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Abstract 
In this paper, we consider the problem of optimal reinsurance design, when 
the risk is measured by TrTVaR risk measure. We study optimal reinsurance 
models from the perspectives of both insurers and reinsurers. To reduce ex-post 
moral hazard, we assume that reinsurance contracts satisfy the principle of 
indemnity and the incentive-compatible constraint. When the losses of an in-
surer and a reinsurer are both measured by TrTVaR risk measures, we obtain 
the explicit forms of the Pareto-optimal reinsurance contracts under the ex-
pected value premium principle and TVaR premium principle, respectively. 
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1. Introduction 

In the original insurance transaction, the policyholder transfers the loss to the 
insurer by signing an insurance contract. Reinsurance refers to the act of the in-
surer transferring some of the risks assumed by the insurer to other insurers on 
the basis of the original insurance contract by signing a reinsurance contract. A 
reinsurance policy is a contract, according to which part of the risk of an insur-
ance company (the ceding company) is transferred to another insurance company 
(the reinsurance company), in exchange for receiving a premium. The basis of 
reinsurance is primary insurance, it is due to the need of primary insurers to dis-
perse risks that reinsurance is generated. Reinsurance is an important tool for the 
insurer to manage risks, through reinsurance, the insurer can mitigate the un-
derwriting risk, thereby facilitating more effective risk management. 

To the best of our knowledge, (Borch, 1960) and (Arrow, 1963) studied the 
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optimal reinsurance problems of variance minimization and expected utility max-
imization from the perspective of an insurer. The results have been extended to a 
risk-measure-based framework later. The problem of optimal reinsurance design 
has been studied by using risk measures, due to their development and applica-
tion in finance and insurance. For instance, in a framework where the ceding 
company’s risk is measured by Value-at-Risk (VaR) and Conditional Tail Ex-
pectation (CTE), with the expected value premium principle as the risk premium, 
(Cai & Tan, 2007) found the optimal retention levels in a stop-loss reinsurance. 
Later, in the same framework, (Cai, Tan, Weng, & Zhang, 2008) proved that de-
pending on the risk measure level of confidence, the optimal reinsurance for an 
insurer, which minimizes the VaR and CTE of the total risk of the insurer, can 
be in the form of a stop-loss reinsurance or a quota-share reinsurance or a change- 
loss reinsurance under the expected value principle and among the increasing 
convex ceded loss functions. In (Bernard & Tian, 2009) also, the authors have 
considered optimal risk management strategies of an insurance company subject 
to regulatory constraints when the risk is measured by VaR and CVaR (Condi-
tional Value-at-Risk). Subsequently, researchers have tried to extend the optimal 
reinsurance design problem to larger families of risk measures and risk pre-
miums. For instance, (Cheung, 2010) and (Chi & Tan, 2013) extended the prob-
lem by using a family of general risk premiums; in these two papers the risk of 
the ceding company is measured either by VaR or CTE. On the other hand, 
(Cheung, Sung, Yam, & Yung, 2014) have extended the problem by using gener-
al law-invariant convex risk measures, whereas the risk premium is considered 
to be the expected value premium principle.  

As far as we know, a reinsurance contract involves the interests of both the 
insurer and the reinsurer. In a reinsurance strategy, Pareto-optimality can maxim-
ize the interests of both parties, that is one party makes its own interests better 
while not harming the interests of the other party. Pareto-optimal reinsurance 
has been well studied under various settings in insurance and risk management. 
For instance, (Jiang, Ren, Zitikis, & Tang, 2017) proved that the optimal rein-
surance strategy is a Pareto-optimal reinsurance policy and gave optimal rein-
surance strategies using the geometric method. (Cai, Liu, & Wang, 2017) and 
(Jiang, Hong, & Ren, 2018) studied the Pareto-optimality of reinsurance arrange-
ments under general model settings and obtained the explicit forms of the Pare-
to-optimal reinsurance contracts under the TVaR measure and the expected 
value premium principle. By geometric approach, (Fang, Wang, Liu, & Li, 2019) 
studied Pareto-optimal reinsurance policies under general premium principles 
and gave the explicit parameters of the optimal ceded loss functions under Dutch 
premium principle and Wang’s premium principle. (Jiang, Hong, & Ren, 2021) 
studied the Pareto-optimal reinsurance strategy by considering the two optimi-
zation criteria of maximizing expected utility and minimizing risk measurement.  

In this paper, we use a more robust and sensitive risk measure, namely the 
Truncated Tail Value-at-Risk (TrTVaR). Considering the interests of both the in-
surer and the reinsurer, the explicit solutions of Pareto-optimality are given. The 
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rest of the paper is organized as follows: in the Second Section, we introduce 
some definitions and model formulation, including the definition and properties 
of TrTVaR risk measure, then we show that the form of Pareto-optimal reinsur-
ance policies can be determined by minimizing linear combinations of the ce-
dent’s and the reinsurer’s risks; in the Third Section, we determine the optimal 
reinsurance by giving a concrete form of Pareto-optimal reinsurance strategy 
under expected value premium principle and TVaR premium principle, respec-
tively; in the Fourth Section, we give a summary description and point out direc-
tions and problems of the follow-up research. 

2. Model Setup 

Let a random variable X denote the loss faced by the insurer without reinsurance 
with support [ ]0, M  where M ≤ ∞ . We assume that X is defined in probability 
space ( ), ,Ω    with cumulative distribution function (c.d.f.) ( ) { }XF x P X x= ≤ , 
and survival function ( ) ( )1X XS x F x= − . A reinsurance policy is to separate the 
loss X into ( )R X  and ( )RI X  with ( ) ( )RX I X R X= + , so that ( )R X  sa-
tisfying ( )0 R X X≤ ≤ , is the loss ceded to a reinsurer, while ( )RI X  is the 
loss retained by the insurer. Therefore, ( )f x  and ( )RI x  are the insurer’s ceded 
loss function and the retained loss function. Then the insurer’s total liability RM  
contains two parts: one is the retained loss risk ( )X R X−  and the other is the 
reinsurance premium RP , that is ( )R RM X R X P= − + . The reinsurer’s total lia-
bility RN  becomes ( )R RN R X P= − .  

In the insurance and other financial industry, risk measures have been widely 
used for quantifying risk and setting regulatory capital. (Cont, Deguest, & Scan-
dalo, 2010) studied the robustness and sensitivity analysis of risk measures, they 
proposed an alternative for the TVaR. Formally, the definitions of some com-
mon risk measures are given below: 

Definition 1. For a random variable X, VaR is defined as: 

( ) ( ){ }inf :VaR X x R P X xα = ∈ ≤ ≥ α  

where 0 1< α <  represents a confidence level of the loss variable X.  
Definition 2. For a random variable X, TVaR is defined as: 

( ) ( )

( ) ( )( )

11 d
1

1 ,
1

sTVaR X VaR X s

VaR X E X VaR X

α α

α α +

=
−α

= + −
−α

∫
 

where 0 1< α <  represents a confidence level of the loss variable X.  
Actually, VaR is a quantile and the VaR of a generic loss variable X at a confi-

dence level α , ( )VaR Xα , represents the minimum amount of capital that makes 
the insurance company to be solvent at least %α  of the time. TVaR is a condi-
tional tail expectation and the TVaR at a confidence level α , ( )TVaR Xα , eva-
luates the expected loss amount incurred among the worst ( )1 %−α  scenarios.  

Definition 3. For a random variable X, TrTVaR is defined as: 
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( ) ( )

( ) ( ) ( ) ( )

2

1 2 1

1 2

,
2 1

1 2

2 1

1 d

1 1
,

sTrTVaR X VaR X s

TVaR X TVaR X

α

α α α

α α

=
α −α

−α − −α
=

α −α

∫
 

for some 1 20 1< α < α < . 
It can easily be seen that TrTVaR is simply the average of VaR levels across a 

range of loss probabilities, this measure incorporates both the VaR and the TVaR 
risk measure. TrTVaR risk measure recovers TVaR risk measure when 1 0α = ，

2 1α = . It is well known that the TVaR is a convex risk measure, while the VaR is 
not convex. The TrTVaR represents a compromise between the VaR and the 
TVaR, in the sense that only a part of the tail behaviour is measured by it, and as 
expected, it has similar properties to the VaR.  

Property. 1) Monotonicity: ( ) ( )
1 2 1 2, ,TrTVaR X TrTVaR Yα α α α≤  provided that 

{ } 1P X Y≤ = ; 

2) Positive homogeneity: for any positive constant 0c ≥  and loss X, 

( ) ( )
1 2 1 2, ,TrTVaR cX cTrTVaR Xα α α α= ; 

3) Translation invariance: if c is a constant, then: 

( ) ( )
1 2 1 2, ,TrTVaR X c TrTVaR X cα α α α+ = + ; 

4) Additivity for comonotonic risks: for any comonotonic random variables X 
and Y, ( ) ( ) ( )

1 2 1 2 1 2, , ,TrTVaR X Y TrTVaR X TrTVaR Yα α α α α α+ = + . 
The robustness and efficiency properties depend on the choice for  

1 20 1< α < α <  (the higher 2α , the more efficient but also the less robust the 
estimator will be). In summary the TrTVaR is a non-convex and robust risk 
measure, and it has the advantage of being more tail sensitive than the VaR. 

We now assume that the admissible set of ceded functions is given by: 

( ) ( ) ( ){ }a: 0 : both and  .re increasing functionsR x x R x x R x= ≤ ≤ −  

This means that the reinsurer’s payments to the insurer cannot exceed the in-
surer’s losses, and that the ceded and retained loss functions are non-decreasing. 
These conditions are required to reduce moral hazards in reinsurance transac-
tions. It was shown in (Chi & Tan, 2011) that all functions R∈  are Lipschitz 
continuous and consequently differentiable almost everywhere.  

In this paper, we study the Pareto-optimal reinsurance taking into account the 
interests of the insurer and the reinsurer, which means that neither of the two 
parties can be better off without making the other worse off. It is easy to see that 
a Pareto-optimal reinsurance contract exists if there is a contract that minimizes 
the convex combination of the objective functional of the insurer and the reinsur-
er. Indeed, the following proposition gives a sufficient condition for a reinsur-
ance contract to be Pareto-optimal. 

Proposition 1. All Pareto-optimal reinsurance policies R in   can be deter-
mined by solving the problem: 
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( ) ( ) ( ){ }1 2 1 2, ,min 1R RR
TrTVaR M TrTVaR Nα α α α∈

β + −β


 

for some ( )0,1β∈ . 
Proof. Let ( ) ( ) ( ){ }1 2 1 2

*
, ,arg min 1R R

R
R TrTVaR M TrTVaR Nα α α α

∈
∈ β + −β


 for 

some ( )0,1β∈ . If *R  is not Pareto-optimal, then there exists a function R in 
  such that ( ) ( )*1 2 1 2, ,R R

TrTVaR M TrTVaR Mα α α α≤  and  
( ) ( )*1 2 1 2, ,R R

TrTVaR N TrTVaR Nα α α α≤ , and at least one of the two inequalities is 
strict. Then: 

( ) ( ) ( )

( ) ( ) ( )
1 2 1 2

* *1 2 1 2

, ,

, ,

1

1 .

R R

R R

TrTVaR M TrTVaR N

TrTVaR M TrTVaR N

α α α α

α α α α

β + −β

< β + −β
 

This is a contradiction to the assumed property of function *R . Therefore, 
*R  is the Pareto-optimal reinsurance policies. This completes the proof.  
In this paper, we assume the premium principle is calculated by the expected 

value premium principle and TVaR premium principle, respectively. In view of 
Proposition 1, throughout the rest of this paper, we only need to determine op-
timal reinsurance policies by solving the optimisation problem: 

( ) ( ) ( ){ }1 2 1 2, ,min 1R RR
TrTVaR M TrTVaR Nα α α α∈

β + −β


.         (1) 

According to the additivity for comonotonic risks and translation invariance 
of TrTVaR, we obtain: 

( ) ( )( )1 2 1 2, ,R RTrTVaR N TrTVaR R X Pα α α α= − , 

since the ceded loss ( )R X  and the retained loss ( )X R X−  are comonotonic, 
then: 

( ) ( ) ( )( )1 2 1 2 1 2, , ,R RTrTVaR M TrTVaR X TrTVaR R X Pα α α α α α= − + . 

Therefore, the optimization goal becomes: 

( ) ( )( ) ( ){ }1 2,min 1 2 2 1 RR
TrTVaR R X Pα α∈

− β + β−


.            (2) 

3. Pareto-Optimal Reinsurance Strategy 
3.1. Pareto-Optimal Reinsurance Policies under Expected Value  

Principle 

In this section, we first study pareto-optimal reinsurance strategy when the pre-
mium principle is the expected value premium principle: ( ) ( )( )1 E R x+ρ , where 

0ρ >  is the safety loading, the expected value premium principle recovers the 
net premium principle when 0ρ = . In this setting, our optimal reinsurance 
problem becomes: 

( ) ( )( ) ( )( ) ( )( ){ }1 2,min 1 2 2 1 1
R

TrTVaR R X E R Xα α∈
− β + β− +ρ


,      (3) 

that is: 

( )( ) ( )( ) ( )( )2

1

1

0
2 1

1 2min d 2 1 1 d .s sR
R VaR X s R VaR X s

α

α∈

 − β
+ β− +ρ 

α −α 
∫ ∫

   (4) 
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Since the optimal reinsurance problem is always 0 when 
1
2

β = , we only con-

sider the case of 
1
2

β >  and 
1
2

β < . To solve the optimization problem, we quote 

proposition 1 in (Asimit, Badescu, & Verdonck, 2013), and we now present it as 
lemma 1.  

Lemma 1. Let ( )f ⋅  be a real-valued function defined on [ ]1 2,s s  with 

1 20 1s s≤ ≤ ≤ . Then, ( ) ( )( )2

1
min d

s
ssR

f s R VaR X s
∈ ∫

, subject to  

( )( )1 1sR VaR X = ξ , ( )( )2 2sR VaR X = ξ  is uniquely solved by: 

( )
( )( ) ( )

( )( ) ( )
1

2

*
1 2

1 2 1 2

1 2 1 1 2

; ,

,  if 0 for all ,

,  if 0 for all ,

s

s

R X

X VaR X f s s s s

X VaR X f s s s s
+

ξ ξ

 − + ξ ∧ ξ < ≤ ≤= 
ξ + − + ξ − ξ > ≤ ≤

 

where ( )1 2,ξ ξ  are some constants such that ( ) ( )
2 12 10 s sVaR X VaR X≤ ξ − ξ ≤ − . 

For simplicity, we define the following notations: 

( )( )
( )( )

( )( )

( )( )

1

2

1

2

*

2

2 1

2 1

1
11

1 1
11

1

R VaR X

R VaR X

n

t

α

α

ξ =

ξ =

ρ
ρ =

+ρ
−α

= −
− α −α +ρ

= −
α −α +ρ

 

Theorem 1. Under the condition 
1 1
2
< β < , the Pareto-optimal reinsurance pol-

icies are given as follows: 

1) If 
2 1

11+ρ <
α −α

, then: 

( )
( )( ) ( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( )( )

* *

1

1*

1

,   if 1 1 1,

,    if 1 1 1.

n

t t

x VaR X VaR X VaR X
R x

x VaR X VaR X VaR X

ρ ρ+ +

α+ +

 − ∧ − +ρ −α >= 
 − ∧ − +ρ −α ≤

 

2) If 
2 1

11+ρ >
α −α

, then: 

( )

( )( ) ( ){ } ( ) ( )( ) ( ){ }

( )( )
( )( )

* 11 1
*0

*
1

1

,

       if 1 1 1,

0,     if 1 1 1.

x VaR X x VaR X
x VaR X I VaR X VaR X I

R x
α α

α ρ< ≤ >ρ ++

 − + −

= +ρ −α <
 +ρ −α ≥


 

3) If 
2 1

11+ρ =
α −α

, then: 

( ) ( ) ( ) ( ){ }1 2

*
VaR X x VaR X

R x R x I
α α< ≤

= , 
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where ( )*R x  is any increasing Lipschitz continuous function such that 
( )*R x ∈ . 

Proof. The equivalent form of (4) is: 

( )( ) ( )( )

( ) ( )( )

2

1

1

2

2 1

1

0

1 2min 2 1 1 d

d .

sR

s

R VaR X s

m R VaR X s

α

α∈

α

α

 − β β− +ρ + α −α 


+ + 


∫

∫ ∫


         (5) 

1) If 
2 1

11+ρ <
α −α

, by Lemma 1, we get that (5) is solved by: 

( ) ( )( )1

*
1 2 1 2; , ,R x x VaR Xα +
ξ ξ = − + ξ ∧ ξ  

where ( )1 2 1,ξ ξ ∈  is a vector of constants with: 

( ) ( ) ( ){
( ) ( )}

1 2

2 1

1 1 2 1 2

2 1

, : 0 ;0 ;

         0 .

VaR X VaR X

VaR X VaR X

α α

α α

= ξ ξ ≤ ξ ≤ ≤ ξ ≤

≤ ξ − ξ ≤ −



 

Thus, the second step is to minimize: 

( ) ( ) ( ) ( )( )
( )

( )( ) ( )( )
( )

2 11

1

2 11

11

1 1 2 1 1 2 2
2 1

1 2, 1 1 d

                   2 1 1 d .

VaR X
XVaR X

VaR X
XVaR X

H S x x

S x x

α

α

α

α

+ξ −ξ

+ξ −ξ

−ξ

− β  ξ ξ = ξ −α − ξ −α + 
α −α  

+ β− +ρ

∫

∫
 

Note that the derivative: 

( )( ) ( )( )
( )( )

1
1

2 1
2 2 1

2

2 1

1 2 2 1 1

2 1 1

X
H S VaR Xα

 ∂ − β
= + β− +ρ + ξ − ξ ∂ξ α −α 

β − −α
+

α −α

 

is increasing in ( ) ( )
2 11 1, VaR X VaR Xα α ξ ξ + −   with respect to 2ξ . 

a) When ( )( )11 1 1+ρ −α > , the derivative 
2 1

1

2

0H

ξ =ξ

∂
<

∂ξ
. Since 0m > , we 

obtain 
( ) ( )2 1 2 1

1

2

0
VaR X VaR X

H

α αξ =ξ + −

∂
>

∂ξ
. Therefore, 1H  attains its minimum value 

at ( ) ( ) ( )
12 1sVaR X VaR X∗

αβξ = − + ξ . Now, 

( ) ( ) ( ) ( ) ( )( )( )

( )( )
( ) ( )( ) ( )( )

( )

1

11 1

1 1 2 1 1 1 2
2 1

1 2, 1 1

d 2 1 1 d .n n

s

VaR X VaR X
X XVaR X VaR X

H VaR X VaR X

S x x S x x
α α

∗
αβ

−ξ

− β ξ ξ = ξ −α − − + ξ −αα −α 
+ + β− +ρ
∫ ∫

 

It is easy to see, the derivative  

( ) ( )( ) ( )( )1
1

1
1

1 2 2 1 1 X
H S VaR Xα

∂
= − β + β− +ρ − ξ

∂ξ
 is negative if and only if  

( )( )1

*
1F VaR Xα − ξ > ρ , which is equivalent to ( ) ( )*11 VaR X VaR Xα ρ

ξ < − . The- 

refore, 1H  attains its minimum value at ( ) ( )*11 VaR X VaR X∗
α ρ

ξ = − .  
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b) When ( )( )11 1 1+ρ −α ≤ , we have 
2 1

1

2

0H

ξ =ξ

∂
≥

∂ξ
. Thus, 1H  attains its mini- 

mum value at 2 1
∗ξ = ξ . Now, 

( ) ( )( ) ( )( )
( )1

11
1 1 2 1

2 1

1 2, 2 1 1 d
VaR X

XVaR X
H S x xα

α

∗

−ξ

− β
ξ ξ = ξ + β− +ρ

α −α ∫  

and: 

( )( ) ( )( )1
1

1
1 2 1

1 2 2 1 1 X
H S VaR Xα

∂ − β
= + β− +ρ − ξ

∂ξ α −α
 

thus 1

1

H∂
∂ξ

 is increasing in ( )
1

0,VaR Xα    with respect to 1ξ . Since  

1

1

1 0

0H

ξ =

∂
<

∂ξ
 and 

( )1 1

1

1

0
VaR X

H

αξ =

∂
≥

∂ξ
, it is easy to see that 1H  attains its mini-

mum value at ( )
11 VaR X∗

αξ = . Therefore, ( ) ( )
1

* ;R x x VaR Xαξ = ∧ ; 

When 
( )1 1

1

1

0
VaR X

H

αξ =

∂
>

∂ξ
, 1H  attains its minimum value at  

( ) ( )
11 tVaR X VaR X∗

αξ = − . Therefore,  

( ) ( )( ) ( ) ( )( )1

*
t tR x x VaR X VaR X VaR Xα+ +

= − ∧ − . Note that ( ) 0tVaR X =  

when 
( )1 1

1

1

0
VaR X

H

αξ =

∂
=

∂ξ
. Therefore,  

( ) ( )( ) ( ) ( )( )1

*
t tR x x VaR X VaR X VaR Xα+ +

= − ∧ −  when 
( )1 1

1

1

0
VaR X

H

αξ =

∂
=

∂ξ
. 

The proof for the remaining case is similar to the above, and thus we omit the 
proof. 

Theorem 2. Under the condition 
10
2

< β < , the Pareto-optimal reinsurance 
policies are given as follows: 

1) If 
2 1

11+ρ >
α −α

, then: 

( )

( )( ) ( ){ } ( ) ( )( ) ( ){ }

( )( )
( )( ) ( ){ } ( ) ( )( ) ( ){ }

( )( )

* *22 2

1 2 12 2

0

1*

0

1

,

        if 1 1 1,

,

        if 1 1 1.

x VaR X x VaR X

x VaR X x VaR X

x VaR X I x VaR X VaR X I

R x
x VaR X I x VaR X VaR X I

α α

α α

α< ≤ >ρ ρ

α α α< ≤ >

 ∧ + − +

 +ρ −α <= 

∧ + − +

 +ρ −α ≥

 

2) If 
2 1

11+ρ <
α −α

, then: 

( )

( )( ) ( ){ } ( ) ( )( ) ( ){ }

( )( )
( )( )

11 10

*
1

1

,

        if 1 1 1,

,     if 1 1 1. 

x VaR X x VaR X
x VaR X I x VaR X VaR X I

R x

x

∗ ∗
α α

α< ≤ >ρ ρ
 ∧ + + −

= +ρ −α <
 +ρ −α ≥
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3) If 
2 1

11+ρ =
α −α

, then: 

( ) ( ) ( ){ } ( ) ( ) ( ){ }1 2 1 2

*
0 orx VaR X x VaR X VaR X x VaR X

R x xI R x I
α α α α< ≤ > < ≤

= + , 

where ( )*R x  is any increasing Lipschitz continuous function such that 
( )*R x ∈ . 

Proof. The proofs of theorem 2 are omitted, since they are quite similar to 
those of Theorem 1. 

3.2. Pareto-Optimal Reinsurance Policies under TVaR Principle 

In this section, we assume the premium is calculated by TVaR premium prin-
ciple: ( ) ( )( )1 TVaR R Xα+ θ , where [ ]0,1θ∈  is the safety loading. In this set-
ting, our optimal reinsurance problem becomes: 

( ) ( )( ) ( )( ) ( )( ){ }1 2,min 1 2 2 1 1
R

TrTVaR R x TVaR R xα α α∈
− β + β− + θ


.    (6) 

From the mathematical point of view, the confidence level α  can be larger 
than confidence levels 1α . However, α  is usually smaller while 1α  are usually 
larger in practice. So, we assume further 1α < α  to avoid complex and lengthy 
discussions in this section. Since the target function is always 0 when  

1
2

β = , we only consider the case of 
1
2

β >  and 
1
2

β < . 

For simplicity, we define the following notations: 

( )( )
( )( )
( )( )

( )( )

( )( )
( ) ( )( )

1

2

1

2

0

2

2 1

2 1 1
1

1 1
1

1 1
11
1

R VaR X

R VaR X

R VaR X

m

u

v

α

α

α

ξ =

ξ =

ξ =

β− + θ
=

−α
−α −α

= −
−α − + θ α −α

−α
= −

+ θ

 

Theorem 3. Under the condition 
1 1
2
< β < , the Pareto-optimal reinsurance 

policies are given as follows: 

1) If 0
2 1

2 10 m β−
< <

α −α
, then: 

( )
( )( ) ( ) ( )( )

( )( )
( )( )

*
1

1

,

        if 1 1 1 ,

0,      if 1 1 1 .   

v u vx VaR X VaR X VaR X

R x
+ +

 − ∧ −
= + θ −α < −α
 + θ −α ≥ −α

 

2) If 0
2 1

2 1m β−
>
α −α

, then ( )* 0R x = . 

3) If 0
2 1

2 1m β−
=
α −α

, then ( ) ( ) ( ) ( ){ }1 2

*
VaR X x VaR X

R x R x I
α α< <

= , where ( )*R x  is 
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any increasing Lipschitz continuous function such that ( )*R x ∈ . 

Proof. The equivalent form of (6) is: 

( ) ( )( ) ( )( )1 2

2 1

1
0 0

2 1

2 1min d ds sR
m R VaR X s m R VaR X s

α α

α α α∈

  β − + + −  α −α   
∫ ∫ ∫

. (7) 

1) If 0
2 1

2 10 m β−
< <

α −α
, by Lemma 1, we get that (7) is solved by: 

( )
( )( ) ( ) ( )

( )( ) ( ) ( )
( )

1 1

1 1 2

2

*
1 2

1

1 2

2

; , ,

,    ,

,         ,

,                                                      ,

R x

x VaR X VaR X x VaR X

x VaR X VaR X x VaR X

x VaR X

α α α+

α α α

α

ξ ξ ξ

ξ + − + ξ − ξ ≤ ≤

= − + ξ ∧ ξ < ≤

ξ >

 

where ( )1 2 2, ,ξ ξ ξ ∈  is a vector of constants with: 

( ) ( ){ ( )
( ) ( ) ( )

( ) ( )
( ) ( )}

1

2 2 1

1

2

2 1 2 1

2 2 1

1

2

, , : 0 ;0 ;

0 ;0 ;

0 ;

0 .

VaR X VaR X

VaR X VaR X VaR X

VaR X VaR X

VaR X VaR X

α α

α α α

α α

α α

= ξ ξ ξ ≤ ξ ≤ ≤ ξ ≤

≤ ξ ≤ ≤ ξ − ξ ≤ −

≤ ξ − ξ ≤ −

≤ ξ − ξ ≤ −



 

Thus, the second step is to minimize: 

( ) ( ) ( ) ( )( )
( )

( )( ) ( ) ( )( )
( )

2 11

1

2 11

11

2 1 2 1 1 2 2
2 1

1 2, , 1 1 d

2 1 1
1 d .

1

VaR X
XVaR X

VaR X
XVaR X

H S x x

S x x

α

α

α

α

+ξ −ξ

+ξ −ξ

+ξ−ξ

− β  ξ ξ ξ = ξ −α − ξ −α + 
α −α  

β − + θ  + ξ −α + 
−α  

∫

∫
 

The derivative: 

( )( ) ( )( )
1

22
0 2 1

2 2 1 2 1

2 1 12 1
X

H m S VaR Xα

β − −α ∂ β −
= − + ξ − ξ + ∂ξ α −α α −α 

 

is increasing in ( ) ( )
2 11 1, VaR X VaR Xα α ξ ξ + −   with respect to 2ξ . 

a) When ( )( )11 1 1+ θ −α < −α , we have 
2 1

2

2

0H

ξ =ξ

∂
<

∂ξ
 and  

( ) ( )2 1 2 1

2

2

0
VaR X VaR X

H

α αξ =ξ + −

∂
>

∂ξ
. Thus, 2H  attains the minimum value at  

( ) ( )
12 1uVaR X VaR X∗

αξ = − + ξ . Now, 

( ) ( ) ( ) ( )( )( )

( )( )
( )

( )( ) ( ) ( )( )
( )

1

1

11

2 1 2 1 1 1 2
2 1

1 2, , 1 1

d

2 1 1
1 d ,

1

u

u

u

VaR X
XVaR X

VaR X
XVaR X

H VaR X VaR X

S x x

S x x

α

α

∗
α

+ξ−ξ

− β ξ ξ ξ = ξ −α − − + ξ −αα −α 
+ 


β − + θ  + ξ −α + 
−α  

∫

∫

 

the derivative ( ) ( )( ) ( )( )1
2

1
1

2 1 1
1 2

1 X
H S VaR Xα

β − + θ∂
= − β + + ξ − ξ

∂ξ −α
 is increas-
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ing in ( ) ( )
1

, VaR X VaR Xα α ξ ξ + −  . It is easy to see 
1

2

1

0H

ξ =ξ

∂
<

∂ξ
 and 

( ) ( )1 1

2

1

0
VaR X VaR X

H

α αξ =ξ+ −

∂
>

∂ξ
, then 2H  attains its minimum value at  

( ) ( )
11 vVaR X VaR X∗

αξ = − + ξ . Now, 

( ) ( ) ( )( )( )

( ) ( )( )( ) ( )( )
( )

( )( ) ( ) ( )( )
( )( )

1

1

*
2 1 2 1

2 1

2

1 2, , 1

1 d

2 1 1
1 d .

1

u

u

v

v

VaR X
u v XVaR X

VaR X
XVaR X

H VaR X VaR X

VaR X VaR X S x x

S x x

α

∗
α

− β ξ ξ ξ = − + ξ −αα −α 
− − + ξ −α + 


β − + θ
+ ξ −α +

−α

∫

∫

 

It is easy to see ( )2

1

2 1 0H∂
= θ β− >

∂ξ
, then 2H  attains its minimum value at 

* 0ξ = . Therefore, ( ) ( )( ) ( ) ( )( )*
v u vR x x VaR X VaR X VaR X

+ +
= − ∧ − . 

b) Since ( )( )11 1 1+ θ −α ≥ , we have 
2 1

2

2

0H

ξ =ξ

∂
≥

∂ξ
. Therefore, 2H  attains its 

minimum value at 2 1
∗ξ = ξ . Now, 

( )

( ) ( )( ) ( ) ( )( )
( )1

2 11

2 1 2

1

, ,

2 1 1
1 2 1 d

1
VaR X

XVaR X

H

S x xα

α

∗

+ξ −ξ

ξ ξ ξ

β − + θ  = − β ξ + ξ −α + 
−α  ∫

 

and ( ) ( )( ) ( )( )1
2

1
1

2 1 1
1 2

1 X
H S VaR Xα

β − + θ∂
= − β + + ξ − ξ

∂ξ −α
, the derivative 2

1

H∂
∂ξ

 

is increasing in ( ) ( )
1

, VaR X VaR Xα α ξ ξ + −   with respect to 1ξ . It is easy to 

see, 
1

1

1

0H

ξ =ξ

∂
>

∂ξ
, then, 2H  attains its minimum value at 1

∗ξ = ξ . Now, 

( ) ( ) ( )( )
1 1 2

2 1 1
, , 1 2

1
H ∗ ∗ β − + θ

ξ ξ ξ = − β ξ + ξ
−α

. Since ( )2 2 1 0H∂
= θ β− >

∂ξ
, then 

2H  attains the minimum value at 0ξ = . Therefore, ( )* 0R x = . 

The proof for the remaining cases is similar to the above, and thus we omit 
the proof. 

Theorem 4. Under the condition 
10
2

< β < , the Pareto-optimal reinsurance 
policies are given as follows: 

1) If 0
2 1

2 1m β−
<
α −α

, then: 

( )

( )( ) ( ) ( ){ } ( ) ( )( ) ( ){ }

( )( )
( )( )

11 1

*
1

1

,

        if 1 1 1 ,

,      if 1 1 1 .   

w wVaR X x VaR X x VaR X
x VaR X I x VaR X VaR X I

R x

x

α α α
α< < >

 ∧ + + −

= + θ −α < −α
 + θ −α ≥ −α

 

2) If 0
2 1

2 1 0mβ−
< <

α −α
, then: 
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( )

( )( ) ( ) ( ){ } ( ) ( )( ) ( ){ }

( )( )
( )( )

1 1

*
1

1

,

        if 1 1 1 ,

,     if 1 1 1 .   

p p zVaR X x VaR X x VaR X
x VaR X I x VaR X VaR X I

R x

x

α α α< < >
 ∧ + + −

= + θ −α < −α
 + θ −α ≥ −α

 

3) If 0
2 1

2 1m β−
=
α −α

, then: 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }1 2 1 2

*
,VaR X x VaR X x VaR X VaR X x VaR X

R x xI R x I
α α α α α< ≤ > < ≤

= + , 

where ( )*R x  is any increasing Lipschitz continuous function such that 
( )*R x ∈ . 

Proof. The proofs of theorem 4 are omitted, since they are quite similar to 
those of Theorem 3. 

4. Conclusion 

In this paper, we explore optimal reinsurance contracts which take into account 
both the insurer’s aims and the reinsurer’s goals. The models and problems pro-
posed in this paper are interested in theory and applications: reinsurance plays a 
vital role in insurance activities because of its advantages of dispersing risks, sta-
bilizing operations and optimizing resource allocation. In practice, it is unrea-
sonable for most of the reinsurance optimization problems to consider only the 
interests of one of the parties. Therefore, it is very meaningful and necessary to 
study the optimal reinsurance strategy which takes into account the interests of 
both insurers and reinsurers. In this paper, we determine Pareto-optimal rein-
surance policies under which one party’s risk cannot be reduced without in-
creasing that of the other party in the reinsurance contract. When the losses of 
an insurer and a reinsurer are both measured by TrTVaR risk measures, we ob-
tain the explicit forms of the Pareto-optimal reinsurance contracts under the 
expected value premium principle and TVaR premium principle, respectively. 
The conclusion in this paper will provide the theoretical basis for the insurer and 
the reinsurer to determine the reinsurance contract.  

Limitations of this paper and future research direction: our model assumes 
that the insurer may transfer the risk to only one reinsurance company. More 
realistic situations involve multiple reinsurance risk transfers available on the 
market. It is likely that each reinsurer has its own pricing model, and the cedent 
may choose to transfer specific layers from the total risk to different reinsurers. 
Therefore, we also wish to point out that further research on this topic is needed. 
First, the research on one reinsurer can be extended to two or more reinsurers to 
establish the optimal solution. Second, risk measure can be extended to the 
more general measure of distorted risk measure. Third, the premium principle 
can be extended to more general premiums such as Wang's premium principle. 
We hope that these three important open problems can be solved in future re-
search. 
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