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Abstract 
In this paper we exhibit some results concerning operations with higher-order 
types of asymptotic variation, results lacking in the general theory developed 
in previous papers, namely: 1) we show to what extent the standard elemen-
tary factorization of a regularly-varying function holds true for higher-order 
variation; 2) we exhibit an important class of higher-order regularly-varying 
functions requiring no restrictions on the indexes when performing multipli-
cation; 3) we get non-obvious results on the types of higher-order variation 
for linear combinations. In addition, partial results are obtained concerning 
the type of higher-order variation of the inverse of a regularly-varying func-
tion whose index belongs to a set of “exceptional” values. 
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1. Introduction 

In three previous papers [1] [2] [3] we developed a general theory of higher-order 
types of asymptotic variation for functions differentiable a certain number of 
times on some interval [ ),T +∞ , spending much effort on results about opera-
tions with such classes of functions in [2] and pointing out some elementary ap-
plications of the general theory to integrals and sums. Subsequently, in [4] [5], 
we applied the theory to the difficult problem of evaluating the exact asymptotic 
behaviors of Wronskians whose entries belong to one or more of the classes of 
regularly-, smoothly- or rapidly-varying functions. In turn, these results have 
been applied to the theory of finite asymptotic expansions in the real domain. 
Going further in this direction, namely trying to evaluate the principal part of 
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certain Hankel determinants, we became aware of some gaps in the long list of 
results concerning operations with higher-order types of variation: products, li-
near combinations and inversion. In the present paper, we prove some comple-
mentary results that will provide useful in some applications to be developed 
elsewhere. 

For the reader’s convenience we report the general notations and essential 
facts of the theory, already listed in [[3]: pp. 435-438] and [[4]: pp. 6-8]. 

General notations. 
- { }: 1, 2,=  ; { }: 0, 1, 2,= ± ±  ; 
- real n:  li e= ; { }extended real line :≡ = ±∞  ; 
- ( ) ( )0f AC I AC I f∈ ≡ ⇔  is absolutely continuous on each compact sub-

interval of the interval I; 
- ( ) ( ) ( )kkf AC I f AC I∈ ⇔ ∈ ; 
- For ( )kf AC I∈  we write “ ( ) ( )

0

1lim k
x x f x+
→ ” meaning that x runs through 

the points wherein ( )1kf +  exists as a finite number; ( ) ( ): limxf f x→+∞+∞ = . 
- The differentiation operators: ( ) ( ):Df x f x′= ; ( ) ( ) ( ): kkD f x f x= . 
- The logarithmic derivative: :D f f f′=



. 
- Hardy’s notations: 

“ ( ) ( ) 0,f x g x x x→ ” or, equivalently “ ( ) ( ) 0,g x f x x x→ ” stands for 
( ) ( )( ) 0,f x o g x x x= → ; 
“ ( ) ( ) 0,f x g x x x→ ” or, equivalently “ ( ) ( ) 0,g x f x x x→ ” stands for 
( ) ( )( ) 0,f x O g x x x= → . 

- The relation of “asymptotic similarity”, “ ( ) ( ) 0,f x g x x x→ ” means that  

( ) ( ) ( )
( )

1 2 0in a deleted neighborhood of ,

constant 0 .i

c g x f x c g x x x

c

 ≤ ≤ ∀


= >
   (1.1) 

- The relation of “asymptotic equivalence”: 
( ) ( ) 0,f x g x x x→

 stands for ( ) ( ) ( ) 01 1 ,f x g x o x x= + →   . 
- The non-standard notation:  

( ) ( )( ) ( )
( ) ( ) ( )

( )
0

0def
0

,

near ,
= , , lim ;

x x x

f x h x g x x x
f x g x x x x h x

→ ∈

= ∀+∞ → ∈ ⇔ = +∞ 

   (1.2) 

and a similar definition for the notation ( ) ( )( ) ( )0,f x g x x x x= −∞ → ∈  . In 
particular:  

( ) ( ) ( ) ( )
0

def
0 ,

1 , , lim .
x x x

f x x x x f x
→ ∈

= ±∞ → ∈ ⇔ = ±∞


          (1.3) 

- Factorial powers:  

( ) ( )0 1: 1; : ; : 1 1 ; , ;k k kα α α α α α α α= = = − − + ∈ ∈         (1.4) 

where kα  is termed the “k-th falling ( ≡  decreasing) factorial power of α ”. 
Notice that we have defined 00 : 1= . 
- Everywhere the symbol “ log x ” stands for “ ( )loge x ”:= “the natural loga-
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rithm” of x. 
Classes of functions and their main characterizations.  
(I) (Index of asymptotic variation). If [ ),f AC T∈ +∞ , f  ultimately > 0, its 

index of asymptotic variation at +∞  is defined as the value of the following 
limit (assumed to exist):  

( ) ( )
( )

{ } ( )
( )

0 slow variation at ,
lim \ 0 regular variation at ,

rapid variation at .
x

xf x f x α
→+∞

+∞
′ = ∈ +∞
±∞ +∞

      (1.5) 

In this case, we use the notation “ ( )f α∈ +∞ ” with the appropriate value of 
α ∈ .  

(II) (Higher-order regular variation). A function [ )1 , , 1nf AC T n−∈ +∞ ≥  is 
termed “regularly varying at +∞  (in the strong sense) of order n” if each of the 
functions ( )1, , , nf f f −′

  never vanishes on a neighborhood of +∞  and is 
regularly varying at +∞  with its own index of variation. If this is the case we 
use notation  

( ){ }of order , : the index of .f n fα α∈ +∞ = ∈ “ ”          (1.6) 

Notation “ ( ){ }of exact orderf nα∈ +∞ ” implies that f  is not regularly 
varying of order 1n≥ + .  

If ( ){ }of order , 1f n nα∈ +∞ ≥ , then relations  
( ) ( ) ( ) ( ) ( ) ( )

( )
1 1

, , 1 ,

k k k

k k k

f x f x k x o x

x o x x k n

α α α

α

− −

− −

 = − − + +


≡ + → +∞ ≤ ≤



        (1.7) 

hold true whichever α ∈  may be. The indexes of the derivatives are subject 
to the restrictions specified in [[1]: Prop. 2.6, p. 796]; in particular:  

( ){ }
( ) ( )( )
( ) ( ) ( )

1

1
0 1

1

,

of order , 2, 1 1

with 1;

f x o x f x

f n n f x x f x oα

α

−

−

 ′ =
 ′′ ′∈ +∞ ≥ ⇒ = +   
 ≤ −

  (1.8) 

where 1α  is the index of f ′  and the index of ( )kf  is “ 1 1kα − + ” for 2k ≥ . 
Notice that the last derivative involved in (1.7), i.e. ( )nf , may have an arbi-

trary sign if 0nα = . 
The following partial converse of relations in (1.7) holds. If  

[ )1 , , 2nf AC T n−∈ +∞ ≥ , then ( ){ }of orderf nα∈ +∞  for some real num-
ber { }0,1, , 2nα ∉ −  iff the following relations hold true:  

( ) ( ) ( ) ( ) , , 1 ,k k k
kf x f x x o x x k nγ − −= + → +∞ ≤ ≤        (1.9) 

with suitable constants kγ  such that  

( )1 1, , 0; no restriction on .n nγ γ γ− ≠            (1.10) 

If this is the case then: , 1k
k k nγ α= ≤ ≤ .  

(III) (Smooth variation). The preceding partial converse justifies the following 
concept.  
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A function [ )1 , , 1nf AC T n−∈ +∞ ≥ , ( ) 0f x ≠  x∀  large enough, is termed 
“smoothly varying at +∞  of order n and index α ” if the relations in (1.7), re-
ferred to f , are satisfied. We denote this class by: { ( )α +∞  of order n}. 
The following inclusions obtain:  

( ){ } ( ){ }
{ }

( ){ } ( ){ }

of order of order

if 1 or 2, 0,1, , 2 ;

of order of order otherwise;

n n

n n n

n n

α α

α α

α

 +∞ = +∞
 = ≥ ≠ −


+∞ +∞





 

 

    (1.11) 

the reason for the last strict inclusion being that some derivatives of a smooth-
ly-varying function may vanish infinitely often or change sign infinitely often. 
The following sets of asymptotic relations, for a fixed α ∈ , are equivalent to 
each other:  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 , , 1 ;kkx f x f x k o x k nα α α= − − + + → +∞ ≤ ≤    (1.12) 

( ) ( ) ( )

( ) ( )( )( ) ( )
1 , ;

, , 1 .
k k

xf x f x o x

xf x f x o x x k n

α
−

′ = + → +∞


′ = → +∞ ≤ ≤
           (1.13) 

(IV) (Rapid variation of first order). A function [ )1 ,f AC T∈ +∞  is called 
“rapidly varying at +∞  of order 1 (in the strong restricted sense)” if:  

( ) ( )
( ) ( ) ( )

( ) ( )( ) ( )

, 0 large enough;
, ;

1 , ;

f x f x x
f x f x o x x

f x f x o x

′ ≠ ∀
 ′ = → +∞
 ′′ = → +∞

          (1.14a) 

or, equivalently, if:  

( ) ( )
( ) ( ) ( ) ( )

, 0 large enough;
, ;

f x f x x
f x f x f x f x x

′ ≠ ∀
 ′′ ′ ′ → +∞ 

       (1.14b) 

which imply ( ) 0f x′′ ≠  for almost all x large enough. The asymptotic relation 
in (1.14b) is more conveniently written as  

( ) ( ) ( ) ( )( )2
, .f x f x f x f x x′′ ′ → +∞

           (1.14c) 

(V) (Rapid variation of higher order). A function [ ),nf AC T∈ +∞  is called 
“rapidly varying at +∞  of order 2n ≥  (in the strong restricted sense)” if all 
the functions ( )1, , , nf f f −′

  are rapidly varying at +∞  in the above-specified 
sense and this amounts to say that the following conditions hold true as x → +∞ :  

( ) ( ) 0 large enough and 0 ;kf x x k n≠ ∀ ≤ ≤           (1.15) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1; ; ; ;n nf x f x o x f x f x o x f x f x o x−′ ′ ′′= = =  (1.16) 

( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )( ) ( )1

1 ; 1 ; ;

1 ;n n

f x f x o f x f x o

f x f x o−

 ′ ′′ ′ ′′= =
 ′ =



      (1.17) 

wherein relations in (1.17) obviously imply those in (1.16). 
If f  is rapidly varying at +∞  of order 2n ≥  in the previous sense then all 
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the functions ( )1, , , nf f f −′
  belong to the same class, either ( )−∞ +∞  or 

( )+∞ +∞ , hence we shall use notation ( ){ }of orderf n±∞∈ +∞  to denote 
that f  enjoys the properties in (1.15)-(1.16)-(1.17) plus the corresponding 
value ±∞  of the limit in (1.5). For an [ ),nf AC T∈ +∞  satisfying (1.15) we 
have the following characterizations: 

<< Relation  

( ){ } ( ){ }of order of orderf n n+∞ −∞∈ +∞ +∞   

holds true if and only if the following equivalent sets of conditions are satisfied:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )( )

1 1 ,

i.e. , , 1 ;

n n n n

k

f x f x f x f x f x f x f x f x

D f x D f x x k n

− + ′ ′′ ′


→ +∞ ≤ ≤  

   



  

(1.18) 

( ) ( ) ( ) ( )( ) ( ) ( )
22 1 , , 0 1;k k kf x f x f x x k n+ + → +∞ ≤ ≤ −     (1.19) 

( ) ( ) ( ) ( ) ( )( ) ( )( )( ) 222 , ,

0 1.

kkkf x f x f x f x D f x x

k n

+++ ′ ≡ → +∞

 ≤ ≤ −



  (1.20) 

It follows that even ( ) ( )1 0nf x+ ≠  for almost all x large enough. >>  
Remarks. (I) The concepts of regular or smooth variation of order n involve 

derivatives up to order n, whereas our restricted concept of rapid variation of 
order n involves derivatives up to order 1n + .  

(II) In the classical definitions of regular or rapid variation, even in the weak 
Karamata’sense, f  is assumed ultimately strictly positive whereas in our defi-
nition of higher-order variation f  is allowed to be either >0 or <0, the essen-
tial point being that it ultimately assumes only one strict sign. The above-added 
locution in parenthesis “(in the strong sense)” is meant to distinguish our theo-
ries from the classical ones wherein the limits in (1.5) are replaced by weaker 
asymptotic functional relations.  

(III) To be consistent with the classical theory, notation “ ( )f α∈ +∞ ” is 
used for an (ultimately) strictly positive function whereas, when specifying the 
indexes of higher-order variation of a function f  and its derivatives, we write 
“ ( ) ( )kf α∈ +∞ ” with the absolute values. 

With the following notation for the iterated natural logarithms:  

( ) ((( ) )) ( )

( )0

: log log log , 1, defined for large enough ;

: ;

k

k

x x k x

x x

 = ≥


 =

  





 (1.21) 

we have that:  
- Typical functions in the class ( ){ }of any order ,nα α+∞ ∈ ∈   are:  

( )( ) ( )( ) ( )( )( )31 2

1 1 2
exp log exp ,

, , , ; 0 1; 0 ;

k kk
pp p

k k k k
k k k

k k k k k

x x c x d x

c d

β δγα

α β γ δ
= = =

     
⋅ ⋅ ⋅     

      
 ∈ < < <

∏ ∏ ∏ 



 (1.22) 
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provided that they do not reduce to a power ,px p∈ , which belongs to the 
class ( ){ }of exact order 1p p+∞ + . 
- Typical functions in the classes ( ){ }of any order n±∞ +∞ ∈  are:  

( ) ( )( ) ( )

( ){ }

32

1 2
exp log exp ,

of any order ; , ; 1; 0 ;

k k
pp

k k
k k

k k k k

R x c x d x

R n c d

γ δ
α

α α γ δ

= =

   
⋅ ⋅       


∈ +∞ ∈ ∈ > <

∏ ∏

 

    (1.23) 

where the pertinent class, either ( ){ }−∞ +∞  or ( ){ }+∞ +∞  is determined by 
the behavior of the function as x → +∞ , according as it converges to zero or 
diverges to ±∞ . 
- Each of the following functions  

( ); e ; e sin ;x xx x x xα α α α− −+ + ∈                (1.24) 

belongs to the class “ ( ){ }of any order nα +∞ ∈ ” for any α ∈ . But, for 
{ }0α ∈   they belong to the class ( ){ }of exact order 1nα +∞ + . 

Here is a brief summary of the results. In §2 we study to what extent the ele-
mentary factorization  

( ) ( ) ( ) ( ){ }0, 0, , ,f f x x xα
α α∈ +∞ ≠ ⇔ ≡ ∈ +∞     

has an analogue for higher-order variation. After remarking that such an analo-
gue does indeed exist for higher-order smoothly-varying functions and that the 
mere inference from right to left holds true for higher-order regularly-varying 
functions under certain restrictions on the values of α , we prove that no such 
restrictions are needed for an important class of functions including those in 
(1.22). This very class of higher-order regularly-varying functions does not re-
quire any restrictions on the indexes when performing the operation of multip-
lication. In §3 we obtain non-obvious results on the types of higher-order varia-
tion of linear combinations (of arbitrary signs) of various functions. In §4 we list 
a number of combinatorial identities elementarily inferred from the formulas for 
higher derivatives of composite or inverse functions and show how these identi-
ties may simplify some proofs of previous results about operations with high-
er-order types of variation. Finally, in §5 there is a discussion about the order of 
regular variation of the inverse of a higher-order regularly-varying function, point-
ing out significant difficulties for certain exceptional values of the indexes. Apart 
from smooth variation, results involving other types of asymptotic variations are 
obtained via direct analytic computations and estimates of the higher-order de-
rivatives as in [[2]: §7].  

Applications of the mentioned results to determining the asymptotic beha-
viors of certain Hankel determinants are currently being developed by the au-
thor, whereas future applications of the whole theory of higher-order types of 
asymptotic variation to ordinary or partial differential equations are hoped to be 
studied by the present or other authors.  
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2. Product of Higher-Order Regularly-Varying Functions 

As we know from [[2]: §7.2] the product of two or more regularly-varying func-
tions of order 2n ≥  is again of order n only under some restrictions on the in-
dexes of variation, restrictions quite unnatural in applications; so it is useful to 
point out some classes of functions wherein such restrictions are not needed, 
above all because these classes include most of the functions of interest in asymp-
totic questions as those in (1.22). A related question concerns the factorization 
of a higher-order regularly-varying function which we are going to treat first. 

2.1. Factoring Out a Power in a Higher-Order Regularly-Varying  
Function 

An elementary basic property in regular variation states that:  

( ) ( ) ( ) ( ){ }0, 0, , ,f f x x xα
α α∈ +∞ ≠ ⇔ ≡ ∈ +∞          (2.1) 

and, for higher-order smooth variation, one of the properties in [[2]: formula 
(7.3), p. 820] implies the analogous property:  

( ){ }
( ) ( )

( ){ }0

of order , 0, 1,

of order .

f n n

f x x x

n

α

α

α∈ +∞ ≠ ≥

 ≡⇔ 
∈ +∞





 

             (2.2) 

But, in general, the corresponding equivalence does not hold true for regular 
variation of order 2n ≥ . As noticed in [[2]: Remark 3, p. 824], and consistently 
with [[2]: Prop. 7.3-(I), p. 821]:  

( ){ }{ } ( ) ( ){ }0of order , 0 of order ;f n x f x nα
α α −∈ +∞ ≠ ⇒ ∈ +∞/   (2.3) 

( ){ } ( ) ( ){ }
0

of order
of order

if 0,1, , 2.

x x n
n

n

α
α

α

 ∈ +∞∈ +∞ ⇒ 
≠ − 

 
      (2.4) 

Examples for (2.3) are provided by powers times the slowly-varying function 
( ) ( )( ): 2 sin log , 0 1L x x β β= + < < :  

( ) ( ) ( ){ } { }

( ) ( ) ( ){ }
( ) ( ){ }

0

0

: of any order if 0 ;

of exact order 1 ;

of exact order 1 ;n

f x x L x n

x f x L x

x f x n

α
α

α

α

α

−

−

 = ∈ +∞ ∈ ∉

 ≡ ∈ +∞

 ∈ +∞ +

 





  (2.5) 

which show that the statement in (2.3) cannot be improved no matter what re-
strictions on the exponent α . On the other part a counterexample for the infe-
rence in (2.4) is provided by:  

( ) ( ){ }

( )
( ){ }
( ){ }

0: 1 of any order whatever 0;

of exact order 1 if ,
1

of any order if .

p

pp p

p

g x x n p

p p
x g x x

n p

− = + ∈ +∞ ∈ >

  +∞ + ∈ ≡ + ∈ 
 +∞ ∈ ∉





 







  (2.6) 

However, for the function ( ) : logx x=  which belongs to the class 
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( ){ }0 of any order n+∞ , it is easily checked that the inference in (2.4) is true 
with no restriction on α , and this leads to conjecture that the same happens for 
the powers of iterated logarithms and their products appearing in (1.22). Such a 
result would be quite convenient in asymptotic analysis and is easily inferred 
from the formulas for certain higher derivatives collected in the following  

Lemma 2.1. If ( ) ( ) , 0 1, 2k
k k n n−∈ +∞ ≤ ≤ − ≥  , then the following rela-

tions hold true:  

( )( ) ( ) { }
( )

, , if 0 and 1 ;

, if and 1 ;

k k
k

k k

x x x k n
D x x

x x x k

α
α

α

α α

α α α

−

−

 → +∞ ∉ ≤ ≤


→ +∞ ∈ ≤ ≤














   (2.7) 

( )( ) ( ) ( )( )1 1! , , if ;D x x x o x x xα α α α+ −′ = → +∞ ∈         (2.8) 

( )( ) ( ) ( ) ( )1 11 ! 1 ! , ,

if , 1,

mm mD x x m x x x

m

α α α

α

−+ − ′− − → +∞


∈ > 

 

      (2.9) 

and obviously 1m nα + ≤ + . For the special case of ( ) : log ,px x x p= ∈ , we 
have the elementary formulas:  

( )
( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( ) ( )

1 1

2 2 2 2

1

log log ;

log 1 log 1 ;

log log constant , 1 1;

log !log constant;

log ! log 1 ! 1 ! , 1;

p p p

p p p p

k p k p k p k

p p

mp m p m m

D x x px x x

D x x p p x x px p x

D x x p x x x k p

D x x p x

D x x p D x p m x m

− −

− − −

− −

−+ −

 = +

 = − + + −

 = + ⋅ ≤ ≤ −


= +

 = − − ≥ 

  (2.10) 

the exact values of the constants being not presently needed.  
Proposition 2.2. The following conditions  

( ) ( )
( ) ( ) { }

, 0 1, 2,

: , \ 0 ,

k
k k n n

f x x xα α

−
 ∈ +∞ ≤ ≤ − ≥

 = ∈ 

 


             (2.11a) 

imply:  

( ){ }
( ) ( )

of order ,

, 0 1.k
k

f n

f k n

α

α −

 ∈ +∞


∈ +∞ ≤ ≤ −




               (2.11b) 

We explicitly point out that the statement  

( ){ }
( ) ( ) { }

( ){ }0 of order ,
of order ,

: , \ 0

n
f n

f x x x
αα α

 ∈ +∞  ⇒ ∈ +∞ 
= ∈  

 



 

is in general false without specifying the indexes of variation for the derivatives 
of  , as shown by the above function ( ) : 1 ,pg x x p−= + ∈ , which belongs to 
the class ( ){ }0 of any order n+∞  whereas ( )px g x  belongs to the class 

( ){ }of exact order 1p p+∞ + .  
Proofs of Lemma 2.1 and Proposition 2.2. First case: { }0α ∉  . An indi-
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rect proof of the inference “(2.11a) ⇒  (2.11b)” is to be found in [[2]: Prop. 
7.3-(I), p. 821]. For a direct proof notice that the assumptions on   state ex-
actly that, as x → +∞ :  

( ) ( ) ( )( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
0

1

3 1 2

111 1

; , 0 ultimately;

;

2 2! ;

1 1 1 ! ,
2 ;

kk k k

x o x L x x

x x x

x x x x x

x k x x k x x
k n

−

−

− −

−−− −

 ′ ′∈ +∞ = ≠


′′ ′ −

 ′′ ′−




′− − − −
 ≤ ≤



   

 

  

  



 

 

      (2.12) 

so that by Leibniz’s formula, and taking account that 0i iα ≠ ∀ :  

( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

1 1 1

0
1 1 ! 1 1 ;

k
k ik i i

i

k k i i k ik k i

i

k
D x x x x

i

k
x x k i x x o

i

α α

αα

α

α α

−−

=

−
− − − + − −−

=

 
=  

 
   ′= + − − − +        

∑

∑

 

 

 (2.13) 

but the last sum is “ ( )( )ko x xα −  ” and 0kα ≠ , and so we get:  

( )( ) ( ) , 1 ,k k kD x x x x k nα αα − ≤ ≤                (2.14) 

which is the first relation in (2.7). This implies:  

( )( ) ( )( ) ( )1 1, 0 1,k kD x x D x x k x k nα α α+ −− ≤ ≤ −    

which is our claim.  
Second case: ( ) ( ): ,pf x x x p= ∈ . For the special choice ( ) : logpx x x=  

formulas in (2.10) imply that “ ( ){ }log of any orderp
px x n∈ +∞ ” with 

( ) ( )logk p
p kD x x −∈ +∞ , and we shall show that the case of a generic   

may be reduced to this special choice. If k p≤  (and obviously k n≤ ) then in 
the calculations in (2.13), with α  replaced by p, we have 0kp ≠  so that:  

( )( ) ( ) , 1 ,k p k p kD x x p x x k p− ≤ ≤   

which is the second relation in (2.7) and implies that ( )( ) ( )k p
p kD x x −∈ +∞  , 

1 1k p≤ ≤ − . For the principal parts of the derivatives of order higher than p we 
have ( ) 0p m pD x+ ≡  for 1m ≥  so that:  

( )( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( ) ( )

0

(2.12)

1 11 1 ! 1 1

p m
ip m p p m i p

i

p m
ip m i p

i m

p m
ip m i p i

i m

p m
D x x D x x

i

p m
D x x

i

p m
D x i x x o

i

+
+ + −

=

+
+ −

=

+
−+ − −

=

+ 
=  

 
+ 

≡ = 
 
 +   ′= − − +        

=

∑

∑

∑



 





   (2.15) 

Now, apart from the common factor ( )x x′ , each term inside the last sum is 
of type m

ic x− , the power being independent of i ; hence it is legitimate to factor 
out the expression ( )1 1o+    provided that the new sum equals a non-zero 
constant times mx− . The following further steps are then correct:  

 

DOI: 10.4236/apm.2021.118046 695 Advances in Pure Mathematics 
 

https://doi.org/10.4236/apm.2021.118046


A. Granata 
 

( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

(2.10)

0

log 1 1

log 1 1

log 1 1 , 1,

p m p

p m
p m i p i

i m

p m
p m i p i

i

p m p

D x x

p m
x x D x D x o

i

p m
x x D x D x o

i

D x x x x o m

+

+
+ −

=

+
+ −

=

+

=

 +   ′= ⋅ +        
 +   ′≡ ⋅ +        

′= ⋅ + ≥  

∑

∑









      (2.16) 

where the principal part of ( )logp m pD x x+  is reported in the last line in (2.10). 
This proves relations in (2.8), (2.9) and from these relations, the inference 
“(2.11a) ⇒  (2.11b)” is straightforwardly obtained, namely:  

( )( ) ( ) ( )( ) ( )( ) ( )1 1
0! i.e. ;p p p pD x x p x o x x D x x+ −′ = ∈ +∞      (2.17) 

( )( ) ( )( ) ( ) ( )
( )

1 1

1

log log

1 , ,

p m p p m p p m p p m pD x x D x x D x x D x x

m x x

+ + − + + −

−− − → +∞

  



 (2.18) 

for all the values of 1m >  admitted by the assumptions.                  □ 
Proposition 2.3. If   satisfies the assumptions in (2.11a) and if P is a linear 

combination of real powers,  

( ) 1
1 1: , , 0 ,m

m m iP x a x a x a iαα α α= + + > > ≠ ∀          (2.19) 

then  

( )( ) ( )
1

, 0 1.k
kP k nα −⋅ ∈ +∞ ≤ ≤ −               (2.20) 

Proof. By Proposition 2.2, and whatever the iα ’s, we have the relations ana-
logous to those in (2.12):  

( )( ) ( )( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( )( )( ) ( ) ( ) ( )

11

21

1 1 ;

1 1 1 1 ;

1 , 2 .

i i i

i i i

i i

i i

i i i

k kk
i

x x x x x o x x o

x x x x x o x x o

x x x x o k n

α α α

α α α

α α

α α

α α α

α

−−

−−

−

 ′ = + = +      


′′ ′    = − + = − +   


  = + ≤ ≤ 



  

  

 

  

(2.21) 

Now, if ( )1 0jα ≠  for some j we also have ( )1 0kα ≠  for 0 k j≤ ≤ , and:  

( )( )( )

( )( )( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )

1

1

1 11

1 1
1 1

11

11

1 1

1
1

1

1

1 1

1 1

,

ii

ii

k kmm k
i ii

k km km
i ii

k k

ii

i

k k

i

a x x oa x x

a x x oa x x

a x x o

a x x o

k x

αα

αα

α

α

α

α

α

α

α

+ +− −

−

+

==

=

− −

−

−

=

 + =
 + 

+  =
+  

−

∑∑
∑∑











   (2.22) 

proving relations in (2.20) for 0 1k j≤ ≤ − . If ( ) 1
1 0jα − ≠  and ( )1 0jα =  we 

are just in the situation of the second case in the proof of Proposition 2.2 with 

1j α= ∈  and we need the principal parts of the derivatives of order 1α>  of 
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the terms in the above sums. Using the last equality in (2.16) with p replaced by 

1α , we get:  

( )
( )

( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

( ) ( )

1
1

1

1 1

1 1

1

1

log 1 1

log 1 1

log ,

i i

i i i

qm m q
i i

i i

m
q

i
i

q

a x x a D x x x x o

a D x x x x o

a D x x x x

α
αα α

α α α α

α α

+
+

= =

+ − +

=

+

  ′= ⋅ +     

′≡ ⋅ +  

′⋅

∑ ∑

∑

 





 (2.23) 

having used the following estimates inferred from the last line in (2.10):  
( ) ( ) ( )

( )( )
1 1

1 1

,log

log for 2.

i i iiq q
i q

q

D x x c x

o D x x i

α α α α αα

α α

+ − + − − −

+= ≥



       (2.24) 

The conclusion straightforwardly follows as in the last lines of the proof of 
Proposition 2.2.                                                    □ 

2.2. Product of Higher-Order Regularly-Varying Functions  

We know that in general, under the assumptions  

( ){ } ( ){ }of order , of order ,f n g nα β∈ +∞ ∈ +∞         (2.25) 

no claim may be inferred concerning the order of higher variation of the product 
fg  without the restriction “ 0,1, , 2nα β+ ≠ − ”. Apart from the counterex-

amples in [[2]: p.824], a most simple counterexample (playing a role in the next 
proposition) is the product ( )1f f⋅  where:  

( ){ }
( ){ }

( ) ( ){ }0

of any order ;

1 of any order ;

1 of exact order 1 ,

f n

f n

f f

α

α−

 ∈ +∞ ∈
 ∈ +∞ ∈


⋅ ∈ +∞











             (2.26) 

as, e.g., ( ) :f x xα=  with α ∉ , or ( ) : logf x x= . We point out two addition-
al conditions each of which grants a precise statement concerning the high-
er-order variation of the product with no a-priori restriction on the indexes.  

Proposition 2.4. (I) (Product of higher-order slowly-varying functions.) The 
inference  

( ) ( ) ( ){ }
( ){ }

( )( ) ( )
0

, , 0 1

of order ,

, 0 1,

k k
k

k
k

f g k n

f g n

f g k n

−

−

∈ +∞ ≤ ≤ −

 ⋅ ∈ +∞⇒ 
⋅ ∈ +∞ ≤ ≤ −







            (2.27) 

holds true under any of the following two additional conditions:  

( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

either , , or

sign sign ultimately.

f x g x f x g x x

f x g x f x g x

′ ′ → +∞
 ′ ′=



       (2.28) 

(II) (Product of higher-order regularly-varying functions.) If  
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( ) ( ) ( ){ }
( ) ( ) ( ){ }

1

2

: of order ,
, ,

: of order ,

f x x f x n

f x x g x n

α
α

β
β

α β
 = ∈ +∞ ∈

= ∈ +∞





        (2.29) 

with ,f g  satisfying the assumptions in (2.27), then:  

( ){ }
( )( ) ( )

1 2

1 2

of order ,

, 0 1.k
k

f f n

f f k n

α β

α β

+

+ −

 ⋅ ∈ +∞


⋅ ∈ +∞ ≤ ≤ −




            (2.30) 

The previously-mentioned case f g⋅ , with 1g f= , is a good counterexam-
ple if both conditions in (2.28) are lacking because of the identity f g f g′ ′⋅ ≡ − ⋅ .  

Proof. Part (II) follows at once from part (I) and Proposition 2.2. We have to 
prove the property in (2.27) concerning ( )( )kf g⋅  for 1k ≥ , for 0k =  being 
trivial. The assumptions imply the relations, like those in (2.12):  

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1

1 1

1 1

, ,

1 1 ! , 2 ,

1 1 ! , 2 ;

kk k

kk k

f x o x f x g x o x g x

f x k x f x k n

g x k x g x k n

− −

− −

− −

 ′ ′= =

 ′− − ≤ ≤


′ − − ≤ ≤






         (2.31) 

and, sometimes omitting the argument of the functions, we write:  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
1

0 1
,

k

k kk i k i k k i k i

i iR

k k
fg f g fg f g f g

i i

−
− −

= =

   
= = + +   

   
∑ ∑



     (2.32) 

where:  

( ) ( ) ( ) [ ] ( ) ( ) ( )1 11 11 1 ! 1 1 ! .k kk k
kR x k x f g fg k x fg− −− − ′′ ′− − + − − 

  (2.33) 

For each term into the sum we have:  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )
( ) ( )( )

1

1 1

1

,

,

k
i k i i k i

k

o x f x g x
f x g x O x f x x g x

o x f x g x

−

− − − +

−

 ′′ ′= ⋅ = 
′

  (2.34) 

and it follows that for each { }1, , 1i k∈ −  either:  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1or viceversa ;i k i kf g fg f x g x o x f x g x− − ′′ ′ ⇒ =  
 

  (2.35) 

or:  

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( ) ( ) ( )( )

1

1 1

sign sign

.

i k i k

k k

f x g x f x g x

f x g x o x f x g x f x g x

o x f x g x f x g x o x f x g x

− −

− −

′ ′=

′ ′⇒ = +

 ′′ ′= + =  
 

  (2.36) 

In any case, from (2.32)-(2.33) we get the relations  

( )( ) ( ) ( ) ( )1 11 1 ! , ,k k kfg k x fg x− − ′− − → +∞
           (2.37) 

which implies the thesis.                                             □ 
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3. Index of Higher-Order Variation for Linear Combinations 

The exact evaluation of the index of variation of a linear combination of two 
functions is in general possible only under some restrictions: see [[1]: Prop. 
2.1-(iii), p. 784, claims in (2.27) and in the subsequent line] for regular variation, 
and [[2]: relations in (7.4), p. 820] for higher-order smooth variation. For linear 
combinations of more than two functions we gave a result in [[1]: Prop. 2.3-(II), 
p. 789], under “the least possible restrictions”, including regular or rapid varia-
tion. Extensions to more than two functions with higher-order regular or rapid 
variation require specifications in the proofs or in the statement. We give some 
extensions needed in applications. 

3.1. Linear Combinations of Higher-Order Smoothly-Varying  
Functions  

We first rewrite the mentioned results in [[2]: relations in (7.4)] as we must refer 
to them several times.  

Lemma 3.1. If ( ){ }of orderf nα∈ +∞  and ( ){ }of orderg nβ∈ +∞  
then:  

( ) ( ){ }1 2 max ,

1 2

of order

, , , , , 0;i

c f c g n

c c c
α β

α β α β

 + ∈ +∞

∀ ∈ ≠ ≠ 


            (3.1a) 

( ){ }
{ } ( ) ( ){ }

1 2 of order if and

either 0; , 0 or 0; , .i i

c f c g n

c f g c f x g x x
α α β + ∈ +∞ =


> > ≠ → +∞ 


    (3.1b) 

And the following is the extension to more than two functions.  
Proposition 3.2. Let  

( ){ }of order , 1 .
iif n i pα∈ +∞ ≤ ≤                (3.2) 

(I) If “ ( )0, 0i ic f x> >  ultimately”, and “ 1 2 3 pα α α α≥ ≥ ≥ ≥ ” then:  

( ){ }1
1

of order .
p

i i
i

c f nα
=

∈ +∞∑                  (3.3) 

(II) If “ ( ) ( )1 , , 2if x f x x i p→ +∞ ≤ ≤ ” a condition granted by the restric-
tion “ 1 2 pα α α> ≥ ≥ ”, then:  

( ){ }1
1

of order constant 0.
p

i i i
i

c f n cα
=

∈ +∞ ∀ = ≠∑         (3.4) 

The import of this last statement is that there is one function, namely 1f , 
with the maximal growth-order and, though we cannot be sure that the linear 
combination of 2 , , pf f  is smoothly varying of order n (whatever the index 
may be) we have the desired conclusion.  

(III) In particular, in either case and for 2n ≥ :  

( ){ }11
1

0,1, , 2, of order .
p

i i
i

n c f nαα
=

≠ − ⇒ ∈ +∞∑         (3.5) 

Proof. Both parts (I), (II) may be proved repeatedly applying Lemma 3.1 so 
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inferring, step by step, that:  

( ){ }
( )( )

11 1 2 2 2

2 1 1

of order ;

, 2 , for part II ;i

c f c f g n

g c f f i p

α
 + ≡ ∈ +∞


≤ ≤ 





 

( ){ }
( )( )

12 3 3 3

3 2

of order ;

, for part II ;

g c f g n

g g

α
 + ≡ ∈ +∞







 

and so on, arriving at the conclusion in (3.3) or (3.4). Part (III) follows from the 
first relation in (1.11).                                               □ 

Remarks 1) Condition “ 1 , 2if f i p≤ ≤ ” in part (II) is essential in some 
applications wherein the more stringent condition “ 1 2 pf f f  ” may not 
be satisfied.  

2) For the conclusion about regular variation in (3.5) the restrictions on 1α  
are necessary as shown by the following simple counterexamples, see [[1]: Re-
mark 2, p. 798]:  

( ){ } { }
( ){ }
( ){ }

1
1

1
2

1 2

: of any order , 0 ;

: of any order ;

2 of exact order 1 ;

m
m

m
m

m
m

f x x n m

f x x n

f f x m

−

−

 = + ∈ +∞ ∈
 = − ∈ +∞


+ = ∈ +∞ +







 

which is a counterexample for part (I) and 2n ≥ ;  

( ){ } { }
( ){ }
( ){ }

1
1

1
2 1

1 2

: of any order , 0 ;

: of any order ;

of exact order 1 ;

m
m

m
m

f x x n m

f x n

f f x m

−

−
−

 = + ∈ +∞ ∈
 = − ∈ +∞


+ = ∈ +∞ +







 

which is a counterexample for part (II) and 2n ≥ .  
3) If in (3.2) we assume regular (instead of smooth) variation, i.e. 

( ){ }of order
iif nα∈ +∞ , and also 1 , 2if f i p≤ ≤ , then a direct proof of 

the conclusion in (3.5) can be given using the results in [[1]: Prop. 3.1, p. 799] 
highlighting once again the necessity of the restrictions on 1α  for 2n ≥ . In 
fact, by part (I) of this cited proposition the assumptions in (3.2) imply the rela-
tions:  

( ) ( ) ( ) ( ) ( ) ( )1 , , 1 ;1 ,kk k
i i if x f x x o x k n i pα−  = + → +∞ ≤ ≤ ≤ ≤     (3.6) 

whence, using relation “ ( ) ( )2 1f x f x ”:  
( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

1 1 1 2 2 2

1 1 2 2

1 1 1

1
1 1

1 1

1
1 .

1 1

k k

k kk k

kk
kk

c f x c f x
c f x c f x

c f x x o c f x x o

c f x c f x

c f x x o
x o

c f x o

α α

α
α

− −

−

−

+
+

   + + +   =
+

 +   = = + +  

      (3.7) 

The restrictions on 1α  imply “ ( )1 0kα ≠  for 1 1k n≤ ≤ −  so that from part 
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(II) of the mentioned proposition in [1] we infer that  
“ ( ){ }11 1 2 2 of orderc f c f nα+ ∈ +∞ ”. Repeating the procedure used in the proof 
of Proposition 3.2 we get the assertion for 1

p
i ii c f

=∑ . 

3.2. Linear Combinations of Various Types of Asymptotic  
Variations  

If some of the involved functions are rapidly varying some caution is required 
because our adopted concept of “nth-order rapid variation” does not simply 
means the validity of the limits  

( ) ( ) ( ) ( )1lim , 0 , with the suitable sign,k k

x
xf x f x k n+

→+∞
= ±∞ ≤ ≤  

but requires the additional conditions in (1.17) or the equivalent formulations in 
(1.18)-(1.20). To make clear this point notice that repeated applications of the 
three results in [[1]: Prop. 2.3-(I), formula (2.52)] easily yield the following  

Proposition 3.3. (Positive linear combinations). If  

( ) 0 ultimately, 0 for all the involved ,i if x c i> >           (3.8) 

then:  
( ) ( ){ }
( ) ( ) ( )

1

, 1 , 0

1 , 0 ;

k
i

p
k k

i i
i

f i p k n

c f k n

−∞

−∞
=

∈ +∞ ≤ ≤ ≤ ≤

⇒ − ∈ +∞ ≤ ≤∑




             (3.9) 

( ) ( ){ }
( ) ( )

1

, 1 , 0

, 0 ;

k
i

p
k

i i
i

f i p k n

c f k n

+∞

+∞
=

∈ +∞ ≤ ≤ ≤ ≤

⇒ ∈ +∞ ≤ ≤∑




              (3.10) 

( ) ( )
( ) ( ) ( )

( ) ( )
1

, 1 , 0 ,

, 1 , 0 , ,

, 0 .

i

k
i

k
i i

q
k

i i
i

f i p k n

f p i q k n

c f k n

α α
+∞

+∞
=

 ∈ +∞ ≤ ≤ ≤ ≤ 
 

∈ +∞ + ≤ ≤ ≤ ≤ ∈  

⇒ ∈ +∞ ≤ ≤∑









         (3.11) 

However, the analogous inferences wherein the notation “ ( ) , 0 k n±∞ +∞ ≤ ≤ ” 
is replaced by “ ( ){ }of order n±∞ +∞ ”, both in the hypotheses and in the theses, 
are not automatic facts; a counterexample will be given at the end of this section 
confirming the specificity of our restricted concept of rapid variation. 

Proof. For 0n =  the three inferences above follow from direct iterations of 
the results in [[1]: Prop. 2.3-(I), inferences in (2.52), p. 789]; only for the infe-
rence in (3.11) one must notice that:  

( ) ( )max
1 1

;
i

p q

i i i i
i i p

c f c f α+∞
= = +

∈ +∞ ∈ +∞∑ ∑   by [[1]: formula (2.27)].    (3.12) 

For 1n ≥  only simple remarks on the derivatives are needed. The assump-
tions in (3.9) imply that “ ( ) ( ) ( )1 0k k

if x− >  ultimately” so that the result for 
0n =  applied to the derivatives gives the conclusion. Analogously for (3.10), 

and also for (3.11) using (3.12) referred to ( )k
if  for each fixed k.           □ 

 

DOI: 10.4236/apm.2021.118046 701 Advances in Pure Mathematics 
 

https://doi.org/10.4236/apm.2021.118046


A. Granata 
 

Much more useful than Proposition 3.3 is a result on arbitrary linear combi-
nations under certain asymptotic restrictions so extending [[1]: Prop. 2.3-(II), p. 
789].  

Proposition 3.4. (Arbitrary linear combinations). 
(Warning. The notation “ ( ){ }of orderif n±∞∈ +∞ ” in the next statement 

means that each if  belongs to its own class, not necessarily the same for all of 
the if ’s.) 

(I) Let  

( ){ }
( ) ( )
( ) ( ) { }

1

1

of order , 1 ;

, , 2 ;

: ; \ 0 .

i

i

p
i i ii

f n i p

f x f x x i p

g x c f x c

±∞

=

 ∈ +∞ ≤ ≤
 → +∞ ≤ ≤


= ∈ ∑






              (3.13) 

If anyone of the following additional conditions is satisfied, either  
( ) ( ) ( ) ( )1 , , 1 1, 2 ,k k

if x f x x k n i p→ +∞ ≤ ≤ + ≤ ≤          (3.14) 

or  

( ) ( ) ( ) ( )1 1 , 2 ,i if x f x f x f x i p′ ′ ≤ ≤               (3.15) 

then:  

( ) ( ) ( ) ( ) ( )( )1 1 , 2 1,
kkg x g x f x f x k n′ ≤ ≤ +

            (3.16) 

which, by (1.20), implies that “g belongs to the same class of 1f ”. 
(II) If  

( ){ }
( ){ }

( ) ( )
( ) ( )

( ) ( )
( ) ( ) { }

1

1

1

of order , 1 ;

of order 1 , 1 ; ;

, , 2 ;

one of the conditions in 3.14 - 3.15 for the indexes 2 ;

, , 1 ;

: ; \ 0 ,

i

i

i i

i

p i

q
i i ii

f n i p

f n p i q

f x f x x i p

i p

f x f x x p i q

h x c f x c

α α

+∞

+

=

 ∈ +∞ ≤ ≤

 ∈ +∞ + + ≤ ≤ ∈

 → +∞ ≤ ≤


≤ ≤
 → +∞ + ≤ ≤
 = ∈ ∑













   (3.17) 

then  

( ) ( ) ( ) ( ) ( )( )1 1 , 2 1,
kkh x h x f x f x k n′ ≤ ≤ +

            (3.18) 

which, by (1.20), implies that “ ( ){ }of orderh n+∞∈ +∞ ”. 
(III) If  

( ){ }
( ){ }

( ) ( )
( ) ( )

( ) ( )
( ) ( ) { }

1

1

1

of order , 1 ; ;

of order , 1 ;

, , 2 ;

, , 1 ;

one of the conditions in 3.14 - 3.15 referred to the indexes 1 ;

: ; \ 0 ,

ii i

i

i

p i

q
i i ii

f n i p

f n p i q

f x f x x i p

f x f x x p i q

p i q

h x c f x c

α α

−∞

+

=

 ∈ +∞ ≤ ≤ ∈

 ∈ +∞ + ≤ ≤

 → +∞ ≤ ≤


→ +∞ + ≤ ≤
 + ≤ ≤
 = ∈ ∑













 (3.19) 
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then  
( ) ( ) ( ) ( )1 , 1 ,kk k kh x x o x k nα − −= + ≤ ≤               (3.20) 

which, by definition, means that “ ( ){ }1
of orderh nα∈ +∞ ”.  

Proof. When working with the classes “ ( ){ }of order n±∞ +∞ ” we shall use 
the relations in (1.20) both in the assumptions and in the thesis. (I) In (3.13) we 
are assuming the relations  

( ) ( ) ( ) ( ) ( )( ) , 2 1, 1 .
kk

i i i if x f x f x f x k n i p′ ≤ ≤ + ≤ ≤
 

Now, (3.14) imply:  
( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )( )

1 1 1 12

1 11 1 2

1 1 , 2 1;

pk kk k
i ii

p
i ii

k

c f x c f xg x c f x
g x c f xc f x c f x

f x f x k n

=

=

+
=

+

′ ≤ ≤ +

∑
∑





 

whereas (3.15) imply:  

( ) ( )
( ) ( )
( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( )

( ) ( )

2 2 2

1 1
1

21 1

,

kkp p p
k i i

i i i i i
i i ii i

k k
p

i
i

f x f x
c f x c f x O f x

f x f x

f x f x
O f x o f x

f x f x

= = =

=

 ′  = ⋅ = ⋅     
   ′ ′      = ⋅ = ⋅               

∑ ∑ ∑

∑

 

whence:  
( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( )

( )
( ) ( ) ( )( )

1 1 2

1 1 2

1 1 2

1 1

1 1
1 1

1 1

1 1

, 2 1;

pk kk
i ii

p
i ii

pk k
i ii

kk
k

c f x c f xg x
g x c f x c f x

c f x c f x
o

c f x

f x f x
o f x f x k n

f x f x

=

=

=

+
=

+

+
= +  

 ′ 
  ′= + ≤ ≤ +     

∑
∑
∑



 

and (3.16) are proved in both cases. For parts (II) and (III) we put:  

( ) ( ) ( ) ( )
1 1

: , : .
p q

i i i i
i i p

P x c f x Q x c f x
= = +

= =∑ ∑              (3.21) 

To prove part (II) we observe that the results in part (I) and in Proposition 
3.2-(II) imply:  

( ) ( ){ } ( ) ( ){ }1
of order , of order 1 ,

p
P x n Q x nα ++∞∈ +∞ ∈ +∞ +    (3.22) 

whence, by the known elementary growth-order estimates in [[1]: relations in 
(2.19) and (2.41)] and by (1.7) we get:  

( ) ( ) ( )
( ) ( ) ( )( ) ( ) 1

;

;

k m

k k m
p

P x x m

Q x O Q x x O x m kα−
+

 = +∞ ∀ ∈


= = ∀ > −



         (3.23) 

whence  
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( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( )

( )
( )

( )
( )

by (3.16)
1

1

, 2 1.

k k k k

k k

h x P x Q x P x
h x P x Q x P x

P x f x
k n

P x f x

+
=

+

′ ′   
≤ ≤ +      

   



 

         (3.24) 

In the situation of part (III) we have:  

( ) ( ){ } ( ) ( ){ }1
of order , of order ,P x n Q x nα −∞∈ +∞ ∈ +∞     (3.25) 

whence:                                                          □ 

( ) ( ) ( ) ( ) ( ) ( )1 , 1 ,k k k k k mP x Q x x o x o x m k nα − − −+ = + + ∀ ∈ ≤ ≤  

which is (3.20). 
In [[1]: p. 719] there are some counterexamples showing that the imposed as-

sumptions in the pertinent proposition practically are the least possible ones and 
such counterexamples involve regularly-varying functions. Here is a counte-
rexample with a pair of functions rapidly varying of order 1 and satisfying nei-
ther of the two conditions (3.14)-(3.15). This non-trivial counterexample also 
shows that “the elementary results in Proposition 3.3, concerning positive linear 
combinations, cannot be extended to higher-order rapid variation in our re-
stricted sense.” 

Consider the following two functions, both belonging to the class 
( ){ }of order 1+∞ +∞ :  

( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1

1
1 1

22 2
1 1

2

22 2

: exp 2 sin log , 1 ,

2 sin log cos log ,

2 sin log cos log

1 2 sin log cos log cos log sin log

2 sin log cos log , ;

f x x x

f x f x x x x

f x f x x x x

x x x x x

x x x x

α

α

α

α

α

α

α α

α α

α α α α

α α

−

−

−

−

  = + > 
 ′ = + +  
 ′′ = + +   

+ − + + + −  
 + + → +∞  

 (3.26) 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2

1
2 2

22 2
2 2

2

22 2

: exp 2 cos log , 1 ,

2 cos log sin log ,

2 cos log sin log

1 2 cos log sin log sin log cos log

2 cos log sin log , ;

f x x x

f x f x x x x

f x f x x x x

x x x x x

x x x x

α

α

α

α

α

α

α α

α α

α α α α

α α

−

−

−

−

  = + > 
 ′ = + −  
 ′′ = + −   

+ − + − − −  
 + − → +∞  

 (3.27) 

noticing that:  

( ) ( ) ( )
( ) ( ) ( )

: 2 sin log cos log
2 1 1 0 0.

: 2 cos log sin log

S x x x
x

C x x x

α α
α α α

α α

= + +  ≥ − − = − > ∀ >
= + − 

 (3.28) 

For the function ( ) ( ) ( )1 2:g x f x f x= +  we have:  
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( )
( )

( ) ( ) ( ) ( ){ }
( ) ( )

( )
( )

( ) ( ) ( ) ( ){ }
( ) ( )

( ) ( ) ( )
( ) ( )( )

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
1 2

1 2

2 22 2
1 2

1 2

2 2
1 2

1 22 2
1 2

,

,

: ,

x S x f x C x f xg x
g x f x f x

x S x f x C x f xg x
g x f x f x

S x f x C x f xg x g x
G x f x f x

g x g x S x f x C x f x

α

α

−

−

 +′
=

+

 +   ′′    


+


+   ′′    = +   
′ +   





  

(3.29) 

and one may check that the asymptotic relation “ ( ) 1G x 
” is not satisfied by 

taking, for instance, two divergent sequences { } { },n nn n
x y  such that  

( ) ( ) ( ) ( )sin log 1, cos log 0; sin log cos log 1 2 .n n n nx x y y= = = =  

As a matter of fact, for any divergent sequence { }n n
z  we have:  

( ) ( ) ( ) ( ) ( )1 2sin log cos log 0 lim 1,n n n n nn
z z n f z f z G zε− ≥ > ∀ ⇒ ⇒ =  

with the same conclusion if “ ( ) ( )cos log sin log 0n nz z nε− ≥ > ∀ ”. On the con-
trary:  

( ) ( ) ( ) ( )

( )
( ) ( )
( ) ( )

1 2

2 2

2

sin log cos log =

2 ,

n n n n

n n
n

n n

z z n f z f z

S z C z
G z

S z C z

= ∀ ⇒

   +   ⇒
 + 



 

and ( )lim 1n nG z ≠  if, for instance, ( ) ( )n nS z s C z c≡ ≠ ≡ , as in the case of the 
above-chosen sequence { }n n

y . Hence ( ){ }of order 1g +∞∉ +∞ . 
Analogous conclusion with the pair of reciprocals  
( )( ) ( )( ) ( ){ }1 1

1 2, of order 1f x f x
− −

−∞∈ +∞ . 

4. Simplification of Previous Proofs Using Combinatorial  
Identities 

In three different places in [2], we needed to show that certain constants were 
non-zero and either hinted at or provided indirect proofs. As a matter of fact, 
the exact values of the constants are special elementary cases of the classical 
formulas for the higher derivatives of composition and inversion, formulas ex-
tensively used in [2] and reported here from [[2]: §6] together with some special 
cases. The proofs are so brief and elementary that we report them in full.  
- Faà Di Bruno’s formula for higher derivatives of a composition:  

( )( )( )( ) ( )( )( )

( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )

1 2

1 2

1 21

2

0 1

d
d

!
! ! 1! 2! !

, 1,

k

k
j

k
k

kk

k

i i ki k

i i i
i k k

ii ii i k

f g x f g x
x

k
i i k

f g x g x g x g x k

+ + + =

≤ ≤

+ +

≡

=

′ ′′× ⋅ ⋅ ≥

∑




 



     (4.1) 

where the summation is taken over all possible ordered k-tuples of non-negative 
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integers ji  such that  

( )1 2 1 22 hence 1 .k ki i ki k i i i k+ + + = ≤ + + + ≤            (4.2) 

In the preceding sum there is only one term containing ( )kf  and only one 
term containing ( )kg , both with coefficient 1, namely:  

( ) ( )( ) ( )( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )

1 2

1 2

corresponding to , , , ,0, ,0 ;

corresponding to , , , 0, ,0,1 .

kk
k

k
k

f g x g x i i i k

f g x g x i i i

 ′⋅ =


′ ⋅ =

 

 

   (4.3) 

For convenience the coefficients into the sum in (4.1) will be denoted in the 
sequel by the symbol 

1 2, , , ki i ia


.  
Lemma 4.1. (Special cases of Di Bruno’s formula). 
(I) Choosing “ ( ) ( ): , :f y y g x xβ α= = ” yields the identity:  

( )

1 2
1

1 2

2
1 2

, , ,
0

, 0, ,

k
k

k
j

i i ki k
i ik

i i i
i k

k

a

k

α α α β

αβ α β

+ + + =
+ +

≤ ≤

⋅ ⋅ ⋅

= ∀ ≠ ∈

∑










              (4.4) 

which follows from:  

( ) ( )( )
( ) ( )

( ) ( ) ( )

1 2 11

1 2

1 2

1 2
1

1 2

2 =

, , ,
0

1 21 2

2 =
1 2

, , ,
0

=

.

k kk

k
j

k

k
k

k
j

kk k k

i i ki k i ii i
i i i

i k

i i k ik

i i ki k
i ik k

i i i
i k

D x x D x

a x

x

x a

βαβ αβ α

βα

α α α

αβ

αβ

β

α α α

α α α β

−

+ + + − + ++ +

≤ ≤

− + − + + −

+ + +
+ +−

≤ ≤

= ⋅

= ⋅ ⋅

× ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅

∑

∑





















        (4.5) 

(II) Choosing “ ( ) ( ): , : exf y y g xα= = ” yields the identity:  
1 2

1

1 2

2

, , ,
0

0, ,

k
k

k
j

i i ki k
i i

i i i
i k

k

a

k

α

α α

+ + + =
+ +

≤ ≤

⋅

= ∀ ≠ ∈

∑








                    (4.6) 

which follows from:  

( )

( ) ( ) ( )1 2 11 1
1 2

1 2
1

1 2

2

, , ,
0

2

, , ,
0

e e e

e e

e .

k kk k
k

j

k
k

k
j

k x k x k x

i i ki k i ii i i i xx
i i i

i k

i i ki k
i ix

i i i
i k

D D

a

a

αα α

α

α

α

α

α

+ + + = − + ++ + + +

≤ ≤

+ + + =
+ +

≤ ≤

= ⋅ =

= ⋅ ⋅ ⋅

= ⋅ ⋅

∑

∑

















       (4.7) 

(III) Choosing “ ( ) ( ): e , : logyf y g x x= = ” yields the identity:  

( )

( ) ( ) ( ) ( )( )

1 2
1

1 2

1 2 3

2

, , ,
0

1

0! 1! 2! 1 ! 0 , 2,

k
k

k
j

k

i i ki k
k i i

i i i
i k

ii i i

a

k k k

+ + + =
− − −

≤ ≤


⋅ −


× − = ∀ ∈ ≥

∑






 

           (4.8) 

which follows from:  
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( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )( )

1 2
1 2

1 2

2 3 1 2 3

1 2
1

1 2

1 2 3

for 2

2
1 2

, , ,
0

2 1 3 1 1

2
1

, , ,
0

exp log 0

1 0! 1! 2! 1 !

1

0! 1! 2! 1 ! .

k
k

k
j

kk

k
k

k
j

k

k
k

i i ki k
i i ki

i i i
i k

ii i k i i i i

i i ki k
k i ik

i i i
i k

ii i i

D x

a x

k

x a

k

≥

+ + + =
− − − −

≤ ≤

− + − + + −

+ + + =
− − −−

≤ ≤

≡

= ⋅

× − ⋅+ −

= ⋅ ⋅ −

× −

∑

∑



















       (4.9) 

(IV) And choosing “ ( ) ( ): log , : expf y y g x x= = ” yields the identity:  

( ) ( )
1 2

1

1 2

2
1

, , , 1
0

1 1 ! 0 , 2.
k

k

k
j

i i ki k
i i

i i i k
i k

a i i k k
+ + + =

+ + −

≤ ≤

⋅ − ⋅ + + − = ∀ ∈ ≥∑






 
 (4.10) 

- Ostrowski’s formula for higher derivatives of an inverse function.  
For the inverse function of a k-time differentiable ( )f x  with ( ) 0f x′ ≠ , 

the formula holds true:  

( )( )

( )( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( )

1

2 3

1 2

1

1
1 2 11

0 1 2 3

1 1 1

d
d

1 2 2 !

! ! ! 2! 3! !

, 1,

k
j

k

k

k

k i
k

i i i
i k k

ii i k

f y
y

k i
f f y

i i i k

f f y f f y f f y k

−

− −
−

−

≤ ≤ −

− − −

− − − ′= ⋅ 

    ′ ′′× ⋅ ≥     

∑


 



   (4.11) 

where the summation is taken over all ordered k-tuples of non-negative integers 

ji  such that  

1 1 21; 2 2 2.k ki i k i i ki k+ + = − + + + = −             (4.12) 

For convenience the coefficients into the sum in (4.11) will be denoted in the 
sequel by the symbol 

1 2, , , ki i ic


.  
Lemma 4.2. (Special cases of Ostrowski’s formula). The non-negative indexes 

ji  appearing in the various sums below are subject to the restrictions in (4.12). 
(I) For “ ( ) : exf x = ” we trivially get the identity:  

( ) ( )
1

1
, ,

0 1
1 1 ! .

k
j

k
i i

i k
c k k−

≤ ≤ −

= − − ∀ ∈∑




             (4.13) 

(II) For “ ( ) : logf x x= ” we have:  
( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

1 1

11

1 1 ! ; e ;

1 1 !e , 1;

jj j y

jj jy

f x j x f y

f f y j j

− − −

−− −

 = − − ≡


= − − ≥
          (4.14) 

and:  

( ) ( )( ) ( )

( )( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( )

2

1

2 3 1 2

2

1

2 1 12 1
, ,

0 1

2

1
, ,

0 1

e e e 1

2 1 ! 3 1 ! 1 ! e

e 1 1! 1 ! ;

k

k
j

k k

k

k
j

i k ik yk y y
i i

i k

i i i i i ki y

ik iy
i i

i k

D c

k

c k

− + + −−

≤ ≤ −

− − − −

−

≤ ≤ −

≡ = ⋅ ⋅ −

× − − −

= ⋅ ⋅ − −

∑

∑

















   (4.15) 

 

DOI: 10.4236/apm.2021.118046 707 Advances in Pure Mathematics 
 

https://doi.org/10.4236/apm.2021.118046


A. Granata 
 

so that we get the identity:  

( ) ( ) ( ) ( )( )2 3

1

1
, ,

0 1
1 1! 2! 1 ! 1 .k

k
j

ik i i
i i

i k
c k k−

≤ ≤ −

⋅ − − = ∀ ∈∑




        (4.16) 

(III) For “ ( ) : , 0f x xα α= ≠ ” we get the identity:  

( ) ( ) ( ) ( )1 2

1

1 2 2 1
, ,

0 1
1 ,k

k
j

i i i kk k
i i

i k
c kα α α α α−

≤ ≤ −

⋅ ⋅ = ⋅ ∀ ∈∑




      (4.17) 

which follows from:  

( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

1

1 2 1 2

1 2

1

1 1 11 1 2
, ,

0 1

1 1 1 2 11 2

11 2 1 2
, ,

0 1

1 ( )

.

k
j

k k

k

k
j

k kk k
i i

i k

i i i i i k ik

i i ikk k
i i

i k

D y y y c

y

y c

α αα

α α α

α

α α

α α α

α α α α

− − −

≤ ≤ −

− + − + + −

−−

≤ ≤ −

= ⋅ = ⋅

× ⋅ ⋅

= ⋅ ⋅ ⋅

∑

∑















   (4.18) 

We shall now use some of the foregoing identities to shorten or clarify some 
proofs in [2].  

Proofs of Proposition 7.6-(II) in [[2]: pp. 827-829] and of Proposition (9.4)-(I) 
in [[2]: p. 850]. Relation (7.65) in [[2]: p. 829] must read:  

( ) ( )
( )( )
( )( )

( ),1 1 ,
k

k
kk

h x
h x c o

h x
α−

′
 = ⋅ +                 (4.19) 

with suitable constants ,kc α  different from the kA ’s erroneously written 
therein, and provided that the ,kc α ’s are non-zero. Looking at the preceding 
formula (7.64) in [2] we see that  

1 2
1

1 2

2 by (4.6)

, , , ,
0

1,
k

k

k
j

i i ki k
i ik

k i i i
i k

c aα α α
+ + + =

+ +−

≤ ≤

= ⋅ ⋅ =∑






          (4.20) 

and the proof of Proposition 7.6-(II) is over. In [[2]: p. 829] we hinted at an in-
direct proof of “ , 1kc α = ” based on the last remark in [[1]: pp. 810-811] but, ad-
mittedly, the pertinent argument is not so immediate as the reader might be led 
to think by the mere mention in [1]. Out of fairness, we give here the whole rea-
soning. The full statement of the remark in question is:  

[ ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

{ }

22 1

, ; 0 large enough and 0 ;

for some , 0 ;

1 , ,

for some 0,1, , 1 ;

1.

kn

j

k k k
k

k

f AC T f x x k n

f j j k

f x f x f x c o

k n

c

±∞

−+ +

 ∈ +∞ ≠ ∀ ≤ ≤

 ∈ +∞ ≤ ≤ 

 
 ⋅ ⋅ = + → +∞
 
 ∈ − 

⇒ =





  (4.21) 

Now, in the context of Proposition 7.6-(II) we may argue that if the constants 

,kc α  are known to be non-zero for all values of k and a fixed value of α , then 
relation (7.65) in [2] implies (with the pertinent notations):  
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( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

22 1

2
, 2, 1, ,1 1 1 1 ,

k k k

k k k k

h x h x h x

c o c o c o d oα α α α

−+ +

−

+ +

⋅ ⋅

     = + + + ≡ +     

      (4.22) 

with a suitable constant , 0kd α ≠ . Already knowing that “ ( )h ±∞∈ +∞ ”, we get 

, 1kd α =  from (4.21). After the easy direct checking that “ , 1kc α =  for 2,3,4k = ” 
we infer that:  

( ) 2
3, 3, 5, 4, 5,1 and 1;d c c c cα α α α α

−
= = ⋅ ⋅ =  

and so on we get , 1kc α =  for all values of k. Now we are in a position to prove 
that no ,kc α  is zero assuming, if possible, that:  

, 2,1 for 2, , 1 and 0.i kc i k cα α+= = + =  

Then (4.22) would imply  
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

22 1 1 ,k k kh x h x h x o
−+ +⋅ ⋅ =  

which is equivalent to  

( ) ( ) ( ) ( )( ) ( )1 1 1 ,k kh x h x o+ ′ = +  

and which, in turn, implies  
( ) ( ) ( ) ( ) ( ) ( )1

1, , i.e. ,k k kh x h x x x h+ → +∞ ∈ +∞  

inconsistently with the property “ ( )h ±∞∈ +∞ ”. 
As concerns the proof of Proposition (9.4)-(I) in [[2]: p. 850], in the final part 

we came across the sum now reported on the right-hand side in (4.20) and we 
gave another indirect proof of the identity in (4.6) intermixing algebraic argu-
ments and facts from the theory of higher-order exponential variation. 

□ 
Proofs of Propositions 7.7-(II) and 7.7-(III) in [[2]: pp. 830-831]. In the con-

cluding part of Proposition 7.7-(II) in [[2]: p. 831] relation (7.79) contains a 
constant kC  which is defined by  

1 , ,
0 1

:
k

j
k i i

i k
C c

≤ ≤ −

= ∑




                     (4.23) 

which is non-zero by (4.13), and this fact concludes the proof. 
Similarly, in the proof of Proposition 7.7-(III) in [[2]: p. 831], relation (7.82) 

contains a constant again denoted by kC . This constant is obtained by replacing 
relations (7.80) in [2], for the derivatives ( )if , into (7.76) in [2] which is exactly 
the operation performed in the claims in Lemma 4.2. This new constant is the 
sum appearing in our relation (4.16) which equals 1, and this concludes the 
proof. 

□ 
We present a last instance wherein a combinatorial identity plays a role, namely 

a direct proof of a part of Proposition 7.7 in [2].  
Proposition 4.3. (Former Proposition 7.7-(I) in [2]). If  

( ){ } ( )of order , 0, 1 1,2, , 2,f n nα α α∈ +∞ > ≠ −       (4.24) 
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then the inverse function  

( ){ }1
1 of order .f nα

− ∈ +∞                   (4.25) 

Proof. To avoid a mix-up over the exponents we put 1:f f −=  and 
( ) :k kf D f=  . Relations in (1.7) imply:  

( ) ( )( ) ( )( ) ( )1 , 1 ,
ii if f y f y y o i nα

−
 = ⋅ ⋅ + ≤ ≤ 

            (4.26) 

which, when replaced into (4.11), yield:  

( ) ( ) ( )( )
( )( ) ( )( ) ( ) ( )( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

1 2

1

1 2 1
1

1 2

, ,
0 1

2 1 1 2

2

, ,
0 1 1

2 1 2 2 1 2 1
,

1

1

1

k

k
j

k jk
k

j

kk

i i ik
i i

i k

k k

ki i ki ii i i
i i

i k j

k k k k
k

f y f f y

c f f y f f y f f y

f y y o

c f y y o

f y y o d α

α

α

α

−

≤ ≤ −

− −

− − − − + +

≤ ≤ − =

− + − − + −

 ′=  

     ′ ′′× ⋅     

= ⋅ ⋅ +  

 
 × ⋅ ⋅ +  

 

= ⋅ ⋅ + ⋅  

∑

∑ ∏













 

  







 ( )
( ) ( ),

1

1 ,k
k

o

f y y d oαα−

 + 

 = ⋅ ⋅ ⋅ + 


 (4.27) 

provided that the constant  

( )1, , ,
0 1 1

j

k
j

k ii
k i i

i k j
d cαα α α

≤ ≤ − =

 
⋅ ≡ ⋅ ⋅ 

 
∑ ∏




 

is non-zero as granted by (4.17) and the restrictions on α .                □ 

5. On the Inverse of a Higher-Order Regularly-Varying  
Function  

Referring to Proposition 4.3 the trivial counterexample of ( ) 1: ,pf x x p= ∈  
shows the necessity of the restrictions on α . Condition “ 0α > ” only grants 
that the inverse function is defined on some neighborhood of +∞ . For order 

1n =  any α  works well. Spurred on by the results in Proposition 2.4 we tried 
to suppress the above restrictions on α  for the subclass of regularly-varying 
functions involved in Propositon 2.2 but the situation presents inherent difficul-
ties and only a complete result for 1α =  is given here together with a partial 
result for the remaining exceptional values of α . The difficulties for a general 
result are outlined in §6. 

Theorem 5.1. (I) A special case of Proposition 2.2 states that:  

( ) ( )
( ) ( )

( ){ }
( ) ( )

1

1

, 0 1, 2,

: ,

of order ,

, 0 1.

k
k

k
k

k n n

f x x x

f n

f k n

−

−

 ∈ +∞ ≤ ≤ − ≥ 
 

=  
 ∈ +∞⇒ 

∈ +∞ ≤ ≤ −

 







              (5.1) 

Here we are obviously assuming 2n ≥  and the assumptions in (5.1) imply 
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that the derivatives ( ) , 1,k k n≤ −  never vanish on a neighborhood of +∞  hence 
  is ultimately strictly monotonic. Analogously, the conclusions in (5.1) imply 
that f  is ultimately strictly monotonic. If   is ultimately positive then the 
inverse function f  is defined on a neighborhood of +∞ . It will be presently 
shown that f  belongs to the same class of f  and its derivatives satisfy the 
same relations as those of ( )kf  in (5.1).  

(II) The following is a partial result for the other exceptional values of α :  

( ) ( )
( ) ( )

( ) ( ) { }

1

, 0 1, 2,

: , , 2,

, 0 min 1, .

k
k

p

k
p k

k n n

f x x x p p

f k n p

−

−

 ∈ +∞ ≤ ≤ − ≥ 
 
 = ∈ ≥  

⇒ ∈ +∞ ≤ ≤ −



 





            (5.2) 

Proof. We are using the notation 1:f f −=  as in the proof of Proposition 4.3. 
(I) The function   satisfies relations in (2.12) whereas relations in (2.7)-(2.9) 
take the form:  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )

1

1 1

2

;

;

1 2 ! , 2;kk k

f x x x x x x f x

f x x o x x o x f x

f x k x x k

−

− −

−

 ′ ′= + ≡
 ′′ ′ ′= =


′− − ≥

  

 









           (5.3) 

whence, with the natural substitution ( )x f y=  :  

( ) ( )( ) ( ) ( )( ) ( ) ( )
1 1

1
1i.e. ;f y f f y f y f f y y f y f

− −
−   ′ ′≡ ⋅ ≡ ∈ +∞   

        (5.4) 

( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )( ) ( ) ( )( )

3

(5.3) (5.4)1 1

;

;

f y f y f f y

f f y o f y f f y o f y f y
− −

 ′′ ′ ′′≡ − ⋅


  ′′ ′ ′= ⋅ ≡ ⋅ 

  

    

     (5.5) 

( ) ( ) ( )( ) ( )( ) ( ) ( )( )
( ) ( )

(5.5) (5.4)2

1
0, , i.e. .

f y f y f y f f y o f y f y

o y y f−

′′ ′ ′ ′′ ′≡ − ⋅ = =

′= → +∞ ∈ +∞

     

 
      (5.6) 

For 3k ≥  we use Ostrowski’s formula (4.11) highlighting the signs of the 
coefficients and we get as y → +∞ :  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ){
( )( )( ) ( ) ( )

( )( )( ) ( )( )( ) ( )( )( ) ( ) }
( )( ) ( ) ( ) ( ) ( )( )

( )( )( ) ( )( )( )

1 2 2 3

1

1 22 3

12

1

1

2 1 1 2
, ,

0 1

2 2 2 3 2

22 1 3 1
, ,

0 1 0

1 1 0! 1! 2 !

1 1

1 !

kk

k
j

kk

j

k
j

k ik i i ki i ik
i i

i k

i i ii i k i

kk ik i
i i

i k j

i k

f y f y c k

f y f y f y f y o

f y c j f y

f y f y

+

− − − + +

≤ ≤ −

− + − + + −

−− −−

≤ ≤ − =

′= ⋅ − − −

′ ′ ′× ⋅ ⋅ ⋅ +  

  ′= ⋅ −  
  

′× ⋅

∑

∑ ∏













 



   



 

 

  

  ( ) }
( ) ( ) ( )( ) ( )( )( )

( )( )( ) ( )( ) ( )( ) ( ){ }

1

1 1

1

1

12 13 1

, ,
0 1

1 1

1

1 1 ,
k

j

i

kkk

i i

i i
i k

o

f y f y

c f y f y f y o

− −

−−−

−

≤ ≤ −

⋅ +  

′ ′= − ⋅ ⋅

′× ⋅ ⋅ ⋅ +  ∑




 

  



 

  

(5.7) 
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with suitable positive coefficients 
1 , , ki ic


. We now put  

( ) ( )( ) ( )( ) ( )( ): ,F y f y f y f y′= ⋅                    (5.8) 

and notice that the assumptions in (5.1) imply  

( ) ( ) ( ) ( )1 , ; 0 ultimately;x x x o x x′ ′= → +∞ ≠              (5.9) 

whence ( ) ,F y y→ ±∞ → +∞ , and:  

( )( ) ( ){ } ( )( )1 1

1

max
, ,

0 1
1 1 , ,

k
j

i i
i i k

i k
c F y o c F y y

≤ ≤ −

⋅ + → +∞  ∑




        (5.10) 

where 0kc >  and the number “ 1max i ” a priori depends only on k. Now, the 
exponents ji  satisfy the two equations in (4.12) whence 1 1i k< − ; and for the 
choice 1 2i k= −  the system in (4.12) reduces to  

2 21, 2 ,k ki i i ki k+ + = + + =                    (5.11) 

which has the solution “ 2 1 0, 1k ki i i−= = = = ”. It follows that “ 1max 2i k= − ” 
and:  

( ) ( ) ( ) ( ) ( )( ) ( )( )( ) ( )( )
12 1 23 11 ;

kk kkk
kf y c f y f y F y

−− −− ′ ′− ⋅ ⋅ ⋅          (5.12) 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )( )

21 1

21 .

k k k

k

k

k

c
f y f y f y f y F y

c
c

f y f y f y
c

+ +

+

 ′ ′− ⋅ ⋅


 ′= − ⋅


   

  







         (5.13) 

The first relation in (5.3) gives ( )( ) ( )( ) ( )( ) 1
f y f f y f y

−
′ ′=     and we 

get:  

( ) ( ) ( ) ( ) ( ) ( )
(5.4)

1 11 1 , ,k k k k

k k

c c
f y f y f y f y y y

c c
+ −+ +′− − → +∞   

       (5.14) 

which means that “ ( ) ( )
k

kf α∈ +∞  ” for suitable 0kα <  and 2 1k n≤ ≤ − . By 
(5.4) and (5.6) “ ( ){ }1 of orderf n∈ +∞  ” and 1 0α = , and we shall now re-
peatedly use the general result about the index of variation of a derivative, [[1]: 
Prop. 2.6-(I), p. 796], to show that 1k kα = − . For the index of f ′′  we preli-
minarily remark that  

( ) ( ) ( )( ) ( )( )
(5.4) 1 11lim lim lim lim ,

y y x x
f y y f y f x x x

− −−

→+∞ →+∞ →+∞ →+∞
′ = = ⋅ ≡        (5.15) 

and that “ ( )limx x→+∞  ” exists in [ ]0,+∞  by the positivity and monotonicity 
of ( )x . 

First case. If this last limit is either zero or +∞  then the same is true (with 
inverted values) for the “ ( )lim y f y→+∞ ′ ” and, by the mentioned general result, 

( )1f −′′∈ +∞  . This in turn implies the mentioned values of the indexes for the 
higher-order derivatives. 

Second case. If “ ( ) ] )lim 0,x x→+∞ = ∈ +∞ ” we may suppose 1=  and 
represent f  in the form “ ( ) ( ): 1f x x x = +  ” where the new function   
satisfies the same assumptions satisfied by   in (5.1) and “ ( ) ( )1x o= ”. All 
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the previous calculations from (5.3) to (5.14) remain valid because no use was 
made of the value ( )+∞ , hence “ ( ) ( )

k

kf α∈ +∞  ” for suitable 0kα <  and 
2 1k n≤ ≤ − . In the present case we need to make explicit the asymptotic beha-
vior of f ′′  and we have:  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ;

1 1 1 1 1 1 ;

2 2 1 1 1 1 ;

f x x x

f x x x x x o o

f x x x x x x o x o

  = +  ′ ′= + + = + + = +   


′′ ′ ′′ ′ ′ ′= + = − + = +       



  

    

 (5.16) 

( ) ( ) ( )
( ) ( ) ( )

log log log 1 log 1 , , where ;

log log 1 , , and 1 1 , ;

y x x x o x y f x

x y o y x f y y o y

  = + + = + → +∞ ≡  


= + → +∞ ≡ = + → +∞   



 (5.17) 

whence:  

( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )

1

3

1 1 ;

1 1 , ;

f y f f y o

f y f y f f y f f y f y

y o y y

−  ′ ′≡ = +    
 ′′ ′ ′′ ′′ ′≡ − ⋅ − −


′ ′= − + − → +∞   


 

    

 

 



       (5.18) 

where the last expression follows from a result about asymptotic functional rela-
tions: [[1]: Prop. 5.1-(I), p. 811]. As “ ( )1−′∈ +∞  ” by hypothesis, the relation 
“ ( ) ( )f y y′′ ′−  ” implies 2 1α = −  by [[1]: first inference in (2.31), p. 785]. 
The values of the other kα ’s follow automatically as pointed out in the first case 
and the proof of part (I) is over. 

(II) Putting : 1 pα = , relations in (2.7) state that:  
( ) ( ) ( ) , , 1 1,k k kf x x x x k nαα − → +∞ ≤ ≤ −              (5.19) 

so that:  

( ) ( )( ) ( )( ) ( )( )( ) ( )
11 1 1;f y f f y p f y f y p f y y

α −− − − ′ ′≡ ⋅ ⋅ ≡ ⋅ ⋅ 
        (5.20) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ){
( )( )( ) ( ) ( )

( )( )( ) ( ) }
( )( ) ( )( )( )( )

( )( )( )
( ) ( ) ( ) ( ) ( ) ( ){ }

1 21

1

1 21 2

1 21

1

2 1 1 1 2
, ,

0 1

1 2

12 1 2 1

1 1 2
, ,

0 1

1

1 1

1 1 1 1 .

k

k
j

kk

k

k
j

k i i ik ik k
i i

i k

i i ii i k i

kk k

i i ik i k
i i

i k

f y f y c

f y f y o

f y f y f y

c o

α α α

α

α α α

α α α

− − −

≤ ≤ −

+ + +− + − + + −

−− − −

−

≤ ≤ −

′= ⋅ −

× ⋅ ⋅ +  

′= ⋅

× − ⋅ − ⋅ +  

∑

∑













 



 

  







 (5.21) 

At this point the proof could be completed if we only knew that the sum  

( ) ( ) ( ) ( )1 21

1

1 2
, ,

0 1
1 k

k
j

i i ii k
i i

i k
c α α α

≤ ≤ −

−∑




                (5.22) 

is non-zero which may not be the case. As a matter of fact, for ( ) 1x ≡  we have 
( ) pf y y≡  and the above formula gives the expression of ( ) 1d dk k p k py y p y −≡ ; 

hence the sum in (5.22) equals ( ) 11 k kp−− , being non-zero for k p≤  and zero 
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for 1k p≥ + . Hence the following relations hold true for the admissible values 
of k:  

( ) ( ) ( )( ) ( )( )
( )( )( ) 12 1 2 11 2 , 1 ; 0;

kk kk k
k kf y c y f y f y k p c

α −− + − −− ≤ ≤ ≠     (5.23) 

( ) ( ) ( ) ( ) ( )( ) ( )( )1 2 11 1 , 1 1;k k k k

k k

c c
f y f y y f y f y y k p

c c
α+ − −+ +⋅ ≡ ≤ ≤ −     (5.24) 

where the last equality follows from the definition of  
( )( ) ( )( ) ( )( )1

:
p

f f y f y f f y⋅ ≡   . Hence ( )
k

f α∈ +∞   for certain indexes 

kα  and, by [[1]: Prop. 2.6-(I), p. 796], k p kα = −  for 1k p≤ − . Moreover:  
( ) ( ) ( ) ( )( ) ( ) ( )1 1

0hence .p p pf y o y f y f+ −= ∈ +∞               (5.25) 

□ 

6. Conclusions 

I) The main facts presented in this paper are: 
1) The elementary factorization of regularly-varying functions:  

( ) ( ) ( ) ( ){ }0, 0, , ,f f x x xα
α α∈ +∞ ≠ ⇔ ≡ ∈ +∞           (6.1) 

which holds true for higher-order smoothly-varying functions as well, cannot be 
extended to higher-order regularly-varying functions. It is known that the ana-
logue of the sole inference from right to left in (6.1) holds true for higher-order 
regularly-varying functions under certain restrictions on α  and we have shown 
in §2 that no such restrictions are needed for a useful class of functions includ-
ing those in (1.22). 

2) The foregoing result in turn implies that there is an important class of high-
er-order regularly-varying functions that require no impractical restrictions on 
their indexes of variation when performing on them the operation of multiplica-
tion, and this is proved in §2 as well. 

3) Useful non-obvious results can be obtained on the types of higher-order 
variation for arbitrary linear combinations of various functions where “arbi-
trary” means “of any signs”, and appropriate counterexamples can be exhibited 
highlighting once more the special restricted character of our concept of high-
er-order rapid variation defined by relations in (1.15)-(1-17). The most mea-
ningful results are those in Proposition 3.4 concerning linear combinations of 
both smoothly- and rapidly-varying functions. §3 ends with a non-trivial coun-
terexample showing that the imposed assumptions are the least possible ones.  

II) In §4 there is a list of combinatorial identities, directly inferred from the 
formulas for higher derivatives of composite or inverse functions, which are used 
to simplify some proofs of previous results about operations with higher-order 
types of variation. The reader may notice that the whole matter of operations with 
higher-order types of asymptotic variations, amply developed in [2], is quite 
complicated and some sporadic alternative proofs as those in §4, though longer, 
may be considered to provide support for these so many results.  
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III) In contrast to the results in §2 and §3 only partial results can be given in 
studying the type of higher-order variation of the inverse of a regularly-varying 
function and trying to suppress restrictions on the indexes. But this is due to in-
herent difficulties. It is the author’s firm conviction that the thesis in (5.2) holds 
true for all the admissible values of 1k p≥ +  but, for derivatives of order great-
er than p it is not clear how to proceed by direct calculations in order to highlight 
the principal part of ( ) ( )kf y  and, consequently, of the ratio ( ) ( ) ( ) ( )1k kf y f y+

  . 
The difficulty is due to the factor ( ) 11 i−  in (5.22) which does not automatically 
assure that the constant is non-zero because the global sign of the other factors 
in (5.22) does not depend on the various exponents ji :  

] [ ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )2 3

1 1

2 1 3 1 1 1
1

1 0,1 sign 1 sign 1

sign 1 1 .

j j

j k

ij j ij j

ik i i k i kj
j

pα α α

α

− −

− + − + + − −

=

 ≡ ∈ ⇒ = − ⇒ = −

⇒ = − = − ∏ 

     (6.2) 

The factor ( ) 11 i−  will be always present even if a two-term expansion of 
( ) ( )kf x , inferred from (2.13), is used, namely:  

( ) ( ) ( ) ( ) ( ) ( )1 1 ,k k k k
kf x x x x x A oα αα α− − + ′= + +             (6.3) 

noticing that even the coefficient ( )kA α  may be zero as, e.g., ( )2 01 2A = . 
We tried some calculations for a function f  of the type appearing in (1.22) 

with 0α >  and not reduced to power. In this special case, each derivative ( )kf  
is a linear combination of functions with the same algebraic structure of f  (i.e. 
powers times the sort of slowly-varying functions specified therein) and, as such, 
it is either 0≡ , a case excluded by the assumption that f  is not a power, or 
has a principal part as x → +∞  with the same algebraic structure: hence 

( ) ( )kf x  either converges to zero or diverges to ±∞  as x → +∞ . This grants 
that the limit “ ( ) ( ) ( ) ( )1lim k k

x xf x f x+
→+∞ ” exists as an extended real number for 

each 0k ≥  and, by the cited reference [[1]: Prop. 2.6-(I), p. 796], 
“ ( ) ( )k

kf kα −∈ +∞ ∀ ∈ ”. 
Unfortunately, it is not obvious how to proceed to show the analogous prop-

erty for the inverse function, i.e. that the limit “ ( ) ( ) ( ) ( )1lim k k
y yf y f y+
→+∞

  ” 
exists as an extended real number for each k ∈  implying that 
“ ( ){ }of any orderpf n∈ +∞  ”. 

This remains an “Open Problem” in addition to those stated in [[2]: p. 866] 
save for Open Problem 4 completely solved in [3]. 
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