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Abstract 
Dependence may arise in insurance when the insureds are clustered into 
groups e.g. joint-life annuities. This dependence may be produced by sharing 
a common risk acting on mortality of members of the group. Various depen-
dence models have been considered in literature; however, the focus has been 
on either the lower-tail dependence alone or upper-tail dependence alone. 
This article implements the frailty dependence approach to life insurance 
problems where most applications have been within medical setting. Our 
strategy is to use the conditional independence assumption given an observed 
association measure in a positive stable frailty approach to account for both 
lower and upper-tail dependence. The model is calibrated on the association 
of Kenyan insurers 2010 male and female published rates. The positive stable 
model is then proposed to construct dependence life-tables and generate life 
annuity payment streams in the competitive Kenyan market. 
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1. Introduction and Motivation 

When annuity payments are concerned, the calculation of expected present val-
ues (EPVs), needed in pricing and reserving, requires an appropriate mortality 
model in order to avoid biased valuations [1] [2] [3]. Frailty models are used in 
life insurance to represent heterogeneity in a population due to unreported risk 
factors [4] [5]. Heterogeneity due to reported risk factors is addressed at policy 
issue during the underwriting process. There has been a growing literature on 
dependence mortality modeling in life insurance in recent years (see, e.g., [6] [7] 
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[8]) where the focus has been on either the lower-tail dependence alone or up-
per-tail dependence alone. Frailty dependence modeling [9] [10] [11] [12] is an 
approach that accounts for dependence in event times of related individuals. 
Clustered survival times are assumed to be conditional independent with respect 
to the shared risk. Our strategy is to use the conditional independence assump-
tion to account for lower and upper-tail dependence for a given association 
measure. Dependence frailty models have been used by several authors with ap-
plications in medical field (see e.g., [13]). This article implements the depen-
dence frailty approach in insurance risk management setting. 

Our article contributes to the existing literature in several ways. First, we ap-
ply a shared frailty approach to life insurance risk problems where most applica-
tions have been within medical setting. Second, most dependence models in li-
terature have focused on either the lower-tail dependence alone or upper-tail 
dependence alone. We apply the conditional independence assumption for an 
observed association measure in a positive stable frailty to account for both low-
er and upper-tail dependence. Third, we incorporate a stochastic dependence 
structure via a dynamically evolving positive stable process to model time-varying 
shared risk. 

2. Notations, Assumptions and Data  
2.1. Notations  

To facilitate an easier discussion of frailty dependence modeling, the following 
notations are used. We consider joint-life annuity contracts where x is the age of 
the male annuitant whose future lifetime random variable is 1it  and y the age of 
the female annuitant whose future lifetime random variable is 1it . tv  is the 
present value factor, ( )xys t  is the probability of survival until the last of ( ),x y  
dies and xya  the EPV of the benefit. xy

xy xyD v l=  and 0xy xy kkN D∞
+=

= ∑  are 
commutation functions. 

2.2. Assumptions 

For simplicity of notation of the commutation functions, we suppose that the 
limiting age of our mortality table is infinity. 

The force of mortality ( )x tλ  for a life aged x during time t is assumed 
piece-wise constant across each whole year of age [ ), 1t t + . i.e.  

( ) ( );0 1x x zt t zλ λ += < < . Similar assumptions are found in [14]. 
A deterministic financial structure is adopted for the present value factor tv  

for illustration purposes. 
Model calibration with reference to standard mortality tables [5] [15] [16] is 

applied due to limited joint-life mortality data-set that is available in the Kenyan 
annuity market. 

2.3. Data 

The association of Kenyan insurers (AKI) 2010 published mortality tables is 
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based upon data collected by the association of Kenya insurers for an investiga-
tion into the mortality of assured lives in the Republic of Kenya. The AKI 2010 
mortality rates are used as the baseline hazard rates in the study. Joint-life and 
last survivor annuitants member data for policies in-force between 2001-2013 
will be used in the study to determine the average age difference for insured 
couples in Kenya. The annuitants data used in this article was obtained from a 
major Kenyan insurance company. To preserve confidentiality, we took a 
sub-sample of 178 joint-life policies. 

3. Materials and Methods 
3.1. Joint-Life Last Survivor Annuity  

The proposed model can be applied to any type of joint-life annuity business. In 
this article, we discuss the case of joint-life last survivor annuities. This is a con-
tract that provides level payments to two or more annuitants until the last of 
them dies. This can be an immediate annuity for a single lump-sum payment 
whose expected present value (EPV) of say amount b per annum, payable in ar-
rears, until the last of ( ),x y  dies is given by:  

 ( )
1

t
xy xy

t
ba b v s t

∞

=

= ∑                         (1) 

where the future lifetime random variable ( )1 2, .i iT Max t t=  
Under the dependence (frailty) assumption:  

 ( ) ( ) ( ) ( )xy x y xys t s t s t s t= + −                     (2) 

Assuming independence we have:   

 ( ) ( ) ( ) ( ) ( )xy x y x ys t s t s t s t s t= + − ⋅                  (3) 

The EPV in Equation (1) becomes:  

 { } { } ( ){ }0 0 0
1

exp d exp d exp d
t t tt

x s y s xy s
t

b v s s sλ λ λ
∞

+ + +
=

 − + − − −  ∑ ∫ ∫ ∫      (4) 

{ } { } ( ){ }0 0 0
1

exp d exp d exp d
t t tt

x s y s x s y s
t

b v s s sλ λ λ λ
∞

+ + + +
=

 − + − − − +  ∑ ∫ ∫ ∫   (5) 

respectively. Here again for simplicity of notation, we suppose that the limiting 
age of our mortality table is infinity. If the purchase price for the annuity is p 
then the future level payment stream b applying the traditional equivalence 
principle is:  

xy

pb
a

=                            (6) 

The prevailing traditional insurance practice assumes independence in pricing 
joint-life annuity contracts thereby adopting the EPV shown in Equation (5) 
whose joint mortality is obtained by summing up the individual mortality rates. 
Frailty dependence models focus on modeling the EPV as shown in Equation (4) 
whose joint mortality accounts for heterogeneity and dependence. 
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3.2. Shared Frailty Model 

Definition 1. The hazard function for a shared frailty model is given by; 

( ) ( )0| ; 0ij i it t tλ λΩ = Ω >                      (7) 

where ( )|ij itλ Ω  is the conditional hazard function for the jth individual in the 
ith group and iΩ  is the shared random effect associated with the ith group. 

( )0 tλ  is the population’s base force of mortality. 
Formally, the expression of the bivariate net survival function is summarized 

in the following proposition. 
Proposition 1. Under the assumption of independent future life-times for a 

given shared frailty the bivariate net survival function is;  

 ( ) ( ) ( )( )1 2 01 1 02 2,
ii i i is t t L t tΩ= Λ + Λ                 (8) 

Proof. The bivariate conditional survival function for a given shared frailty 

iΩ  at time 1 20, 0i it t> >  is given by; ( ) ( ) ( )1 2 1 2, | | |i i i i i i is t t s t s tΩ = Ω Ω  and 
from ( ) ( ){ } ( )( )00

| exp | d exp
t

s t u u tλΩ = − Ω = −ΩΛ∫  we have that  
( ) ( ) ( ){ }1 2 01 1 02 2, | expi i i i is t t t t Ω = −Ω Λ +Λ   using expectation  
( ) ( ) ( ){ }1 2 01 1 02 2, expi i i is t t E t t  = −Ω Λ +Λ    this simplifies to  
( ) ( ) ( )( )1 2 01 1 02 2,

ii i i is t t L t tΩ= Λ + Λ                                    □ 

3.3. Shared Frailty and Archimedean Copula Approach 

Copulas have been studied in actuarial science to model joint-life survival func-
tions [17]. Similarity between the frailty and copula dependence approach is 
discussed with reference to the elliptical or Archimedean dependence copula. 
The family of Archimedean copula [18] [19] in the bivariate case is described by 
reference to a generator function.  

( ) ( ) ( ){ },C u w p q u q wφ = +  

where the generator function ( ).p  is any non-negative decreasing function and 
non-negative second derivative with ( )0 1p =  and ( ).q  its pseudo-inverse 
function. A special case showing similarity to shared frailty approach is when 
( ) ( )p s L sΩ=  where Ω  is the frailty random variable and ( ) ( )1 2,i iu s t w s t= =  

this leads to:  

( ) ( ){ } ( )( ) ( )( )1 1
1 2 1 2,i i i iC s t s t L L s t L s tφ

− −
Ω  = +   

Comparing this with the marginal survival from shared frailty approach i.e. 
( ) ( )( )1 0 1i is t L tΩ= Λ  and therefore ( )( ) ( )1

1 0 1i iL s t t−
Ω = Λ  shows that 

( ) ( ){ } ( )( ) ( )( )
( ) ( )( ) ( )

1 1
1 2 1 2

0 1 0 2 1 2

,

,

i i i i

i i i i

C s t s t L L s t L s t

L t t s t t

φ
− −

Ω

Ω

 = + 
= Λ + Λ =

 

If ( ).p  is the Laplace transform of a gamma distribution with scale parameter 
1, then the Clayton copula model is obtained. Similarly, the Gumbel copula is 
obtained if ( ).p  has a positive stable Laplace though the estimation strategies 
and association measures differ with the frailty approach. Whereas in the copula 
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approach, the marginal survivor functions and the dependence structure have to 
be specified [20] [21] for the joint survivor to be constructed. In frailty models, 
the dependence structure is introduced indirectly. 

3.4. The Positive Stable Frailty Model 

The probability density function (p.d.f) for the positive stable distribution in 
closed-form is given by; 

( ) ( ) ( ) ( )
1

11 sin ; 0, 0,0 1
!

nr

n

nr
f k r rn k r

n

∞
−

=

Γ +
Ω = − −Ω > Ω >

π
<

Ω
π ≤∑    (9) 

For identifiability we assume k r=  (see [10] for proof), then we have the 
standard case with only one parameter r. 

( ) ( ) ( ) ( )
1

11 sin ; 0,0 1
!

nr

n

nr
f rn r

n

∞
−

=

Γ +
Ω = − −Ω Ω >π

π
< ≤

Ω∑  

Proposition 2. The Laplace transform is a special case of the Power Variance 
Family ( ), ,r k η  Laplace given by: 

( ) exp rkL s s
rΩ

 = − 
 

                      (10) 

As indicated earlier for identifiability reasons we let k r= .  

 ( ) ( )exp ,0 1rL s s rΩ = − < ≤                   (11) 

The proposed frailty distribution has many advantages. First, it is easy to im-
plement due to the simplified Laplace transform shown in Equation (11). Second, 
the positive stable has an infinite mean and variance. This allows for a much 
higher degree of heterogeneity to be accounted for that would not be possible by 
using a frailty distribution with finite variance. Third, the positive stable distri-
bution is infinitely divisible, allowing the splitting of the shared risk into cause 
specific risks which may be easier to interpret. The net bivariate survival, density 
and hazard functions at time 1 20, 0i it t> >  are:  

 ( ) ( ) ( )( ){ }1 2 0 1 0 2, exp
r

i i i is t t t t= − Λ + Λ               (12) 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

2 22
1 2 1 2 0 1 0 2 0 1 0 2

2
0 1 0 2

, ,

1

r
i i i i i i i i

r
i i

f t t s t t t t r t t

r r t t

λ λ
−

−

= ⋅ Λ + Λ
− − Λ + Λ 

   (13) 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

2 22
1 2 0 1 0 2 0 1 0 2

2
0 1 0 2

,

1

r
i i i i i i

r
i i

t t t t r t t

r r t t

λ λ λ
−

−

= Λ + Λ
− − Λ + Λ 

       (14) 

In dependence frailty models, the frailty distribution is identifiable through the 
[9] [22] cross-ratio function, which describes how association of the bivariate 
hazards evolves over time. The cross ratio measure ( )1 2,i iA t t  for the first life if 
the second life has experienced the event rather than being event free at a given 
time is given by;  
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 ( )
( ) ( )

( ) ( )

2

1 2 1 2
1 2

1 2

1 2 1 2
1 2

, ,
,

, ,

i i i i
i i

i i

i i i i
i i

s t t s t t
t t

A t t
s t t s t t

t t

∂
∂ ∂

=
∂ ∂
∂ ∂

              (15) 

Using the positive stable as frailty distribution, the cross ratio function from 
Equation (15) becomes:  

 ( ) ( ) ( )( )1 2 0 1 0 2
1, 1 1

r
i i i iA t t t t

r
− = − − Λ + Λ 

 
            (16) 

From Equation (16), values of r close to zero indicate high association be-
tween 1it  and 2it  because ( )1 2,i iA t t  takes values greater than 1, r close to 
one indicate low association between 1it  and 2it  since ( )1 2,i iA t t  takes values 
near 1 while 1r =  corresponds to independence i.e. ( )1 2, 1i iA t t = . 

We present below four examples with specific baseline distributions to find 
the frailty dependence hazard functions with explicit expressions. 

Example 1. 
Let ( )0 tλ  follow a Weibull( ,a τ ) distribution with p.d.f  
( ) ( )1

0 exp ; , 0; 0f t at at a tτ ττ τ−= − > ≥  where τ  is the shape parameter and a 
the scale parameter. 

Then the survival, hazard and cumulative hazard functions are; 
1) ( ) ( )0 exp , 0.s t at tτ= − >  
2) ( ) 1

0 , 0.t at tτλ τ −= >  
3) ( )0 , 0.t at tτΛ = >  
From Equation (14) the positive stable Weibull (PSW henceforth) frailty de-

pendence hazard is described explicitly as:  

( ) ( ) ( )( )1 2 1 2 1 2
2 2 21 1 2

1 2 1 1 1 2 2 2 1 1 2 2 1 1 2 2, 1
r r

i i i i i i i it t a t a t r a t a t r r a t a tτ τ τ τ τ τλ τ τ
− −− −  = ⋅ ⋅ + − − +  

(17) 

The Weibull distribution is widely used in the analysis of lifetime data because it 
is flexible enough to account for an increasing ( 1τ > ), decreasing ( 1τ < ) or 
constant ( 1τ = ) hazard rate. Further, the law of Weibull is useful in mortality 
models for annuitants see e.g. [16]. 

Example 2. 
Let ( )0 tλ  follow a Lognormal( 2,µ σ ) distribution with parameters ,µ σ  

the p.d.f is given by; 

( )
( )2

2
ln

2
0

1 e ; , 0,
2

t

f t t
t

µ

σ σ µ
σ

− −

= > −∞ <
π

< ∞  

Then the survival, hazard and cumulative hazard functions are: 

1) ( )0
ln1 , 0.ts t tµ
σ
− = −Φ > 

 
 

2) ( ) ( )0
0 , 0.

ln1

f t
t t

t
λ

µ
σ

= >
− −Φ 

 

 

3) ( )0
lnln 1 , 0.tt tµ
σ

 −  Λ = − −Φ >  
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From Equation (14) the positive stable Lognormal frailty dependence hazard is:  

 

( ) ( ) ( )

( )

0 1 0 2
1 2

1 1 2 2

1 2

2 2

2 1 1 2 2

1 2

1 1 2 2

1 2

,
ln ln1 1

ln ln
ln 1 ln 1

ln ln
1 ln 1 ln 1

i i
i i

i i

r

i i

i i

f t f t
t t

t t

t t
r

t t
r r

λ
µ µ

σ σ

µ µ
σ σ

µ µ
σ σ

−

= ⋅
   − −

−Φ −Φ   
   

        − −⋅ − −Φ − −Φ                   

      − −
− − − −Φ − −Φ             

2r−  
     

 (18) 

The Lognormal is also used in modeling failure time data because it can take 
various unimodal shapes i.e. bathtub-shaped or hump-shaped. 

Example 3. 
Let ( )0 tλ  follow a Gamma( ,p ϕ ) with p.d.f 

( ) ( )
( )

1

0

exp
; 0, 0, 0

p pt t
f t t p

p
ϕ ϕ

ϕ
− −

= > > >
Γ

 

Then the survival, hazard and cumulative hazard functions are: 

1) ( ) ( )
( )0

,
, 0.

p t
s t t

p
γ ϕ

= >
Γ

 

2) ( ) ( )
( )

1

0

exp
, 0.

,

p pt t
t t

p t
ϕ ϕ

λ
γ ϕ

− −
= >  

3) ( ) ( )
( )0

,
ln , 0.

p t
t t

p
γ ϕ 

Λ = − >  Γ 
 

The Gamma is widely used in survival analysis to generate mixtures in expo-
nential and Poisson models. It has positive support and is also a good choice for 
the baseline hazard. 

From Equation (14) the positive stable Gamma frailty dependence hazard is 
described explicitly as:  

 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )
( )

( )
( )

1 1 2 21 1
1 1 1 2 2 2 2

1 2
1 1 1 2 2 2

2 2

1 1 1 2 22

1 2

2

1 1 1 2 2

1 2

exp exp
,

, ,

, ,
ln ln

, ,
1 ln ln

p p p p
i i i i

i i
i i

r

i

r

i

t t t t
t t

p t p t

p t p t
r

p p

p t p t
r r

p p

ϕ ϕ ϕ ϕ
λ

γ ϕ γ ϕ

γ ϕ γ ϕ

γ ϕ γ ϕ

− −

−

−

− −
= ⋅

     ⋅ − −         Γ Γ    
     − − − −         Γ Γ     

    (19) 

3.5. Assessment of Model Selection Criteria 

The performance of the model selection criteria for the Bayesian estimation 
technique is validated in a comparative study with the traditional MLE method. 
In the Bayesian method the deviance information criteria (DIC), Bayesian In-
formation Criterion (BIC) and Akaike Information Criterion (AIC) is applied 
whereas in the MLE method the Standard Error information is used. 
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1) DIC D pD= +  where: D  is the posterior mean of 2log L−  measuring 
the quality of the goodness-of-fit of the considered model to the data. 

ˆ 2 logD L= −  is the posterior mean of stochastic nodes and ˆpD D D= −  is 
the effective number of parameter. Smaller values of DIC indicate better models 
and could give negative values. 

2) ˆAIC 2D p= +  where: p = number of parameters of the model. 
3) ( )ˆBIC logD p n= + ×  where: p = number of parameters of the model and 

n = sample size. The advantage of the BIC is that it includes the BIC penalty for 
the number of parameters being estimated. 

Bayesian Analysis 
The Bayesian method treats all unknown parameters as random variables in a 

statistical model and derives their distribution conditional upon known infor-
mation. This method has been applied in actuarial modeling e.g. by [23] in anal-
ysis of simultaneous equations for insurance rate making and by [24] to analyze 
time-varying dependent data with possible variance shifts. The Bayesian para-
meter estimation strategy is implemented in the following algorithm run in 
OpenBUGS: First, the proposal distributions for the likelihood are specified as 
Weibull( ,aτ ), Lognormal( 2,µ σ ) and Gamma( ,p ϕ ) respectively. Since we do 
not have prior information about baseline parameters non-informative prior 
distribution is picked and assumed to be flat. i.e. gamma distributed random va-
riables with mean 1 and variance 10,000 for positive parameters and normal dis-
tribution of mean 1 and variance 10,000 for parameter that can take on positive 
or negative values. Similar approach is found in [13]. 

The hyperparameters of initial values are chosen to be MLE estimates deter-
mined outside of OpenBUGS using standard techniques e.g. for the Weibull  

1 10.7, 7aτ = = . The actual data to be estimated by the model is specified to be 
the males and females densities obtained from the AKI 2010 mortality data 
through standard numerical approximations. Parameters are estimated consi-
dering only the range of ages [55, 109]. Burn in period is set at 2000 as per the 
BGR plot to ensure sequence of draws from the posterior distribution have mi-
nimal autocorrelation and can be found by taking values from a single run of the 
Markov chain. This diminishes the effect of the starting distribution. We run 3 
chains in parallel and after 10,000 iterations convergence will be monitored and 
if stationarity has been achieved (implying estimates are not dependent on the 
prior distributions) the mean posterior distribution will be picked as a point es-
timate. Models with smaller values of the DIC, BIC or AIC are preferred. 

The WinBUGS codes used to analyze the dataset using Weibull are available 
upon request. 

Brooks-Gelman-Rubin Diagnostic and Trace Plots 
The BGR convergence diagnostic plots for the monitored nodes are presented 

in Figure 1. As the MCMC simulation progresses, the values of the total-sequence 
(green curve) and mean within-sequence interval width (blue curve) estimates 
are monitored. Their ratio (red curve) is seen to converge to one beyond 2000 
iterations hence a probable choice for the burn-in period. The dynamic trace  
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Figure 1. BGR diagnostic plot consistent with convergence and dynamic trace plots. 
 
plots also monitored in Figure 1 is shown to be mean-reverting and the chains 
appear to mix freely implying stationarity has been achieved. 

Comparison with MLE 
The MLE approach is concerned with obtaining parameter values say, ( ),aτ  

that maximizes the probability of observing the data D given those parameters, 
( )| ,p D aτ . The likelihood function gives the probability of the observed sample 

generated by the model. Generally, maximization of the likelihood function to 
find the ML estimates is done algebraically, but can be computational intensive. 
In this article, the MLE algorithm is implemented using MASS package run in R. 
The output is given in Table 2 using the same distribution parametrization as in 
the Bayesian approach Table 1. 

Discussion 
On the basis of Bayesian the Weibull distribution is chosen since the DIC, BIC 

and AIC are smallest compared to the other distributions. Also using the MLE 
approach the Weibull is also chosen because the Standard Errors is smallest 
compared to the other distributions. It is interesting to note from Table 1 and 
Table 2 that the parameter estimates produced by the two competing approach-
es agree with minimal deviations. So it may be claimed that Bayesian methods 
are the potential candidates to be used in any inferential procedures allowing for  
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Table 1. Bayesian parameter estimates, DIC, BIC and AIC values.  

Baseline Model Parameter Estimates DIC BIC AIC 

Weibull 1 0.67τ = , 1 7.15a =  (male) −192.2 −192.82 −192.2 

 2 0.7555τ = , 2 10.17a =  (female) −208.9 −209.52 −209.0 

Lognormal 1 3.711µ = − , 2
1 2.3568σ =  (male) −97.22 −95.75 −95.24 

 2 3.727µ = − , 2
2 1.6697σ =  (female) −101.1 −99.52 −99.0 

Gamma 1 7.746p = , 1 0.5645ϕ =  (male) −188.6 −189.22 −188.7 

 2 11.89p = , 2 0.6853ϕ =  (female) −205.5 −206.02 −205.5 

 
Table 2. MLE parameter estimates and standard error values.  

Baseline Model Parameter Estimates Standard errors 

Weibull 1 0.6720τ = , 1 7.1346a =  (male) (0.0687, 0.0114) 

 2 0.7558τ = , 2 10.0388a =  (female) (0.0753, 0.0090) 

Lognormal 1 3.7097µ = − , 2
1 2.31248σ =  (male) (0.2050, 0.1449) 

 2 3.726µ = − , 2
2 1.63809σ =  (female) (0.1726, 0.1220) 

Gamma 1 7.830p = , 1 0.571ϕ =  (male) (0.0909, 1.8737) 

 2 12.0341p = , 2 0.6935ϕ =  (female) (0.1126, 2.7592) 

 
informative priors shared by field experts. The parameter estimates used in the 
study are as shown in Table 1, following the implementation of Bayesian de-
scribed. 

Goodness of Fit Test 
A chi-square goodness-of-fit test of the data for Weibull baseline distribution 

is as shown in Table 3. As observed in Table 3, the chi-squared p-value is great-
er than 5%. Thus, we fail to reject the null hypothesis that the AKI data follow a 
Weibull distribution at 5% level of significance. Similarly, the Kolmogo-
rov-Smirnov (KS) hypothesis test in Table 4 between the empirical distribution 
function and the fitted distribution function shows a p-value greater than 0.05. 
We therefore fail to reject the null hypothesis that the AKI data follow a Weibull 
distribution at 5% level of significance. The Weibull Q-Q Plot in Figure 2 fur-
ther shows a straight line through a majority of the quantiles this also shows that 
the Weibull provides a good fit. We can therefore conclude that the proposed 
distribution is a good fit for the data. 

4. Model Calibration to the AKI 2010 Male and Female  
Published Rates 

The PSW dependence model given in Equation (17) is shown in Figure 3 where 

1 10.67, 7.15aτ = = ; 2 20.7555, 10.17aτ = =  obtained from the Bayesian esti-
mation procedure. 

Inspired by [3] and for illustration purpose, we discuss the empirical results 
for the patterns of Equation (17) with different degrees of dependence r. We  
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Table 3. Goodness of fit of Weibull to the AKI data.  

Name Value 

Chi-squared statistic 2970 

Degree of freedom 2916 

Chi-squared p-value 0.2384 

 
Table 4. Goodness of fit using K-S test.  

Name p-value Test Statistic 

Kolmogorov-Smirnov test 0.1463 0.21818 

 

 
Figure 2. Empirical quantile plot of Weibull to AKI data. 

 

 
Figure 3. Dependence hazards at various empirical dependence measures. 
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consider two dependence measures i.e. Spearman’s correlation 0.74ρ =  (black 
curve) and Pearson correlation 0.68r =  (red curve) when the age difference of 
insured couples is greater than four. As shown in Figure 3, using the above de-
pendence measure shows a significant impact on the hazard compared with the 
independence (blue curve) assumption. Indeed, one cannot neglect the depen-
dence, even moderate. 

Equation (17) is then applied to generate the dependence xy frailtyλ  hazard 
rates using Pearson correlation 0.68r =  (to be consistent with the parametric 
model chosen) shown in Table 5. Real-life data from a Kenyan insurer shows an 
average age difference of the insured couples to be 6 years. The joint survival 
probability is { }expxy xys frailtyλ= − . The EPV for joint-life annuity  

xy
xy

xy

N
a frailty

D
=  where xy

xy xyD v l=  and 45
0xy xy kkN D +=

= ∑  are commutation 

functions. 
The independence xy indλ  hazard rates in Table 5 are obtained by summing 

the AKI 2010 male and female mortality rates. The survival probability  
{ }expxy x y xys s s indλ= ⋅ = −  and EPVs are computed as above. The density 

function is obtained through standard numerical approximations. Assuming a 
purchase price of 1000, the level annuity payments are obtained as indicated. 
 

Table 5. Independence and dependence life-table construction. 

INDEPENDENCE LIFETABLE CONSTRUCTION    PURCHASE PRICE: 1000 

AGE(y) Ixy Sxy λxy ind Dxy Nxy axy_ind PAYMENT STREAM AGE(x) 

55 100,000 0.987322 0.01276 33,650.42 748,844.1 22.25363 44.9364899 55 

56 98,732.15 0.989001 0.01106 32,572.34 715,193.7 21.95708 45.54338661 56 

57 97,646.23 0.989673 0.010381 31,582.44 682,621.3 21.61395 46.26641343 57 

58 96,637.84 0.989943 0.010108 30,643.42 651,038.9 21.24563 47.06849595 58 

59 95,665.97 0.989986 0.010064 29,740.44 620,395.5 20.86033 47.93787231 59 

60 94,708.01 0.989892 0.010159 28,865.32 590,655 20.46244 48.87001675 60 

61 93,750.7 0.989705 0.010348 28,013.28 561,789.7 20.0544 49.86435956 61 

62 92,785.53 0.989454 0.010602 27,181.26 533,776.4 19.63766 50.92256147 62 

63 91,807.06 0.989153 0.010906 26,367.27 506,595.2 19.21303 52.04801895 63 

64 90,811.23 0.988808 0.011255 25,569.87 480,227.9 18.781 53.24528938 64 

65 89,794.87 0.988414 0.011653 24,787.94 454,658 18.34191 54.51995834 65 

66 88,754.53 0.987967 0.012106 24,020.34 429,870.1 17.89608 55.87814592 66 

67 87,686.54 0.98746 0.012619 23,265.99 405,849.7 17.44391 57.32659994 67 

68 86,586.97 0.986891 0.013196 22,523.76 382,583.7 16.98579 58.87274996 68 

69 85,451.88 0.986254 0.013841 21,792.64 360,060 16.52209 60.52501545 69 

70 84,277.27 0.985547 0.014558 21,071.65 338,267.4 16.0532 62.29287286 70 

71 83,059.23 0.984762 0.015355 20,359.9 317,195.7 15.57943 64.18719582 71 

72 81,793.58 0.983891 0.01624 19,656.53 296,835.8 15.10113 66.22021465 72 
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73 80,475.98 0.982889 0.01726 18,960.67 277,179.3 14.61864 68.40580518 73 

74 79,098.91 0.981855 0.018312 18,270.81 258,218.6 14.13285 70.75714002 74 

75 77,663.65 0.980663 0.019526 17,587.53 239,947.8 13.64306 73.29732669 75 

76 76,161.88 0.979333 0.020884 16,909.26 222,360.3 13.15021 76.0444313 76 

77 74,587.82 0.977847 0.022402 16,235.09 205,451 12.65475 79.02171141 77 

78 72,935.47 0.976181 0.024108 15,564.15 189,215.9 12.15716 82.25603251 78 

79 71,198.19 0.974307 0.026029 14,895.51 173,651.8 11.65799 85.77805174 79 

80 69,368.91 0.97219 0.028204 14,228.24 158,756.3 11.15783 89.6231621 80 

81 67,439.76 0.969793 0.030673 13,561.32 144,528 10.65737 93.8318065 81 

82 65,402.58 0.967065 0.03349 12,893.8 130,966.7 10.15734 98.4509591 82 

83 63,248.52 0.963949 0.036716 12,224.64 118,072.9 9.658598 103.5346902 83 

84 60,968.37 0.960375 0.040431 11,552.88 105,848.3 9.162069 109.145658 84 

85 58,552.52 0.95626 0.044726 10,877.55 94,295.38 8.668808 115.3561146 85 

86 55,991.43 0.951503 0.049713 10,197.81 83,417.83 8.179977 122.2497347 86 

87 53,276.01 0.945982 0.055531 9512.983 73,220.02 7.696852 129.9232519 87 

88 50,398.16 0.939553 0.062351 8822.66 63,707.04 7.220842 138.4879971 88 

89 47,351.75 0.932044 0.070376 8126.821 54,884.38 6.753487 148.0716653 89 

90 44,133.89 0.923251 0.079854 7426.03 46,757.56 6.29644 158.8198986 90 

91 40,746.67 0.912941 0.091084 6721.659 39,331.53 5.851461 170.8975 91 

92 37,199.3 0.900837 0.104431 6016.155 32,609.87 5.420384 184.4888 92 

93 33,510.49 0.886635 0.120322 5313.306 26,593.71 5.005116 199.7956 93 

94 29,711.59 0.869999 0.139263 4618.593 21,280.41 4.607552 217.035 94 

95 25,849.06 0.85058 0.161837 3939.385 16,661.81 4.229547 236.4319 95 

96 21,986.68 0.827954 0.188798 3285.059 12,722.43 3.872816 258.2101 96 

97 18,203.96 0.802014 0.22063 2666.546 9437.37 3.539173 282.5519 97 

98 14,599.82 0.772303 0.258379 2096.674 6770.823 3.229317 309.663 98 

99 11,275.48 0.738749 0.302797 1587.516 4674.15 2.944316 339.6374 99 

100 8329.751 0.701364 0.354728 1149.78 3086.634 2.684542 372.503 100 

101 5842.187 0.660341 0.414999 790.6024 1936.854 2.449845 408.189 101 

102 3857.834 0.616061 0.48441 511.8304 1146.251 2.239514 446.5255 102 

103 2376.66 0.569077 0.56374 309.1358 634.4207 2.05224 487.2725 103 

104 1352.502 0.519526 0.654838 172.4726 325.2849 1.88601 530.2199 104 

105 702.6603 0.469801 0.755445 87.84709 152.8124 1.739527 574.869 105 

106 330.1108 0.419039 0.869791 40.46146 64.96529 1.605609 622.8165 106 

107 138.3293 0.368476 0.99838 16.62247 24.50383 1.474139 678.3623 107 

108 50.97098 0.318742 1.143375 6.004881 7.881357 1.312492 761.9096 108 

109 16.24657 0.27038 1.307927 1.876476 1.876476 1 1000 109 
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INDEPENDENCE LIFETABLE CONSTRUCTION    PURCHASE PRICE: 1000 

AGE(y) Ixy Sxy μxy frailty Dxy Nxy axy_frailty PAYMENT STREAM AGE(x) 

55 100,000 0.956844 0.044115 33,650.42 447,990.3 13.31306 75.11419 55 

56 95,684.42 0.956038 0.044957 31,566.88 414,339.8 13.12578 76.18596 56 

57 91,477.96 0.955202 0.045832 29,587.39 382,773 12.93703 77.2975 57 

58 87,379.94 0.954334 0.046742 27,707.78 353,185.6 12.7468 78.45107 58 

59 83,389.65 0.953432 0.047687 25,924 325,477.8 12.55507 79.64907 59 

60 79,506.39 0.952495 0.048671 24,232.14 299,553.8 12.36184 80.89411 60 

61 75,729.42 0.951519 0.049695 22,628.42 275,321.6 12.16708 82.18902 61 

62 72,058.01 0.950504 0.050763 21,109.19 252,693.2 11.97077 83.53683 62 

63 68,491.4 0.949445 0.051877 19,670.95 231,584 11.7729 84.94086 63 

64 65,028.85 0.948341 0.053041 18,310.28 211,913.1 11.57345 86.40468 64 

65 61,669.55 0.947189 0.054256 17,023.92 193,602.8 11.3724 87.93221 65 

66 58,412.73 0.945985 0.055528 15,808.7 176,578.9 11.16973 89.5277 66 

67 55,257.57 0.944726 0.056861 14,661.56 160,770.2 10.96542 91.1958 67 

68 52,203.26 0.943407 0.058257 13,579.57 146,108.6 10.75945 92.94159 68 

69 49,248.94 0.942026 0.059723 12,559.87 132,529 10.55179 94.77068 69 

70 46,393.77 0.940576 0.061263 11,599.72 119,969.2 10.34242 96.6892 70 

71 43,636.86 0.939053 0.062883 10,696.49 108,369.5 10.13131 98.70393 71 

72 40,977.33 0.937451 0.06459 9847.62 97,672.96 9.918434 100.8224 72 

73 38,414.25 0.935765 0.066391 9050.652 87,825.34 9.703759 103.0528 73 

74 35,946.71 0.933986 0.068294 8303.217 78,774.69 9.48725 105.4046 74 

75 33,573.73 0.932108 0.070306 7603.03 70,471.47 9.268867 107.8881 75 

76 31,294.35 0.930122 0.07244 6947.889 62,868.44 9.048568 110.5147 76 

77 29,107.56 0.928018 0.074704 6335.671 55,920.56 8.826304 113.2977 77 

78 27,012.35 0.925786 0.077112 5764.331 49,584.89 8.602019 116.2518 78 

79 25,007.65 0.923413 0.079678 5231.898 43,820.55 8.375651 119.3937 79 

80 23,092.4 0.920887 0.082418 4736.475 38,588.66 8.147125 122.7427 30 

81 21,265.48 0.918191 0.08535 4276.232 33,852.18 7.916357 126.3207 81 

82 19,525.77 0.915308 0.088495 3849.409 29,575.95 7.683245 130.1533 82 

83 17,872.09 0.912218 0.091876 3454.308 25,726.54 7.447669 134.2702 83 

84 16,303.24 0.908899 0.095522 3089.296 22,272.23 7.209484 138.7062 84 

85 14,817.99 0.905323 0.099464 2752.801 19,182.94 6.968515 143.5026 85 

86 13,415.07 0.90146 0.103739 2443.308 16,430.14 6.724546 148.7089 36 

87 12,093.15 0.897275 0.108393 2159.358 13,986.83 6.477309 154.3851 87 

88 10,850.89 0.892726 0.113476 1899.547 11,827.47 6.226468 160.6047 88 

89 9686.864 0.887762 0.119051 1662.524 9927.922 5.971597 167.4594 89 

90 8599.633 0.882327 0.125193 1446.986 8265.398 5.712147 175.0655 90 
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91 7587.685 0.876348 0.131992 1251.681 6818.412 5.447404 183.5737 91 

92 6649.455 0.869743 0.139558 1075.401 5566.731 5.176426 193.1835 92 

93 5783.314 0.862406 0.148029 916.982 4491.33 4.897948 204.1671 93 

94 4987.565 0.845001 0.157576 775.3048 3574.348 4.61025 216.908 94 

95 4214.5 0.834576 0.168417 642.2878 2799.044 4.357927 229.4669 95 

96 3517.318 0.82268 0.180832 525.5272 2156.756 4.103985 243.6656 96 

97 2893.626 0.808983 0.195189 423.8632 1631.229 3.848479 259.8429 97 

98 2340.894 0.793049 0.211977 336.1746 1207.366 3.591484 278.4365 98 

99 1856.444 0.774291 0.23187 261.3755 871.1909 3.3331 300.021 99 

100 1437.429 0.751898 0.255807 198.4125 609.8154 3.073472 325.3649 100 

101 1080.8 0.724725 0.285154 146.2608 411.4029 2.812803 355.5173 101 

102 783.2826 0.6911 0.321963 103.9204 265.142 2.551394 391.9425 102 

103 541.3263 0.648499 0.369471 70.41114 161.2216 2.289717 436.7352 103 

104 351.0496 0.592961 0.433095 44.76624 90.81045 2.028548 492.9635 104 

105 208.1588 0.518012 0.522626 26.02416 46.04421 1.769287 565.1995 105 

106 107.8287 0.41282 0.657758 13.21649 20.02004 1.514778 660.1627 106 

107 44.5138 0.260909 0.884744 5.349046 6.803557 1.27192 786.2131 107 

108 11.61405 0.064307 1.343584 1.368249 1.454511 1.063046 940.6933 108 

109 0.746861 1 2.744092 0.086262 0.086262 1 1000 109 

 
Impact on Mortality Rates 
As shown in Table 5 xy indλ  is lower than xy frailtyλ  during the early an-

nuitants ages. This can be attributed to negative effects of dependence accounted 
for in the frailty model, thereby accounting for lower-tail dependence that is 
present. Thereafter, there is an overestimation of mortality risk in the indepen-
dence model compared to the dependence model due to longevity risk (positive 
effects of dependence). Here, the upper-tail dependence has been accounted for. 
Thus the independence assumption underestimates deceleration in the mortality 
increase at very old ages. 

Impact on Annuity EPVs 
Consequently, comparing the annuity EPVs and payment streams shows that 

the independence assumptions lead to an overestimation of the insurer’s liability 
at the initial stages of the contract thereafter there is an underestimation of lia-
bility due to deceleration in the mortality increase at very old ages (longevity 
risk). 

5. Concluding Remarks 

Although there is rich literature in frailty dependence modeling, most applica-
tions have been in medical field. Various dependence models have been consi-
dered in actuarial literature; however, the focus has been on either the lower-tail 
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dependence or upper-tail dependence. 
This article presents the frailty dependence approach calibrated on the AKI 

2010 male and female published mortality rates due to limited joint-life mortali-
ty data-set available in the Kenyan market. This methodology offers greater 
flexibility than the lower-tail or upper-tail dependence models while preserving 
closed-form expressions for the net survival functions. Our strategy is to apply 
the conditional independence assumption in a positive stable frailty approach to 
account for lower and upper-tail dependence. A positive stable frailty approach 
is then applied to construct dependence life-tables. The frailty joint-life mortality 
rates are proposed to generate life annuity payment streams in the competitive 
Kenyan market. 

The conclusion reached is that comparing the independence mortality as-
sumption with the dependence frailty model shows a decrease in the insurer’s 
expected liability at the early annuitant’s ages followed by an increase at later 
ages when dependence is accounted for. This can be explained by the fact that 
the frail couples shall have died during the early stages of the contract, thereafter 
deceleration in the mortality increase at very old ages (longevity risk), unders-
coring the importance of dependence modeling in pricing insurance products. 
Thus, assuming the joint lives to be independent could lead to biased annuity 
valuations. 
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