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Abstract 
We formulate a macroscopic particle modeling analysis of metallic materials 
(aluminum and copper, etc.) based on theoretical energy and atomic geome-
tries derivable from their interatomic potential. In fact, particles in this frame-
work are presenting a large mass composed of huge collection of atoms and 
are interacting with each other. We can start from cohesive energy of metallic 
atoms and basic crystalline unit (e.g. face-centered cubic). Then, we can reach 
to interparticle (macroscopic) potential function which is presented by the 
analytical equation with terms of exponent of inter-particle distance, like a 
Lennard-Jones potential usually used in molecular dynamics simulation. Equ-
ation of motion for these macroscopic particles has dissipative term and fluc-
tuation term, as well as the conservative term above, in order to express finite 
temperature condition. First, we determine the parameters needed in ma-
croscopic potential function and check the reproduction of mechanical beha-
vior in elastic regime. By using the present framework, we are able to carry 
out uniaxial loading simulation of aluminum rod. The method can also re-
produce Young’s modulus and Poisson’s ratio as elastic behavior, though the 
result shows the dependency on division number of particles. Then, we pro-
ceed to try to include plasticity in this multi-scale framework. As a result, a 
realistic curve of stress-strain relation can be obtained for tensile and com-
pressive loading and this new and simple framework of materials modeling 
has been confirmed to have certain effectiveness to be used in materials simu-
lations. We also assess the effect of the order of loadings in opposite directions 
including yield and plastic states and find that an irreversible behavior de-
pends on different response of the particle system between tensile and com-
pressive loadings. 

How to cite this paper: Saitoh, K.-I. and 
Hanashiro, N. (2021) Particle Modeling 
Based on Interatomic Potential and Crystal 
Structure: A Multi-Scale Simulation of 
Elastic-Plastic Deformation of Metallic Ma-
terial. World Journal of Nano Science and 
Engineering, 11, 45-68. 
https://doi.org/10.4236/wjnse.2021.113003 
 
Received: July 6, 2021 
Accepted: August 14, 2021 
Published: August 17, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/wjnse
https://doi.org/10.4236/wjnse.2021.113003
https://www.scirp.org/
https://doi.org/10.4236/wjnse.2021.113003
http://creativecommons.org/licenses/by/4.0/


K.-I. Saitoh, N. Hanashiro 
 

 

DOI: 10.4236/wjnse.2021.113003 46 World Journal of Nano Science and Engineering 
 

Keywords 
Molecular Dynamics, Particle Method, Elasticity, Plasticity, Nanostructure, 
Multi-Scale Modeling 

 

1. Introduction 

Recently, multi-scale modeling of materials behavior with hierarchical approach 
has attracted much interest in research and development of materials science. In 
surveying various computational methodologies, it is recognized that molecular 
dynamics (MD) has been well established based on microscopic view [1], while 
traditional continuum-based approaches such as finite element (FE) analysis [2] 
[3] or particle methods [4] [5] (or sometimes called “mesh-less” methods) are 
formulated basically based on macroscopic viewpoint. In addition to these two 
separate approaches, in these days, a variety of combined methods between them 
has been and is being proposed extensively. For example, in the field of sol-
id-state metallic material, it is guessed to be a very difficult task to model me-
chanical behavior with multi-scale/trans-scale (we would like to unify this con-
ceptual word into “multi-scale” from now on) viewpoint, because such modeling 
has to contain both macroscopic and microscopic (atomistic) viewpoints simul-
taneously. As is often pointed out in the study of structural materials, discre-
pancy in space and time, when it comes from the atomistic level to the conti-
nuum level, is at least 100 - 10−10 meter (in space) or 100 - 10−15 second (in time) 
respectively. These differences are too wide to make concurrently combined 
computation model easily. Only in the case when the mechanical behavior of a 
solid material can be limited to just small strain or small deformation regime, it 
may become quite possible by constructing the model with elastic and linear 
constitutive law and parameters. Such approaches include quasi-continuum me-
thod [6], or perfectly macroscopic particle methods such as smoothed particle 
hydrodynamics (SPH) method [7] and Moving Particle Simulation (MPS) me-
thod [8]. In recent years, the new approach called “Peridynamics” (PD) [9] be-
comes the most popular particle method and is being focused on in the research 
field of solid mechanics. In the theory of PD, atomistic and non-local conceptual 
view is brought into and embedded on the formulation of macroscopic frame-
work and a good affinity with MD is expected. But, due to its innovative but de-
veloping nature, it seems to be still on the way of waiting the time when it will be 
affirmatively applied to multi-scale problems in materials science and engineer-
ing. 

In conventional approach so far to construct a multi-scale view including both 
the atomistic and the continuum, there is a try that potential energy function 
between atoms in solid (metal and crystal) is directly connected to macroscopic 
elastic constants. In that case, a harmonic approximation that is valid only in 
small displacement of elastic regime should be assumed. However, for plastic 
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deformation appearing in much larger loading level, the simple approximation 
rather becomes quite hard task to link directly between microscopic behavior (i.e. 
slip motion between atoms or atomic diffusion) and macroscopic constitutive 
law. Plasticity, super-elasticity as well, which is usually observed in many solid 
materials, is one of difficult issues, and so adequate multi-scale modeling in theory 
and computational set-up should be required. 

Nowadays, it is recognized that not only macroscopic modeling but also mi-
croscopic (atomistic) one is inevitable for further development of engineering 
materials [10]. We have known that, in fact, total mechanical behavior of mate-
rials is controllable by introducing state-of-art nanoscale structures. Thus, what 
is required at this point is a feasible methodology capable of analyzing solid and 
crystal materials, in which microscopic and macroscopic methods are coupled. 

In recent years, particle methods (or sometimes called “mesh-less” methods), 
as an auxiliary method for on-mesh methods such like FE method, have been 
developed and used extensively, by virtue of the enhancement of computation 
power. In those new methods, “particles” are likely to be treated in various senses, 
which correspond to their size scales. On the smallest scale, particles should be 
real substances as atoms or molecular groups (which is as in MD method). On 
the other hand, in larger scale, particles are only representative points on conti-
nuous body of the material, which are needed for the approximation of dis-
crete-type computation. In every case of particle methods, an essential feature, 
on the whole, is that we are solving equations of motion and will chase the mo-
tion of particle step by step in the time development. Therefore, we can expect 
that the combination between different scales in particle methods would be nicely 
accomplished by unified theory along with adequate modeling using particles. 

The authors recognize that there are two approaches having opposite direc-
tion in modeling with particles as follows. One approach is that macroscopic va-
riables are immediately connected to the evaluation of energies and deforma-
tions obtained in atomistic simulation. For example, stress and strain are abso-
lutely macroscopic evaluations that are only defined under continuum hypothe-
sis and relation, but they can be transferred into atomic simulations with the 
name of “atomic stresses” [11] or “atomic strains” [12] [13]. Another approach 
is that, to the contrary, an atomistic (microscopic) variable is utilized in ma-
croscopic modeling for materials behavior. In fact, this idea has already been 
implemented as some new computational theories, such as quasi-continuum 
(QC) method [14] [15], virtual atomic cluster (VAC) method [16], and so on 
[17]. In our opinion, the latter approach seems challenging and interesting for 
materials modeling. This idea also leads to a new trial, where an interatomic po-
tential function that is directly derived from microscopic relation can be con-
versely applied to macroscopic particle modeling (MPM). The equations of ma-
croscopic particles to be solved are of the same type as those in atomic system, 
say, in MD method, while the size of particles, i.e. the interparticle distance, is 
not equivalent to atomic size but is much bigger one. 
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In this paper, we propose a new framework of MPM method stated above. 
This MPM will be constructed on microscopic (atomic) potential energetics and 
dynamics which are obtained from atomistic information. This method is capa-
ble of reproducing macroscopic materials behavior by adopting Langevin-type 
equation of motion, where dissipative force, random force indicating thermal 
fluctuation, and conservative potential force derived from atomic system are well 
integrated. In the context of our study, the conservative potential force is being 
expressed by a simple power-law relevant in atomistic simulation of condensed 
matter, such as the Lennard-Jones potential [18]. We will see that a simple ex-
pression is sufficiently useable to obtain macroscopic materials behaviors. By 
using this method, we can prospect that mechanical properties and thermal prop-
erties of solid (metallic) materials will be evaluated very simply. Moreover, it can 
lead to more sophisticated multiscale approach in the future. In this paper, as the 
first stage of the study, we would like to exhibit the detail in derivation of equa-
tion and parameters settings. Then, we will verify it through computational re-
sults of simple uniaxial loading in elastic-plastic regime.  

2. Theory and Method 
2.1. Particle Modeling Method: Basic Concept 

Generally, in particle modeling, the material which occupies a certain space is 
replaced by assembly of discrete particles. This concept is universal and common 
to that in the former literature [19] [20] [21] [22] and is also used in usual SPH 
(smoothed particle hydrodynamics) method [7] [23] [24] [25] [26] [27]. For 
example, when total volume is confined in a cube with dimension L L L V× × =  
as shown in Figure 1, it is replaced by N particles. These particles have adequate 
mass,  

i
VM
N

ρ= ,                         (1) 

so that the original density of the material ρ is retained. Motion of each particle 
is described by Newtonian equation of motion,  

2

2

d
d

i
i i

r
M

t
= F ,                        (2) 

where iF  includes interparticle force as well as additional forces induced by 
viscous friction and thermal fluctuation. Indeed, this equation is the same as that 
of molecular dynamics (MD) simulation. Interparticle interaction can be confi-
gured from pairwise potential function ( )E rϕ , and then the conservative force 
is derived by  

 ,
1 1

Neighbor Neighbor E ij ij
i ijj j

ij ij

r
r r
ϕ

= =

∂
= =

∂∑ ∑F F ,               (3) 

where ( ),E ij E ijr rϕ ϕ= =  means potential energy acting between two particles i 
and j. Separation between particles ijr  is the absolute value of interparticle dif-
ference vector jij ir r r= − .  

https://doi.org/10.4236/wjnse.2021.113003


K.-I. Saitoh, N. Hanashiro 
 

 

DOI: 10.4236/wjnse.2021.113003 49 World Journal of Nano Science and Engineering 
 

 
Figure 1. Concept of macroscopic particle modeling (MPM). 

 
From the former study of the original “particle modeling” method [19] [20], a 

power function expressed by  

1 1ij p q
ij ij

G HF
r r+ += −                          (4) 

has been used for interparticle force. In atomic simulation, the famous Len-
nard-Jones potential has the same function form as Equation (4) (corresponding 
to p = 12, q = 6). These macroscopic potential parameters, G, H, p, q, have to be 
determined. The units of parameters, G and H, will be determined after two 
non-dimensional parameters, p and q, are determined so as that ijF  in equation 
(4) should have the unit of force, i.e. Newton (N). From energy-conservative me-
chanics, a potential function integrated from force function Equation (4) is given 
by 

( ) ( ),E ij p q
ij ij

G H

p r q r
ϕ = − + .                     (5) 

2.2. Introducing of Langevin Equation for Particle Modeling 

In atomic system, Equation (2) is supposed to have only conservative force so 
that the total energy of the system should be conserved in principle. However, 
macroscopic particles’ system should have additional treatment due to invisible 
effect from many disappeared degrees of freedom. Therefore, Langevin-type eq-
uation of motion can be applied to this particles’ system, where energy dissipa-
tion and production of thermal energy by fluctuation are integrated. This type of 
equations have already used to dissipative particle dynamics (DPD) [28] and 
Brownian dynamics (BD) [29] simulations, which can analyze material behavior 
in slightly larger scale than atomic size. The Langevin equation is given by,  
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where ,i DF  and ,i RF  are force vectors called dissipative and random forces, 
respectively. The conservative force on one particle is derived from  

,1 1 E iji i i
N N ϕ
= > +

Φ = ∑ ∑ ,                       (7) 

which is total conservative energy of the system. The dissipative force term can 
be formulated by considering inherent resistance of a moving particle. In the 
meso- or micro-scale (relatively in smaller scale), that term is supposed to be 
caused by interparticle friction. When a particular viscosity μ is provided, the 
dissipative force should be estimated, from particles’ velocity iv , jv , by 

( ), 1
Neighbor

i D j ij µ
=

= −∑F v v .                    (8) 

On the other hand, in meso- and macro-scale (relatively in larger scale), the 
motion of particle should be through some other media, it is supposed that the 
dissipative force depends only on absolute velocity. In such a case, the friction 
force may be estimated by  

,i D iγ=F v .                            (9) 

Random force induces fluctuation of particles and is formulated based on its 
randomness. 

Thus, in computation, numerically produced random numbers (pseudo-random 
numbers) with Gaussian distribution are utilized. The dissipative and random 
forces are working for a particle motion, so to speak, as brake and accelerator, 
respectively. All these three types of force in Langevin equation (Equation (6)) 
balance each other in equilibrium, or they evolve to make structural change (de-
formation and catastrophic fracture) in finite temperature condition. 

2.3. Determination of Potential Parameters and Mechanical  
Properties 

In the present MPM method, conservative force almost determines elastic prop-
erties. Therefore, based on existing elastic constants available from experiment 
or ab initio (first principle quantum chemistry) calculation, macroscopic poten-
tial parameters are determined. At first, total absolute amount of potential ener-
gy contained in one macroscopic particle is estimated. When atoms are con-
densed as solid material with density ρ (its unit is kg/m3), a lot of atoms are as-
signed to one macroscopic particle. For example, in solid state of fcc metal, each 
atom has cohesive energy e0 which is calculated as the summation of twelve 
pairwise potential energies (its unit is J). If the number of atoms in one macros-
copic particle is Natom, collective energy in this macroscopic particle should be,  

atom atom 0P N e= .                        (10) 

when all the macroscopic particle have a spherical shape and they gather to 
make fcc structure of lattice constant a0 (its unit is meter), Natom is given by,  
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3
0

atom
1

6 0.74
r

N
m

ρπ
= ,                      (11) 

where r0 is equilibrium distance between macroscopic particles (its unit is m), m 
is atomic mass (its unit is kg), the factor 0.74 means occupancy rate in fcc lattice, 
which becomes non-dimensional. In most cases, e0 and a0 as well as structural 
type of crystal are easily available from experimental fact or ab initio evaluation. 
Therefore, these e0, a0 and ρ are recognized as microscopic parameters, but Natom 
and Patom come to macroscopic variables to be configured next. When macros-
copic particles are separated by equilibrium distance 0r r= , their interparticle 
force should all vanish, and Equation (4) gives the condition,  

( )0 1 1
0 0

0ij p q

G HF r r
r r+ += = − = .                 (12) 

Equivalence between microscopic and macroscopic energies (Equation (10)) 
and equilibrium condition (Equation (12)) are both used to solve unknown po-
tential parameters G, H by following equations. 

( ) ( ) ( ) atom
0 0, , , , ,

6
p q P pqG f p q r H f p q r f p q

p q
= = =

−
.      (13) 

Two undetermined exponents (powers) p, q which determine net shape of 
potential curve are needed and will be determined next.  

Thus, energetic link between microscopic and macroscopic systems has been 
carried out. However, for mechanical response, the curve shape of potential 
function is crucial. Although there may be many choices for function type, we 
think that Equation (5) is reasonable because it furnishes three basic characteris-
tics necessary for macroscopic particles. They are: 1) divergent feature of energy 
in closer separation than r0; 2) equilibrium distance (energy minimum) at r0; and 
3) convergence to zero-energy in far larger separation. The undetermined para-
meters p, q can be adjusted from elastic constant (i.e. Young’s modulus, in the 
unit of Pa) in the vicinity of equilibrium distance r0 as follows. 

Young’s modulus E can be estimated as the curvature of potential curve at 
equilibrium distance r0, then,  

( )
2

,
02

0

1
2

E ijE r r
r r

ϕ∂
= =

∂
.                   (14) 

Substituting Equation (5) into this formula, it gives, 

0

1
0.74
72

pq e
E

m

ρπ
= .                     (15) 

This means that Young’s modulus depends on the product between p and q. For 
the fcc metals (aluminum, copper, etc.), using each cohesive energy e0, Young’s 
modulus is estimated. They are tabulated on dependency on p, q as shown in 
Table 1. 

Actual Young’s modulus obtained by uniaxial tensile testing are approximate-
ly 70 - 73 GPa for aluminum and 110 - 130 GPa for copper. Referring these values,  
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Table 1. Relation between potential parameters (p, q) and calculated Young’s modulus. 

p [−] q [−] EAl [GPa] ECu [GPa] 

3 9 51.6 76.2 

4 8 61.1 90.4 

4 9 68.8 101.6 

4 10 76.4 112.9 

5 9 95.5 117.2 

experiment 70 - 73 110 - 130 

 
p = 4 and q = 9 may be the most suitable. Of course, we have another choice, but 
by this procedure we are able to set p, q to configure elastic response of macros-
copic particles system. 

2.4. Introducing Plasticity in the Present Particle Modeling  
Framework  

It is generally difficult to express both microscopic and macroscopic plasticity 
mechanisms at the same time. In macroscopic view, constitutive relation (some-
times it exhibits very complicated formula) can be responsible for plasticity. But, 
it contains lots of macroscopic parameters which are not immediately connected 
to microscopic dynamics or parameters. 

Energy dissipation or heat transport in plasticity, for example, has been one of 
difficult issues. We are challenging to introduce plasticity mechanism into ma-
croscopic particles’ system based on microscopic parameters, extending elastic 
method described above. 

Figure 2 shows potential function including plastic regime. Uϕ  is the func-
tion representing “unloading behavior” after plastic deformation proceeds, which 
is expressed by  

( )
( ) ( )0 0

U ij p q
ij ij

G Hr C
p r r q r r

ϕϕ = − + +
− ∆ −∆

,            (16) 

where 0r∆  and Cϕ , which have units of length (m) and energy (J) respectively, 
are undetermined values until unloading starts. So, many different Uϕ  func-
tions exist per unloading events. The functions Uϕ  connect each other as well 
as elastic potential Eϕ  by another function Pϕ , which prescribes a plastic route 
for between pairs of particles. The function Pϕ  used here is just a polynomial 
of interparticle separation ijr . The function Pϕ  should be determined micro-
scopically (from MD simulation) or empirical values obtained by experimental 
elastic-plastic testing. 

Actually, only the elemental framework of simulating in plastic regime has 
been shown here. It is true that it requires further verification and discussion, but 
let us to omit those detailed description in the present paper at this time, to avoid 
complication of the context. 
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Figure 2. Interatomic potential functions representing elasticity and plasticity. 

2.5. Coarsening Dissipative Force and Random Force Terms 

In the field of MD study, the Langevin equation is sometimes used and is in-
cluding Debye model for thermal conduction [30]. Dissipative term is formu-
lated by, 

D iα= −F r ,                           (17) 

and random force is given by 

( )R R σ=F F ,                          (18) 

where α is a viscosity for atom and σ is the square root of variance. In MD scale, 
α and σ have the relation,  

1
22 micro

micro Bk T
t

α
σ

 
=  

∆ 
,                      (19) 

and  

6
micro

Dmα ωπ= ,                         (20) 

where D Bk hω θ=  is Debye frequency (θ , h  are Debye temperature and 
Planck’s constant, respectively), kB is Boltzmann’s constant, Δt is time increment 
of MD and T is an equilibrium temperature. This MD system has to be coar-
sened and transformed to macroscopic particles’ system, by virtue of scale fac-
tors. There is a trend of study to link microscopic parameters to macroscopic re-
lation [31] [32]. However, here, to start with, we assume very simple relations as 
follows. 

The scale factors are CGη  for α and CGζ  for σ, and resulted expressions are 
1
22 macro

macro B
CG

k T
t

α
σ η

 
=  

∆ 
,                   (21) 
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and 

6
macro

CG Dmα ζ ωπ= .                      (22) 

Verifying these coarsening parameters, CGη  and CGζ , should be required, but 
it will be done in further studies. 

In this paper, as a first stage of this study, we think that the potential force 
(conservative force) is the most important factor for evaluation of material prop-
erties in solid. Therefore, we can omit those dissipative and random forces tem-
porarily. It means that MPM simulation results discussed in the following sec-
tion are carried out in zero Kelvin condition. 

However, in principle, the MPM simulation in finite temperature T is also 
feasible by the basic framework shown in this section. 

2.6. Arrangement of Macroscopic Particles for the Cylindrical  
Specimen 

In this study, it is assumed that a metallic material is subjected to the external 
loading. The specimen is composed of pure aluminum and cylindrical shape. It 
is applied uniaxial tensile or compressive loading along the longitudinal direc-
tion. The macroscopic particles are arranged in face-center-cubic (fcc) lattice as 
shown in Figure 3(a). The parameters required to arrangement are interparticle 
distance r0 and lattice constant a0. They have a certain relation, 0 0 2r a= . The 
longitudinal length of the specimen xl  is configured by 0 0x xl r n a= + ⋅ , where 

xn  is the number of division in x-direction and it also determine the length of 
the fcc unit cell. First, as shown Figure 3(b), a rectangular parallelepiped with  
 

 
Figure 3. Configuration of macroscopic particles and modeling the specimen. (a) Configuration of macroscopic 
particles in the fcc lattice; (b)Sculpting from rectangular parallelepiped to resulted cylinder. 
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the dimensions xl  and yl  is arranged by particles, and then a cylinder with 
diameter of xl D=  is sculpted from it. Once the diameter of cylinder yl  is 
determined, division number by particles in diameter (width) direction is also 
determined by the same interparticle distance as the longitudinal direction. In 
loading simulations, the strain increase is prescribed by the constant velocity of 
moving particles which are located at two ends along longitudinal (z) direction. 
Only two centered particles at each end part are fixed in their initial position also 
in x and y directions as well, so as to realize uniaxial loading to the specimen. 
The longitudinal strain ε is estimated from updated distances between particles 
at both ends. Stress tensor components are estimated from virial formula, which 
is conceptually an average of the product of interparticle forces and difference of 
position vectors of all interacting particles inside the system. This evaluating 
method of stress is usually used in molecular dynamics calculation, which deals 
with atomistic particles’ system.  

2.7. The Choice of Height and Diameter of Cylindrical Models. 

The cylindrical specimen with the same diameter of 14 mm made of aluminum 
is being divided neatly into macroscopic particles. In dividing, we designate two 
integers, nϕ  and hn , which are numbers of division in the direction of diame-
ter (width) and height, respectively. These numbers of division are chosen as the 
power of 2 as expressed in Equations (23) and (24) using other integers i and j, 
and they are excluding cases of the division number less than 2. 

( )2 1 ~ 4in iφ = =                         (23) 

( )2 3 ~ 3j
hn n jφ= ⋅ = −                       (24) 

The numbers of division and calculation conditions are summarized in Table 
2. The number of particles and resulted actual height of the specimen depending 
on the choice of nϕ  and hn  are shown in Table 3. The arrangement of par-
ticles (view of external form and at cross-section) when the ratio of division pa-
rameters ( hn nφ ) is 22 4=  are shown in Figure 4. 

 
Table 2. Calculation conditions for each models by the choice of the number of division 
in diameter (width) direction nφ . 

Division number nφ  - 21 22 23 24 

Particle equilibrium distance mm 3.65 2.10 1.13 5.92 × 10−1 

Time increment s 2.82 × 10−7 1.62 × 10−7 8.78 × 10−8 4.58 × 10−8 

Number of steps - 1.0 × 105 

Total strain % 0.1 

Strain rate 1/s 3.53 × 10−2 6.15 × 10−2 1.13 × 10−1 2.18 × 10−1 

Constant G J∙m4 2.40 × 10+1 5.00 × 10−1 6.74 × 10−3 7.04 × 10−5 

Constant H J∙m9 1.57 × 10−1 2.05 × 10−4 1.28 × 10−7 5.04 × 10−11 
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Table 3. The number of macroscopic particles and actual height of the cylindrical speci-
mens. (a) The number of macroscopic particles; (b) Actual height of the cylinder [mm]. 

(a) 

hn nφ  12nφ =  22nφ =  32nφ =  42nφ =  

2−3 - - - 1999 

2−2 - - 495 3593 

2−1 - 123 889 6781 

20 35 221 1677 13,157 

21 61 417 3253 25,909 

22 113 809 6405 51,413 

23 217 1593 12,709 102,421 

(b) 

hn nφ  12nφ =  22nφ =  32nφ =  42nφ =  

2−3 - - - 2.26 

2−2 - - 4.35 3.94 

2−1 - 8.05 7.56 7.29 

20 14.0 14.0 14.0 14.0 

21 24.3 25.8 26.8 27.4 

22 45.0 49.6 52.5 54.2 

23 86.4 97.2 104 107 

 

 
Figure 4. The arrangement of macroscopic particles when the ratio of division parame-
ters ( hn nφ ) is 22 = 4. 
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3. Results and Discussion 
3.1. Elastic Analysis 
3.1.1. Results of Tensile Simulations 
Stress-strain curves obtained for ( ) 02 1hn nφ = =  are shown in Figure 5. In 
every cases, they exhibits almost the same linear response because of elastic re-
gion. Young’s moduli E are estimated at strain 0.1% for each nφ s: E = 61.3, 58.6, 
59.9, and 60.0 GPa for 2, 4,8,16nφ = , respectively. These values are slightly 
lower than the theoretical value 68.7 GPa, which is derived directly from poten-
tial function used here. However, realistic elastic responses for the material are 
well reproduced by macroscopic particles. The relation between division number 
nφ  and Young’s modulus (estimated up to 0.1%) are shown in Figure 6. When  
 

 

Figure 5. Stress-strain diagrams (for the cases ( ) 02 1hn nφ = = ). 

 

 
Figure 6. Relationship between Young’s modulus/interparticle strain and the number of 
grids. 
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nφ  is 21 (=2), the largest modulus is obtained. As shown in Figure 6 at the same 
time, the dependency on division number nφ  of the strain of the specimen 
which is evaluated from the change of interparticle distances exhibits quite simi-
lar trend to Young’ moduli. Estimation of the strain tends to be larger for small-
er division like 2nφ = , and it means that in such cases a rough division by par-
ticles results in larger stiffness than with finer division. It is confirmed that 
another division parameter in the direction of the specimen’s height, hn , also 
shows the same tendency of varying stiffness as explained for nφ . 

The dependence of Poisson’s ratio ν on the division ratio hn nφ  is shown in 
Figure 7. When nφ  increases, Poisson’s ratio saturates and reaches to 0.33, which 
is almost the same as the actual value of pure aluminum. 

Next, stress distributions comparing between strain value 0% and 0.1% are 
shown in Figure 8, for the case of a division ratio 4hn nφ = . The pictures are 
drawn at cross-sections at 0x = , so as to see inside of the specimen. They are 
normal stress component in tensile direction (z), where color ranges from green 
to red according to tensile stress value. As shown in Figure 8, inside of the spe-
cimen almost uniform distribution of stress is obtained, but particles at the sur-
face exhibit smaller value which is caused by reduction of the coordination 
number of the particles there. 

3.1.2. Results of Compression Simulation  
The set-up of compression simulations is the same as that of tensile testing, ex-
cept for the moving direction of end regions. The dependence of Young’s mod-
ulus on the numbers of division , hn nφ  and their ratio hn nφ  in these com-
pression testing is shown in Figure 9. The tendency is almost the same as the 
tensile case, but it is slightly lower for the compressive condition. It is because in 
the tensile case particles at the surface tend to be constrained in longitudinal di-
rection, but in the compression case the motion toward free surface are less con-
strained and quite allowable and thus the stress at the surface shows lower val-
ues.  
 

 
Figure 7. Relationship between Poisson’s ratio and hn nφ . 
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Figure 8. Stress distribution inside the cylindrical specimen (normal stress components 
in z direction; for 22hn nφ = ; viewing on cross-section at 0x = ; in tensile testing). 

 

 
Figure 9. Relationship between Young’s modulus and hn nφ . 

 
The strain values when compressive strain is 0.1% are compared as in Figure 

10(a). These strain values are slightly smaller than those in tensile testing (not 
shown here). The averaged strain ranges from 0.30 to 0.35, which is affected by 
initial configuration of particles, that is, fcc lattice structure as shown Figure 
10(b). The ratio of the local strain between neighbor particles, ijε , to the global 
strain as for the specimen, systemε , is estimated approximately to be  

( ) ( )system 1 2 1 2 0.353ijε ε = ⋅ = , where the ratio of lattice constant 0a  and in-
terparticle distance 0r  is theoretically 0 0 1 2r a = . As the number of division 
increases, the strain values between neighbor particles are approaching to 0.35, 
which agrees with theoretical consideration explained here. 
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(a) 

 
(b) 

Figure 10. Relationship between longitudinal strain for neighbor particles and hn nφ  (in 

compressive testing). (a) The dependency of strain on division parameters; (b) The fcc 
lattice and geometrical relationship between length parameters. 

 
The stress distribution inside the specimen for the ratio between the numbers 

of division, 4hn nφ = , is shown in Figure 11. The component of the normal 
stress in compressive direction is shown and its color ranges from green to blue 
according to the compressive value. Inside the specimen, almost uniform distri-
bution is observed, but particles at the surface show smaller compressive stress 
(as absolute value).  

3.2. Plastic Analysis 
3.2.1. Results for Simple Tensile Elastic-Plastic Loading 
The tensile simulation including not only elastic regime but also plastic one is 
conducted. The specimen is the same as that used in elastic simulation, which is 
built with particle division parameters 42 16nφ = =  and 4hn nφ = . The time 
increment 84.58 10 sdT −= ×  is used for all these cases. The calculation condi-
tions are summarized in Table 4. 

The obtained stress-strain curves including plastic regime is shown in Figure 
12. After yielding (approximately 1% of nominal strain), stress still increases as  

https://doi.org/10.4236/wjnse.2021.113003


K.-I. Saitoh, N. Hanashiro 
 

 

DOI: 10.4236/wjnse.2021.113003 61 World Journal of Nano Science and Engineering 
 

Table 4. Calculation conditions including plastic regime (tensile or compressive test). 

The number of steps - 5.0 × 105 

Maximum strain % 5.0, −5.0 

Strain rate 1/s +2.18, −2.18 

 

 
Figure 11. Stress distribution inside the cylindrical specimen (normal stress components 
in z direction; for 22hn nφ = ; viewing on cross-section at x = 0; in compression testing). 

 

 
Figure 12. Stress-strain diagram including plastic regime. 

 
strain is increasing, which means strain hardening occurs. The stress distribu-
tion when the specimen is committing strain hardening is shown in Figure 
13(a). The color of particles ranges continuously from green to red in relative 
manner, where red-colored particles have larger tensile stress. Figure 13(b) vi-
sualizes the increase of stress value by strain increment of 0.5%. Tensile stress  
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Figure 13. Stress distribution in tensile loading (viewing the cross-section at x = 0). (a) 
Stress distribution at each tensile strain; (b) Changes of stress between strains. 
 
inside the specimen increases almost uniformly, but it is always lower than those 
in surface particles.  

3.2.2. Results for Simple Compressive Elastic-Plastic Loading 
The compression testing including not only elastic regime but also plastic one is 
also conducted. The obtained stress-strain curves for the selected division case 
are shown in Figure 14. Yielding event is observed in the compression case in 
the same way as in tensile case. After yielding (approximately −1% of nominal 
strain), the magnitude of compressive stress drastically decreases when com-
pressive strain reaches −3.5%, when sliding movement of neighboring particles 
is clearly observed. It is just like atomistic slip of fcc crystal structure, and those 
slip planes would correspond to (111) indicated by Miller’s index. Those slips 
move in oblique direction in the specimen and eventually reach both free sur-
faces. After slip events, the position of particles is being rearranged, during which 
some oscillation of stress is observed. 

The stress distribution obtained at each strain is shown Figure 15(a). The color 
ranges from green to blue, where blue means larger stress value. The increment 
of stress during change per −0.5% strain increase is also shown in Figure 15(b). 
During the period of strains from 3.0%zε = −  to 3.5%zε = − , there occurs 
slippage between neighbor particles in 45 degrees from compressive loading axis, 
which is not observed in tensile simulations. After slip behavior takes place, any 
fracture does not occur but stress relaxation behavior along multiple of slip planes 
is observed. The three-dimensional configuration of slip planes exactly corres-
ponds to (111) plane of fcc structure. 

Conceptual explanation of force acting between particles inside of the speci-
men is displayed in Figure 16, for (a) tensile and (b) compressive cases, respec-
tively. In those pictures, a red line segment means tensile forces and a blue line  
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Figure 14. Stress-strain diagram. 

 

 
Figure 15. Stress distribution in compressive loading (viewing the cross-section at x = 0). 
(a) Stress distribution at each compressive strain; (b) Changes of stress between strains. 
 

 
Figure 16. Distribution of bonding forces (in the case of (a) tensile, or (b) compressive 
deformation). (a) Tensile loading case; (b) Compressive loading case. 
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segment does compressive forces. In tensile simulation, component of bonding 
force between neighbor particles which is parallel to the loading direction is re-
sponsible for plastic strain, but that perpendicular to tensile direction becomes 
compressive. To the contrary, in compressive simulation, the direction of bond-
ing force is reversed. Due to the formulation of plasticity we have established, 
only tensile strain accompanies stress relaxation in yielding event. In compres-
sive deformation as shown in Figure 16(b), component of bonding force per-
pendicular to loading axis exhibits yielding and shearing force also occurs and it 
causes slip between particles. 

3.2.3. Consideration on Bachinger’s Effect (the Case of Reversing  
Loading Directions) 

It is experimentally known that metals will usually show a kind of Bauchinger’s 
effect, where reduction of yield stress occurs when the direction of applied plas-
tic stress or strain is reversed. But, simple constitutive modeling in numerical 
simulation is formulated with a fixed yield condition, and it is agreed that very 
complicated theoretical formulation must be required for reproducing Bau-
chinger’s effect. At this point, we will see whether Bauchinger’s effect is repro-
duced by using the present particle modeling method.  

First, uniaxial tensile strain up to 3% is applied to the cylindrical specimen, 
and then subsequently uniaxial compressive strain up to 3% is applied to the 
same specimen. The sequence of stress-strain diagrams is shown in Figure 17. 
Figure 17(a) is showing overall process, in that solid line means continuous ten-
sile and compression processes and dashed line is for only compression simula-
tion from unloaded state, for comparison. Figure 17(b) is the view magnifying 
around the yielding (that strain is approximately 1.2%). When comparing two 
lines, the case of compression from unloaded state exhibits yield stress smaller 
than that obtained in reversed deformation. Specifically, at compressive strain 
−0.3%, they are −0.575 GPa (solid line) and −0.552 GPa (dashed line), which 
means the contrary behavior to Bauchinger’s effect. This is because yielded state 
provided by tensile process is just realized by stress shift due to mathematical 
function, and is not accompanying any topological change of particles’ configu-
ration such as slip motion. The arrangement of particles has not disturbed dur-
ing tensile plastic deformation. But, in turn, the next compressive yield event 
and subsequent plastic deformation must accompany a topological change (that 
is, slip motion) of particles’ configuration, and they should require larger force 
or energy than simple compressive plasticity.  

To the contrary, the reversed case, in that compressive load is first applied 
then tensile one is applied, is resulted as shown in Figure 18. The magnified 
view around the yield event is shown in Figure 18(b). The secondary tensile 
loading (solid line) shows slightly smaller value of yield stress than the case from 
undeformed state (dashed line). The specified values at tensile strain 0.3% are 
0.574 GPa (solid line), and 0.588 GPa (dashed line). It means Bauchinger’s effect. 
The difference of yield stress in this case is explained in the same way as the case 
of first tensile and secondary compression which was stated above. 

https://doi.org/10.4236/wjnse.2021.113003


K.-I. Saitoh, N. Hanashiro 
 

 

DOI: 10.4236/wjnse.2021.113003 65 World Journal of Nano Science and Engineering 
 

 
Figure 17. Stress-strain diagram (first tension, then compression). (a) Overall processes; (b) Magnified view around 
the second yield. 

 

 
Figure 18. Stress-strain diagram (the case of first compression, then tension). (a) Overall processes; (b) Magnified view 
at the second yield. 

 
These simulations with reversed deformation display that any symmetrical 

yielding behavior is not included in the present formulation which uses shift of 
potential energy between neighbor particles. It is concluded that an accurate re-
petitive yielding behaviors for cyclic loading and Bauchinger’s effect must take 
non-symmetrical interaction between particles into account and the formulation 
of potential function should be reorganized. These considerations will be studied 
further as our future work.  

4. Conclusion 

In this study, we propose a computational framework by using macroscopic par-
ticles method (MPM). Although the proposed MPM method is simply con-
structed from microscopic parameters such as cohesive energy and density of 
metallic materials, it provides high feasibility on implementing a simple frame-
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work for multi-scale simulation and in discussing the deformation of metallic 
materials. As seen in the examples of rod-shaped models we presented here, the 
evaluation by the present MPM method depends on the division number of par-
ticles. In the elastic regime, Young’s modulus and the Poisson’s ratio can be suf-
ficiently reproduced. On the other hand, it is understood that the plastic model-
ing in MPM method still remains the difficult issue. The plasticity mechanism is 
absolutely important for material modeling, and as the first challenge, we have 
discussed an irreversible change of the configuration of particles. We found that 
there is different stability in between tensile and compressive loadings for the 
total elastic-plastic regime. We can conclude that further sophistication and im-
provement of the MPM method especially for plastic mechanism are quite ex-
pectable and they are worthwhile studying continuously in the future. 
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