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Abstract 
The Northeast Pacific coastal ocean, as a typical river-influenced coastal up-
welling system, is characterized by significant variability of sea surface partial 
pressure of carbon dioxide (pCO2, <200 to >1000 μatm). This study reviewed 
the pCO2 variability and its underlying controlling mechanism in this highly 
dynamic region by bringing together previous scientific findings and histori-
cal data. The large pCO2 variability reflects the complex interactions between 
physical processes (riverine input and coastal upwelling) and the biological 
responses to the nutrient transportation associated with these physical processes, 
while temperature and air-sea gas exchange play a minor role in affecting 
pCO2. Both the river water and upwelled subsurface water are characterized 
by higher concentrations of pCO2 and nutrients when compared to the coast-
al surface water. The presence of high chlorophyll-a and low pCO2 in river 
plumes and areas adjacent to upwelling locations showed the intense biologi-
cal CO2 uptake. The influences of riverine input and coastal upwelling thus 
mainly depend on the competing effect of high background pCO2 of river 
water and upwelled subsurface water vs. the biological dropdown of pCO2 
resulting from the riverine- and upwelling-associated nutrient supplies. The 
strength of upwelling-favorable wind plays an important role in the pCO2 va-
riability by affecting the intensity of coastal upwelling, with stronger wind 
speed causing more intense upwelling. The long-term pCO2 increasing rate in 
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the Northeast Pacific coast is observed to be lower than that in the North Pa-
cific open ocean. 
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1. Introduction 

Since the industrial revolution, the carbon dioxide (CO2) in the atmosphere has 
increased from 280 ppm to the present level of 415 ppm (January 2021) due to 
anthropogenic activities (Keeling et al., 2004; Takahashi et al., 2009; IPCC, 2013; 
Takahashi et al., 2014). The rapid increase in atmospheric CO2 concentration 
significantly affects the earth’s climate as CO2 is one of the most significant green-
house gases (IPCC, 2013). The ocean exchanges CO2 with the atmosphere at the 
air-sea interface, absorbing about 25% of the anthropogenic carbon emissions 
annually and lowering the atmospheric CO2 concentration (Takahashi et al., 
2002; Sabine et al., 2013). When CO2 is taken up and transported into the ocean 
interior, it is isolated from the atmosphere on time scales of hundreds and thou-
sands of years. It is projected that about 90% of anthropogenic CO2 would end 
up in the ocean on a thousand-year time scale (Sabine et al., 2004), which miti-
gates the CO2-induced global climate change. On the other hand, the oceanic 
uptake of anthropogenic CO2 is acidifying the ocean and changing the carbonate 
chemistry of the seawater. This leads to ocean acidification as “the other CO2 
problem” (Doney et al., 2009a), which could have several negative consequences 
for ocean life, especially for calcifying organisms like corals and coccolitho-
phores (Feely et al., 2004; Doney et al., 2009a; Takahashi et al., 2014; George, 
2017; Fassbender et al., 2018; Jiang et al., 2019; Gattuso & Hansson, 2011). As 
atmospheric pCO2 is relatively steady, the air-sea CO2 exchange is mainly deter-
mined by the seawater pCO2 variability. The surface ocean pCO2 variability is 
strongly influenced by changes in temperature (Takahashi et al., 2006; Bates, 
2007; Takahashi et al., 2009; Rödenbeck et al., 2013; Sutton et al., 2017), physical 
processes (Friederich et al., 2002; Hales et al., 2005; Fiechter et al., 2014) and bi-
ological activities (Thomas et al., 2005; Zhai et al., 2005; Yoshikawa Inoue et al., 
2017). Understanding the distribution and variability of sea surface pCO2 is thus 
critical for accurately quantifying the carbon budget (Bates et al., 1998; Sabine et 
al., 2004; Dai et al., 2009; Evans et al., 2013; Jiang et al., 2013; Fiechter et al., 
2014). 

Despite the small surface area (~7% of the sea surface), coastal oceans are one 
of the most dynamic and biologically productive ecosystems playing an impor-
tant role in global carbon biogeochemical cycles (Gattuso et al., 1998; Cai, 2003; 
Chen & Borges, 2009; Evans et al., 2011; Hales et al., 2012; Chen et al., 2013; 
Evans et al., 2013). The coastal oceans serve as a connection between the terre-
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strial and open ocean ecosystems, buffering the effects from land sources before 
they impact oceanic systems (Thomas et al., 2005; Chen & Borges, 2009). The 
strong physical-biogeochemical interactions result in large spatial and temporal 
variations of sea surface pCO2 in coastal oceans, making it challenging to quan-
tify carbon fluxes in coastal environments. Estimates based on available data 
showed that the coastal ocean could either act as a sink (DeGrandpre et al., 2002; 
Hales et al., 2005; Borges et al., 2006; Chen and Borges, 2009; Hales et al., 2012; 
Jiang et al., 2013; Turi et al., 2014; Evans et al., 2019; Jiménez-López et al., 2019) 
or source (Friederich et al., 2002; Borges et al., 2005; Wang et al., 2005; Xue et 
al., 2012; Robbins et al., 2018; Li et al., 2020) for atmospheric CO2 depending on 
the dominant controlling mechanism of sea surface pCO2 in a specific system. 

The Northeast Pacific coast, as a river-influenced coastal upwelling system, is 
a fascinating region for studying the coastal pCO2 variability. It was characte-
rized by highly complex physical processes, including coastal currents, river in-
put, and wind-driven upwelling. Furthermore, riverine- and upwelling-associated 
nutrient supplies promote high biological productivity. The interactions between 
physical and biological processes result in significant variations of sea surface 
pCO2 on different temporal and spatial scales (Friederich et al., 2002; Gan & Al-
len, 2005; Chavez & Messié, 2009; Hales et al., 2012; Evans et al., 2013; Fass-
bender et al., 2018). On that note, this study brings together existing knowledge 
and data to provide a comprehensive review of the pCO2 variability in this study 
region using the following outlines. 
 The major physical and biological processes in the Northeast Pacific coast.  
 Spatiotemporal pCO2 dynamics in the Northeast Pacific coast and the driving 

factors. 
 Possible future changes affecting pCO2 variability in the study region. 

2. Environmental Settings of the Northeast Pacific Coast 
2.1. Circulation Features  

The Northeast Pacific coast is located to the west of the North American conti-
nent, which is greatly influenced by the California current system (Figure 1). The 
key circulation features of the California current system are the equatorward 
traveling California Current, the poleward traveling California Undercurrent, and 
the seasonal poleward Davidson Current (Lynn & Simpson, 1987). The Califor-
nia Current is an all-year-round shallow, wide (60 to 900 km), and relatively 
slow current, which carries the nutrient-rich, cold, high-latitude North Pacific 
water from the coast of British Columbia southward to the southern Baja Cali-
fornia coast (Lynn & Simpson, 1987; Zaytsev et al., 2003; Turi et al., 2014). The 
California Undercurrent comes along as a subsurface flow between 100 and 
300 m over the continental slope and transports saline, warm, equatorial waters 
northward (Chelton, 1984; Lynn & Simpson, 1987). The Davidson Current (also 
named as the Inshore Countercurrent) is a seasonal flow during fall and winter 
(Lynn & Simpson, 1987). It flows over both the slope and shelf, transporting upper 
ocean shallow waters, which largely come from the California Current waters 
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Figure 1. Bathymetry map showing the dominant physical processes in the North-
east Pacific coast. Figure generated by Ocean Data View (Schlitzer, 2017). 

 
with some alterations by coastal processes. Hayward and Venrick (1982) discov-
ered significant variations in phytoplankton biomass and productivity in the 
California Current. They stated that fluorescence or sea surface chlorophyll val-
ues could be used as measures of the biological status of oceanic habitats but 
should be used with caution due to changes in spatial or temporal relationships 
(Hayward & Venrick, 1982).  

2.2. Riverine Inputs  

Rivers are a significant component of the global carbon cycle because they can 
influence carbon dynamics not just in wetlands but also in coastal areas where 
river flows are emptied (Ran et al., 2015). Rivers are the main pathways trans-
porting terrestrial organic matter, particles, and human-derived materials to the 
coastal oceans (Sharples et al., 2017). River water exports not only carbon but 
also nitrogen, phosphorus, and silica, which are the potentially limiting nutrients 
for phytoplankton growth. As a result, riverine nutrients promote the phytop-
lankton biomass and biological productivity of the coastal ocean, especially in 
the river plume where both nutrients and light are favorable for phytoplankton 
growth (Hickey & Banas, 2003; Jiang et al., 2019). The Columbia River is the 
largest river in terms of discharge running into the Pacific from America (Figure 
1), with an annual average flow of around 7500 m3·s−1 near the mouth (Kam-
merer, 1990). The discharge of Columbia River is characterized by a seasonal 
maximum at the start of summer corresponding to the peak snowmelt (i.e., May 
to June, 10,000 m3·s−1) and a minimum during winter (i.e., December to March, 
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300 m3·s−1) (Evans et al., 2013). Another minor freshwater input to the Northeast 
Pacific coast is from the Smith River (Figure 1), with an annual average dis-
charge rate of 106 m3·s−1 (U.S. Geological-Survey, 2014).  

2.3. Wind Pattern and Coastal Upwelling 

The wind circulation is an important forcing for the movement of surface water 
in the California current system. The season reversal wind pattern is also closely 
related to the vertical mixing in this region. During spring and summer, when 
the wind travels southwards alongshore toward the equator, surface water is 
moved offshore, resulting in coastal upwelling (King et al., 2011). On the con-
trary, downwelling favorable winds (northwards along the coast) are observed in 
autumn and winter (Hickey & Banas, 2003). The California current is one of the 
five main coastal currents linked to high upwelling regions (Friederich et al., 
2002; King et al., 2011). According to Evans et al. (2011), this upwelling event 
usually starts in April and lasts until October, the same period when the wind is 
traveling southwards. The upwelling brings cool, saline, CO2-rich, and nu-
trient-rich water to the surface layer. The upwelling-derived nutrients promote 
the growth of sea plants, from microscopic phytoplankton to massive kelp fo-
rests. These plants (primary producers) constitute the core of the food web that 
comprises highly productive fisheries, large populations of sea mammals (dol-
phins, whales), and sea birds. This biologically active ecosystem can stretch up to 
500 kilometers from the coast. Huyer et al. (2005) used the differences in along-
shore currents, prevailing wind speed to differentiate two coastal upwelling do-
mains in the Northeast Pacific coast: north and south of the Cape Blanco at 
42.9˚N. Both upwelling regions were characterized by southwards traveling wind 
in summer (Friederich et al., 2002; Huyer et al., 2005; King et al., 2011), with 
stronger wind speeds and higher coastal upwelling indexes observed in the 
southern region around 42˚N (Figure 2) (Huyer et al., 2005). The coastal upwel-
ling index has proven effective in tracking the strength of wind forcing and up-
welling in the California Current System (Bograd et al., 2009). Several studies 
have used this index to identify the impact of ocean variability on the reproduc-
tive performance of many fish and aquatic species in coastal upwelling regions 
(Jacox et al., 2018). Coastal upwelling in the California Current system is usually 
reduced during the occurrence of El Nino, leading to a massive drop in primary 
productivity. This interruption in the marine food web affects the nearby coastal 
communities where fishers and government depend mainly on revenues from 
the fishery industry (Friederich et al., 2002).  

3. Spatio-Temporal Variation of pCO2 and Its Controlling  
Mechanisms in the Northeast Pacific Coastal Waters 

3.1. Influences of Riverine Input on pCO2 Variability  

Due to anthropogenic influences and the degradation of terrestrial organic mat-
ter (Chen & Borges, 2009; Chen et al., 2013), most rivers have a pCO2 concentra-
tion higher than that in the atmosphere with a large CO2 emission potential  
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Figure 2. Coastal upwelling index at 42˚N, 125˚W (bold gray) and 45˚N, 125˚W (black) 
in summer of 1998, 1999, 2000, 2002, and 2003. Figure from Huyer et al. (2005). 

 

 

Figure 3. (a) The left column shows surface water salinity along the Columbia River est-
uary that empties into the Northeast Pacific Ocean. (b) The right column shows pCO2 
(y-axis) versus salinity (x-axis) with chlorophyll-a concentration on the z-axis. The gray 
dash line indicates the atmospheric pCO2. Figure from Evans et al. (2013). 
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(Evans et al., 2013; Ran et al., 2015; Kokic et al., 2018). Although the Columbia 
River carried a large amount of nutrients into the coastal ocean, the biological 
response was limited in the nearshore high-turbidity area with low salinity (<5 
psu, Figure 3) due to low light availability (Borges et al., 2006; Guo et al., 2009). 
Cruise surveys showed that the seasonal variability of pCO2 in the Columbia 
estuary was about 280 to 700 μatm, and it acted as a CO2 source for the atmos-
phere in most seasons except for late summer (Figure 3). The low pCO2 occur-
ring in summer was related to the fact that warm temperature favors photosyn-
thesis of phytoplankton, as well as the high discharge providing more nutrients 
due to the peak of snowmelt freshet (Evans et al., 2013). Because of the allevia-
tion of light limitation in conjunction with the persistence of riverine nutrients 
during the mixing between freshwater and seawater, high chlorophyll-a concen-
trations and biological production rates are generally observed in the mid-salinity 
river plumes where nutrients and light are favorable for phytoplankton growth 
(Figure 3). This biological uptake significantly draws down pCO2, leading to 
strong undersaturation (<200 μatm). Therefore, the influences of riverine input 
on pCO2 variability in the Northeast Pacific coast depend on the competing ef-
fect between the heterotrophic condition of the freshwater and the autotrophic 
CO2 uptake in the river plume.  

3.2. Influence of Coastal Upwelling on pCO2 Variability 

In the Northeast Pacific coast around April to October, equatorward winds drive 
Ekman transport, causing upwelling of subsurface water (Evans et al., 2011). As 
illustrated in Figure 4(a), the subsurface waters are rich in dissolved inorganic 
carbon (DIC) and have very high pCO2 reaching or exceeding 1000 μatm (Cha-
vez et al., 2007; Feely et al., 2008). pCO2 values of about 700 μatm have been 
found in nearshore upwelling outcrops off the California-Oregon-Washington 
coast (Hales et al., 2005). Moreover, Feely et al. (2008) reported the upwelling of 
corrosive “acidified” waters (pH < 7.7) onto the region’s shelf deteriorating the 
acidification status in the Northeast Pacific coast (Figure 4(b)). Upwelling not 
only brings high pCO2 signals but also transports nutrients from depth to the 
surface to promote phytoplankton growth. Due to the delayed biological re-
sponse to the upwelling-induced nutrient supply, elevated Chl-a concentrations 
were generally observed in areas adjacent to the upwelling center. When the up-
welled water moves off and along the shore, as observed by van Geen et al. (2000), 
pCO2 can be quickly drawn down to undersaturation levels (<300 μatm) below the 
atmospheric equilibrium. Therefore, the influences of coastal upwelling on pCO2 
variability in the Northeast Pacific coast mainly depend on the balance between 
the upwelling-induced DIC transportation (increase pCO2) and the subsequent bi-
ological CO2 uptake stimulated by the upwelling-associated nutrient supply.  

3.3. Surface Water pCO2 Variability and Its Controlling  
Mechanisms 

Previous studies have proved that one of the most significant controls governing 
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the sea surface pCO2 variability in the open ocean is sea surface temperature 
(SST), and pCO2 generally showed a positive correlation with SST (Hales et al., 
2005; Hales et al., 2012; Xue et al., 2012; Sutton et al., 2017; Yoshikawa Inoue et 
al., 2017; Ogundare et al., 2021). However, the pCO2 and SST distributions in the 
Northeast Pacific coast (Figure 5(a)) indicated that factors other than SST 
played the dominant role in modulating pCO2 while the temperature effect was 
minor. To further investigate the non-thermal controlling factors on pCO2 va-
riability, we applied temperature normalization on the surface pCO2 following 
Takahashi et al. (2006). 

npCO2 = pCO2,SSTobs × exp (0.0423 × (SSTmean - SSTobs))      (1) 
 

 

Figure 4. Vertical sections of (a) pCO2 and (b) pH around the Northeast Pa-
cific coast (41 - 42˚N). The 26.2 potential density surface (thick black line) de-
lineates the location where the high pCO2 (acidic water) is upwelled from 
depths around 150 to 200 m onto the shelf. Figure from Feely et al. (2008).  

 

 

Figure 5. (a) The distributions of pCO2 (y-axis) versus sea surface temperature (SST on the x-axis), with salinity as the z-axis. The 
atmospheric pCO2 reference line in January 2021 (415 ppm) is highlighted (see  
https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html). (b) Temperature-normalized pCO2 (npCO2 on the y-axis) versus salinity 
(x-axis), with SST as the z-axis. (c) temperature vs. salinity distribution highlighting the different water sources and the processes 
influencing pCO2 variability in the Northeast Pacific coast. Figure generated by Ocean Data View (Schlitzer, 2017). 
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where SST is sea surface temperature, pCO2,SSTobs denotes the pCO2 observed at 
in situ SST (SSTobs), and SSTmean refers to the mean SST. The temperature-nor- 
malized npCO2 represents the pCO2 changes caused by non-thermal processes 
such as air-sea CO2 exchange, physical mixing, and biological activity (Figure 
5(b)).  

The variations of pCO2 and npCO2 were clearly related to different water 
masses with characteristic temperature and salinity (Figure 5). The riverine sig-
nals characterized by lower salinity (SSS < 30, Figure 5) and high chlorophyll 
concentration (Figure 6) were mainly observed in the area adjacent to the river 
mouth of the Columbia River (Huyer et al., 2005). Fassbender et al. (2018) also 
reported a similar observation in the low salinity Columbia River Plume 30 - 90 
km from shore, which is advected ashore by the Ekman transportation and to-
wards the south by the coastal jet in summer. The observed pCO2 values at the 
salinity range of 22 - 30 were mostly below the atmospheric level (Figure 5), 
which suggests the dominance of biological CO2 uptake in the river plume over 
the high background pCO2 of freshwater as discussed in Section 3.1. However, 
high pCO2 values (up to 780 μatm) were sometimes observed, which may be a 
result of a delayed biological response to riverine-borne nutrients because of the 
high discharge rate or sustained high-turbidity conditions. The newly upwelled 
subsurface waters, observed at the upwelling centers (Figure 6), were characte-
rized by low SST (<10˚C), high salinity (>32 psu), high pCO2 (>500 μatm), and 
high npCO2 (>500 μatm) (Figure 5). On the contrary, high Chl-a concentration 
in areas adjacent to upwelling showed the phytoplankton growth response to the 
upwelling-associated nutrient supply, which significantly draw down pCO2 lead-
ing to strong undersaturation (Figure 6). Overall, the Northeast Pacific coast is a 
river-influenced coastal upwelling system characterized by large variations in sea 
surface temperature (SST, 8˚C - 18˚C), sea surface salinity (SSS, 22 - 34), and 
pCO2 (120 to 912 μatm). Previous findings reported the Northeast Pacific coastal 
region acted as a sink for atmospheric CO2 (Hales et al., 2005; Chen & Borges, 
2009; Hales et al., 2012; Turi et al., 2014; Evans et al., 2019).  

3.4. Long-Term Seawater pCO2 Variability  

Several investigators estimated similar pCO2 increasing rates in the North Pacific 
open ocean as 1.3 ± 0.2 μatm·yr−1 by Takahashi et al. (2006), 1.39 ± 0.18 
μatm·yr−1 by Yoshikawa-Inoue et al. (2014), and 1.36 ± 0.16 μatm·yr−1 by Wong 
et al. (2010). These rates were generally in pace with the increasing rate of at-
mospheric pCO2 of 1.5 μatm·yr−1 estimated by Takahashi et al. (2009). Despite 
the existence of previous pCO2 investigations in the Northeast Pacific coastal re-
gion (Friederich et al., 2002; Gan & Allen, 2005; Hales et al., 2012; Evans et al., 
2013; Fassbender et al., 2018), the long-term changing rate of pCO2 in the 
Northeast Pacific coast is still with significant uncertainties because of under-
sampling in the highly dynamic system. The closest estimates available are those 
of Wong et al. (2010) and Takahashi et al. (2006). The former estimated the  
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Figure 6. Surface distribution of (a) sea surface temperature, (b) salinity, (c) Chloro-
phyll-a, and (d) pCO2. Figure generated by Ocean Data View (Schlitzer, 2017). 

 
pCO2 increasing rate of change in Line P (48 - 49˚N, 130 - 125˚W) to be 0.57 ± 
0.36 μatm·yr−1, and the latter revealed a range from 0.2 ± 0.8 μatm·yr−1 to 1.0 ± 
0.5 μatm·yr−1 along the North American west coast. The average long-term pCO2 
increasing rate in the Northeast Pacific coastal ocean seems to be lower than that 
in the North Pacific open ocean. 

4. Future Changes in CO2 Dynamics of the Region 

Possible future changes in biological and physical processes can potentially cause 
negative and positive feedbacks affecting the carbonate system in the Northeast 
Pacific coast. An increase in SST due to climate change tends to increase seawa-
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ter pCO2 by reducing the solubility of CO2 in seawater (Doney et al., 2009b; Ta-
kahashi et al., 2009). The circulation pattern of the northwesterly winds may 
enhance more intense vertical upwelling (Bogden & Edwards, 2001; Xiu et al., 
2018). Increased upwelling will bring more DIC (to increase sea surface pCO2) 
and nutrients (to enhance the biological dropdown of pCO2) (Jiang et al., 2014). 
Moreover, the circulation pattern may be affected by the impact of more fre-
quent strong El Niño events, which deepens the thermocline and subsequently 
suppresses the upwelling of nutrient-rich subsurface waters, which are needed 
by phytoplankton to draw down CO2 (Wang et al., 2019). The interplay between 
intense upwelled CO2-rich waters and photosynthetic reactions is vital in esti-
mating the shelf’s overall sink-source status. Additionally, anthropogenic activi-
ties such as marine eutrophication, fisheries overexploitation, and potential geo-
technical projects could have drastic future consequences for coastal carbon 
biogeochemistry (Doney et al., 2009b). For example, the building of dams has 
been known to massively drop river discharge volumes, trapping suspended sol-
ids and nutrient-rich water, which subsequently alters the river-borne carbon 
dynamics (Ran et al., 2015).  

Data Availability 

SST, SSS, and pCO2 data are publicly available at Coastal Ocean Data Analysis 
Product in North America (CODAP-NA, Version 2021; NCEI Accession 0219960) 
https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/Coastal/no
rth_america_west.html, Chlorophyll-a data was downloaded from Aqua MODIS, 
NASA https://polarwatch.noaa.gov/catalog/chl-aqua/download/. 
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