1) = X (k) + 4N, (Fpt = N3y X o (k) M3, ) M. (47)
Substituting Equations (16)-(23) into Equations (32)-(47) respectively gives
X, (k+1) =X, (k)+puA (¥, + 4,X,B, - 4,X, (k)B, ) B,
X, (k+1)= X,, (k)+ uC}, (¥, +C, X,D,, - C, X,, (k) D,, ) D}},
X, (k+1)=X,, (k)+yH“(‘I—’T+H1T1XGlTl ~H! 13(k)G1T1) -
X, (k+1)= X, (k)+ uN, (9" + NIX, M)} - NI X, (k) M} ) M,
X, (k+1)= X, (k)+uA} (¥, + 4,X,B,, — A,X,, (k) B,, ) B},
X, (k+1) = X,, (k) + uC}, (¥, + C, X, Dy, - C, X, (k) Dy, ) D},
Xy (k+1)= X, (k) + uH,, (¥ + HYX, G, - HL X, (K) G )G,
X (k+1)= X, (k) + uN,, (' + NS X, My~ NS X, (k) MY )M,
X5 (k+1)= X5 (k) + udy (¥, + A, X,B,, — 4, X,; (k) B, ) By,
X (k+1)= X, (k) + uC3, (¥, + C,, X, D, — C,, X, (k) Dy, ) D5,
X, (k+1)= X, (k)+ uH,, (¥) + Hy, X,G), - H}, X,, (k) G}, )G,y
Xig (k+1) = X, (k)+ N, (W' + NYX M, = N3 X (k) MDY ) M,
X, (k+1)= X5 (k) + uds, (¥, + 4,,X,B,, — A, X,; (k) B,,) B},
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X26 (k+1) = X26 (k)"'ﬂCsz (‘TJz +622X2522 _Ezzxzs (k)ﬁzz)D;p
X, (k+1)= X, (k) + uHy, (¥ + H), X, G, - H},X,, (k) G}, )Gy,
sz(k+1): (k)+,uN22(‘I"H+N;XM; Nsz 28( )Msz)

The unknown matrices X, and X, appear in the right-hand sides of the
above equations, so it is impossible to realize the above algorithms. According to
the hierarchical identification principle, the unknown matrices X, and X,
can be replaced by their estimates X, (k) and X, (k). Since only two iterative
values X, (k) and X, (k) are needed, we take the average of X, (k),
X, (k), X5(k), X, (k), X5(k), Xs(k), X,;(k) and X (k) as the
iterative value X, (k) and X, (k), X, (k), Xy(k), Xy(k), X, (k),
X, (k), X,;(k) and X, (k) as the iterative value X, (k), respectively. We
have the following algorithm:

¥, = F - £, (X, (k)= £o (X, (K), (48)
¥, = F, - L, (X, (k))- Ly, (X, (k)). (49)
X, (k+1)= X, (k)+uA Y,By, (50)
X, (k+1)=X, (k)+uC ¥ D/, (51)
X, (k+1)=X, (k)+uH, ¥'G,, (52)

X, (k+1):X1(k)+yN“‘~I’lHM“, (53)

+ ,uAg‘I’lBg , (54)

X, (k+1)= X, (k)+ uC,¥,D}, (55)
Xy, (k+1)= X, (k)+uH,¥'G,, (56)
X, (k+1) =X, (k)+uN,¥"M,,, (57)
X5 (k+1)= X, (k)+ uA4, ¥, B, (58)
X (k+1)= X, (k)+ uC,¥,D;,, (59)
X, (k+1) =X, (k)+ uH, ¥, G,, (60)
X (k+1)= X, (k)+uN,¥,'M,,, (61)
Xos (k+1)= X, (k) + p4,%, By, (62)
Xy (k+1) =X, (k)+puC, ¥, Dy, (63)
X, (k+1) =X, (k)+uH, ¥, G,,, (64)
Xy (k+1)=X, (k)+uN,¥,'M,,. (65)
X, (k)= %Zx (k). (66)

X, (0) =5 2%, (0) )

p=
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Theorem 6. If the complex matrix Equation (5) has a unique solution pair
X, and X, then the iterative solution pair X, (k) and X, (k) given by
the algorithm in Equations (50)-(66), converges to the unique solution pair X,

and X, ifand only if

Under these conditions, the best convergence factor g, is

16
o [ @]+ Ania [@, ]

Hy =

max

Proof. Similar to symbols in Equation (3), we use the following notation:

(68)

(69)

For convenience, we set X (k):= (X ; (k)) . Taking the real representation of

[e3

the both sides of Equation (50) gives

Xiio (k+1)= X, (k)+p(A¥,B})

X, (K)
Xla (k)+IUAllo' (_l) Bl}fo'
X (k)+/uAll-l[o'P‘Plo'PnBl}1{o'

=X, (k)—‘r:uPnAllo'\P B,P,

llcr n

Similarly, taking the real representation of Equations (50)-(64) give

X, (k+1)=X, (k)+uC ¥, D),

X, (k+1)=X,, (k)+uPH,  ¥.G, P,
Xl4c7(k+1) (k) Nlla‘.P Mllzf’
XZlo' (k+1) 20' (k)+/’lP AIZJ‘I‘ Bl—l;o' n’
X22cr (k+1) XZU (k) CIZULIJ DITZO"
Xyo (k+l) X, (k)+,uP lea‘P G, P,
X240' (k+1) X2cr (k) NIZO'\PT 120
X5 (k+l) X, (k)+,uP AZIO'\P B;la >,
XlGo' (k +1) = Xla (k)+ﬂC;G‘P Dg]o"
X6 (k + 1) =X, (k)+ lul)nHZIO"P R A
Xl8o' (k +1) = Xlo' (k)+/uN2]o'lIJ2To'M21U’

(71)

(78)
(79)
(80)
(81)

(82)

DOI: 10.4236/alamt.2021.113007 100 Advances in Linear Algebra & Matrix Theory


https://doi.org/10.4236/alamt.2021.113007

H. C.Yin, H. M. Zhang

X25U (k + 1) = XZU (k) + :ul)nA;rZUlPZO'B;IZGI)n > (83)
Xoso (k + 1) =X, (k) + ﬂCQTza‘PzaDZTzo—a (84)
X6 (k + 1) =X,, (k) +uP,H,, ¥, Gy, P, (85)
XZSU (k+1):X20' (k)+luN22o'lIl2To'M220’ (86)
8 1 8
X,a(k)=§zlxlpa(k), XZG(k)zgz;qua(k). (87)
p= q=

Taking the vec-operator of Equations (71)-(86) respectively gives

col[ X,,, (k+1)]=col[ X, (k)]+ y((BITIGP ) @P.A, )col[‘I’lG], (88)

n

col[ X,,, (k+1)|=col[ X,, (k) ]+ (D, ®C},

110 llo

)eol[¥,, ], (89)
col[ X,y, (k+1)]=col[ X,, (k) ]+ ((G,,,P,) ® P,H,, | P(2n,20)col[®, ], (90)
col[ Xy, (k+1)]=col[ X,, (k) ]+u(M}\, ® N, ) P(2n,2n)col[¥,,], (91)
col[ X, (k+1)] = col[ X,, (k)] + ,u((BlTZUPn ) er, AlTZU)col[‘I’la], (92)

col[ X, (k+1)] = col[ X, (k) ]+ u(D,,, ®CL, )col[¥,, ], (93)

col[ Xy, (k+1)]=col[ X, (k) ]+ ((Gpo, B,) ® P, Hyy, ) P(20,20)c0l[¥,, ], (94)
col[ Xy, (k+1)] = col[ X, (k) ]+ u (M}, ® Ny, ) P(2n,2n)col[¥,,],  (95)
col[ X, (k+1)]= col[ X,, (k)] + ,u((BleaPn ) ®ﬂA§lG)col[T20], (96)

col[ Xy, (k+1)]=col[ X,, (k) ]+ u(D,, ®C;,, )col[¥,,], (97)

col[ X,y (k+1)] = col[ X,, (k) ]+ ﬂ((cmpn ) ® B, H,,, | P(2n,2n)col[%, ], (98)
col[ Xiq, (k+1)] =col[ X,, (k) ]+ u(M3,, ® Ny, ) P(2n,2n)col[F,, ], (99)
col[ X, (k+1)]= col[ X, (k)]+ ,u((BZTZGPn ) ®I-’nA2TZG)col[‘I‘20], (100)

col[ Xy, (k+1)] = col[ X, (k) ]+ u( Dy, ® Cy,, )col[®,,, ], (101)

col[ Xy, (k+1)] = col[ X, (k) ]+ ,u((GZZUPn ) ®PH,, )P(2n,2n)c01[‘1’26], (102)

col[ X, (k+1)] = col[ X, (k) |+ (M3,, ® Ny, ) P(20,20) col [ ¥, ], (103)

col[ X, (k)}z%icol[le (k)], (104)
col[ X,, (k)] = éicm[xzqa (k)]. (105)

Using notation in Equations (8) and Equations (104) and (105), the above equa-

tions can be equivalently written as
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col[ X, (k+1)]=col[ X, ( ]+ [”J 2]U}col[‘l—' . (106)

col[ X,, (k+1)]=col[ X, (

k)] + £ [nas@;g]col[ ] (107)

Combining these two equations gives
col[ X, (k+1),X,, (k+1)]

T T
:COl[XlU (k)7X20' (k)]+ |:(Dllcr ¢216:|C01[\1110’1P ]

T
®120' CI)ZZO'

@ (108)

(I) T
k),ng(k)}rﬁLD“” 12“} col[¥,,,'¥,, ]
2lo

8 20

= col[ X,,, (

=col[Xw(k),X20(k)]+8 Tcol[P,, . W, |-

According to notation in Equations (48) and (49) and using the conclusions in
Equations (12) and (7), we have

col[‘I‘lU,‘I’ZJ]
=C°1[(F1_41(X1(k))_£12(xz(k)))a’
(P =L (3, ()~ (X, (8))),

=col[F,,,F,, col[ k)

( (X (R))+ L (X, ))J

£:(X: (),

o

= col[F,,, F. ]—col[ﬁud( (K))+ Loy (X, (),
Lo (X, (k) + Loy (X, (K)) ]
B COI[FIO,] B 001[410( (k) +[120 k :'
- | col[F,, ] LCOI[L"AJ( (k) +£'22(7 k J (109)
_[col[F,,]] (I)“acol[Xd(k)]+(I)126col[XU(k]
Leol[F,]] | @y, c0l X, (k) ]+ @y c0l[ X, (k)]
[eol[F,]] [@, @, col[ X, (k)]
“eol[F, ]| | @y, cDZJ col[ X, (k)]

Substituting Equation (109) into Equation (108) gives
col[ X, (k+1),X,, (k+1)]

- (1&2 —%d);d)g)col[Xla(

According to Lemma 4, if the algorithm in Equation (110) is convergent if and

110
]+’UCI)Tc01[ o Fog |- (1o

only if the convergence factor u satisfies

o<l 2 (111)

8 | DD, |

max

Namely, we have

DOI: 10.4236/alamt.2021.113007

102 Advances in Linear Algebra & Matrix Theory


https://doi.org/10.4236/alamt.2021.113007

H. C.Yin, H. M. Zhang

16

0 _
REAVENTY

The reminder of this theorem can be proved by referencing to Lemma 4. The
proof is completed. O

Remark 1. Although some similar iterative algorithms have been established,
in the preceding proof [3], there is only the proof about the sufficient condition
of the convergence factor for the convergence. Using the real representation tool,
Theorem 6 offers the sufficient and necessary condition proof for the first time.

Remark 2. Although the sufficient and necessary condition of the conver-
gence for algorithm in Equations (50)-(66) is given in Theorem 6, the Kronecker
product and the real presentation of the coefficient matrices are involved in
computing g, ., this results in the high dimensionality problem. To overcome
this drawback, we give a sufficient condition for the suggested iterative algo-
rithm.

Corollary 1. If the system of the complex coupled matrix Equations (5) has a
unique solution pair X,, and X,, then the iterative algorithm in Equations

(50)-(66) will converge to the solution pair X, and X,, if
0<ﬂ3%=1ﬂ1- (112)
Here
2
2=2 (I8, I sl e, [l v, e, )

Proof. Recall o, [A]S"A" and A®B:||A||||B|| and refer to Lemma 3,

we have

Bl[@]=c[0.)< 0.

|:c1)110 1zaj|
q)2la 220

(Sloul] =45 o1
i,j=1 b=

Noting the notation in Equation (8), we have

|| <

{ 110'" ” 120”} (113)

[©2e] - [ @ |

((PnB ®4, P)

‘DT ®C,,

+|((pH,,) ©G,P | P(2n.20)

+ ”(N,TU ®M,,)P(2n, 2n)“

= H(PnBijcr )T

pollel+|e.m,.

.
=M%M%MHMM%H%%M%MW%M%J
S R N W I A

-s(im o Il e ),

Combining Equations (113) and (114) gives
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@ )<163 (4ol ol el s

Substituting Equation (115) into Equation (112) gives Equation (112). The proof
is completed. O

In the practical work, condition
01163 (13,114, | e, |+, L+ |

almost does not hold, so we use symbol “<” to replace “<” in Corollary 1. Clearly,

the Frobenius norm
2
é("Bzf [+ 12l |+ |2 G |+ v [ ")2
is easier to compute then A, [®,] in practical work.

4. Numerical Test

In this section, we bring a numerical test to validate the efficacy of the related
conclusions. Equation (5) includes some coupled complex matrix equations as

its special cases. For convenience, we consider the following equation
AXB+CYD=F,
GX"H+MY"N =F,.

with

[19+11i B 14+11i 10+7i
4491 19+13i 1+7i  20+10i|

_[17+20i e 16+17i  9+2i
] 5491 20+20i 748 11+14i |
[14+20i  5+5i 20+13i

] 5430 13+16i | 248 15+16i|
3 17+171  8+1i 3 16+101 5+7i1
| 4+4i 1041617 | 6491 11+11i)

[ 1223+24801 2262 +1209i
' =737+1962i  —2060+1125i |

643424841  -509+453i
21 1132+43i  —1455-538i |

The unique solution pair of this system is

3 — 2 3i
X*z . Rl Y;zt . <
—1+1 -2+31 2+1 1-21

According to the suggested algorithm in Equations (50)-(66), we can construct

the gradient-based algorithm for this system as follows:

X, (k+1)= X (k)+ A" (F, - AX (k) B—CY (k) D) B", (116)
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X, (k+1)= X (k)+ H(F,~GX" (k)H -MY" (k)N) G,

(117)

Y, (k+1)=Y (k)+C"(F, - AX (k)B-CY (k) D)D", (118)
Y, (k+1)=¥ (k) + N(F, ~GX" (k)H -MY" (k)N)' M, (119)
X(k):w, Y(k):w. (120)

According to Corollary 1, a sufficient condition for the convergence factor
is
4
< H < 2 2 2 2 2 2 2 2 =
[ 18" +I<l |2 + 6l & + [ |v]

8.2144x1077 = .

We take X (0)=Y(0)=1,,x10° as the initial iterative value and use the iter-
ative technique in Equations (116)-(120) to compute X (k) and ¥ (k). The

relative error with different convergence factors is shown in Figure 1, where

5= \/"X(k)_x*"z Hr (0)-¥.

X"+

2

* *

is the relative error.

From Figure 1, we find that the relative error 6 becomes smaller and ap-
proaches zero as the iterative step k increases. This denotes that the suggested
algorithm is efficacy and convergent. From the three convergence curves, we
find that the convergence effectiveness is improved when the convergence factor
is changed from 1.0z, to 1.3y via 1.7 .1In this example, we have

Ao [@]=2.9622x10° < 4.8695x10°
=Bl 4 + [P IClE +IGT 1A + MR IV

so the range of the convergence factor of Corollary 1 is conservative. Actually,

1.74, plays the role of the best convergence factor in this numerical example.

1

0.9 1

. . ]
(0] 50 100 150 200 250 300
k

Figure 1. The relative error & versus iteration 4.
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5. Conclusion

This paper brings the gradient-based iterative technique for a coupled complex
conjugate and transpose matrix equation. The convergence proof is offered. In
the proof process, the necessary and sufficient conditions for the convergence
factor are determined to guarantee the convergence of the algorithm. And the
optimal choice of the convergence factor is settled theoretically. A numerical test
is offered to validate the efficacy of the suggested algorithm. The iterative strate-

gy used in this paper can be used in the system identification.
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