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Abstract 
The relationship between photosynthesis and leaf nitrogen concentration is 
often used to model forest carbon fixation and ratios of different nutrient 
elements can modify this relationship. However, the effects of nutrient ratios 
on this important relationship are generally not well understood. To investi-
gate whether N/P/K ratios and CO2 concentration ([CO2]) influence rela-
tionships between photosynthesis and nitrogen, we exposed one-year-old 
black spruce seedlings to two [CO2] (370 and 720 μmol·mol−1), two N/P/K ra-
tio regimes (constant (CNR) and variable (VNR) nutrient ratio) at 6 N supply 
levels (10 to 360 μmol·mol−1). It was found that photosynthesis (Pn) was more 
sensitive to nitrogen supply and N/P/K ratios under the elevated [CO2] than 
under ambient [CO2]; under the elevated [CO2], Pn declined with increases in 
N supplies above 150 μmol·mol−1 in the CNR treatment but was relatively in-
sensitive to N supplies of the same range in the VNR treatment. Further, our 
data suggest that the nutrient ratio and the CO2 elevation effects on photo-
synthesis were via their effects on the maximum rate of carboxylation (Vcmax) 
but not electron transport (Jmax) or triose phosphate utilization (TPU). The 
results suggest that the CO2 elevation increased the demand for all three nu-
trient elements but the increase was greater for N than for P and K. The CO2 
elevation resulted in greater photosynthetic use efficiencies of N, P and K, but 
the increases varied with the nutrient ratio treatments. The results suggest 
that under elevated [CO2], higher net photosynthetic rates demand different 
optimal N-P-K ratios than under the current [CO2]. 
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1. Introduction 

The close relationship between photosynthesis and nitrogen in plants ([1]-[8] is 
often used to predict photosynthesis and growth [9] [10] [11] [12] [13] as well as 
in ecosystem carbon flux models [9]-[14]. The relationship can explain much of 
the variation in plant performance even without considering the effects of other 
nutrient elements, such as phosphorus (P) and potassium (K) [15] [16]. Plants 
are generally more sensitive to N than to other nutrient elements [17] because N 
is required in the greatest quantity and is more closely related to the amount and 
functioning of photosynthetic machines [18] [19]. However, other elements can 
interact with N in affecting plant physiological processes and modify the 
N-photosynthesis relationship as well as affect N uptake [20] [21] [22]. For in-
stance, high N supply induces K deficiency [22]; high N/K ratios reduce plant 
growth [20] [21] [22] [23]; and high K supply negatively affects N and P uptake 
[22] [24]. The N/P ratio influences the synthesis of photosynthetic enzymes and 
the shape of N-photosynthesis response curves [22] [25]. The nature and conse-
quence of interactions among different nutrient elements depend on the specific 
concentration of each element along the concentration ranges defined by the 
critical deficiency concentration (CDC) and the critical toxic concentration 
(CTC) [2] [18] [20] [21] [22]. Too low a concentration will expose plants to the 
risk of growth suppression from CDC restraint while at too high concentration 
plants will face the risk of growth suppression from CTC [2] [18] [21]. Increas-
ing nutrient supply between the CDC and CTC generally results in greater plant 
growth, but the pattern of the response varies with nutrient element [18] [21]. 
For example, responses to P and K are generally steeper than to N, particularly 
in the lower portion of the range [3] [18] [20] [22] [26] [27] [28]. However, 
N-photosynthesis relationships are generally investigated with P and K concen-
trations maintained constant [29] [30] [31] [32] [33] with few exceptions where 
N/K and N/P ratios are kept constant [29] [34] [35] [36]. 

Elevations in atmospheric CO2 concentration can also modify the N-photo- 
synthesis relationship [37] [38] [39] [40] [41]. Global climate change models 
predict that the atmospheric CO2 concentration will double from the level of 
2000 by the end of this century [42] [43]. While CO2 elevations generally stimu-
late photosynthesis and enhance its nitrogen use efficiency, the stimulation may 
not sustain in the long term [44] [45] [46] [47] because of photosynthetic accli-
mation or down-regulation [48] [49] [50] [51] [52]. The degree of photosynthet-
ic down-regulation is closely correlated to N supply [53] [54] [55]. Most studies 
suggest that photosynthetic down regulation is a result of nutrient limitation 
[51] [56] [57] [58] [59]. Consequently, CO2 elevations may be less beneficial to 
trees growing on nutrient-poor sites [30]. Conversely, fertilization can increase 
CO2 stimulation of photosynthesis and growth [49] [56] [58] [59]. CO2 eleva-
tions generally increase nutrient demand [60] and the increase is generally 
greater for N than for P and K [18] [26] [27] [28] because plants require a great-
er amount of N than P and K [18] [26] [27] [28]. Elevated [CO2] and increased 
N supply can have synergistic effects on photosynthesis and biomass production 

https://doi.org/10.4236/ajps.2021.127076


Q.-L. Dang et al. 
 

 

DOI: 10.4236/ajps.2021.127076 1092 American Journal of Plant Sciences 
 

[30] [31] [39] [50] [61]. However, other nutrient elements can also interact with 
[CO2]. For example, a low P supply can suppress the CO2 stimulation of photo-
synthesis in some species [25] [62]. Therefore, a good understanding of how CO2 
elevation, nutrient supply and nutrient ratios affect the relationship between N 
supply and the photosynthesis and growth of plants is critical for an accurate 
and reliable prediction of plant growth trends under future climate conditions 
[8] [14] [63] [64]. 

Black spruce grows on sites with a wide range of N levels [65]. However, its 
physiological responses to CO2 elevation are generally examined under optimal 
nutrient regimes [29] [66] [67] [68] [69]. The objective of this study was to in-
vestigate how elevated CO2, nitrogen supply and their interactions with P, K and 
N/P/K ratios affect the relationship between N and photosynthesis in black 
spruce. Since the increases in nutrient demand induced by CO2 elevations are 
proportionally greater for N than for P and K, and CTC is reached faster for P 
and K than for N under elevated CO2 when N/P/K ratios are maintained con-
stant, we hypothesize that N/P/K ratios and CO2 will interactively affect the 
N-photosynthetic relationship.  

2. Materials and Methods 
2.1. Plant Materials 

One-year-old black spruce seedlings (Piceamariana [Mill.] B.S.P.) were obtained 
from the Hill’s Greenhouses Ltd. in Murillo (west of Thunder Bay). The seedl-
ings were relatively uniform in size at the beginning of the experiment (H = 22.8 ± 
0.16 cm, RCD = 2.05 ± 0.02 cm). The seedlings were transplanted into contain-
ers of 13 cm height and 12 cm diameter with a mixture of peat moss and vermi-
culite (1:1; v/v).  

2.2. Experiment Design 

There were two CO2 treatments (AC 370, EC 720 μmol·mol−1), two nutrient ratio 
treatments within each CO2 treatment (constant N/P/K ratio (CNR) vs. variable 
N/P/K ratio (VNR)), and six levels of Nsupplywithin each nutrient ratio treat-
ment (10, 80, 150, 220, 290 and 360 μmol N mol−1solution). The CO2 treatments 
were implemented in four greenhouses with identical dimensions and design 
(two replicates for each CO2) in the Forest Ecology Complex of Lakehead Uni-
versity Thunder Bay campus. In the CNR treatment, the N/P/K ratios were 5/2/5 
in all 6 N treatments; in the VNR treatment, P and K concentrations were the 
same in all 6 N treatments (60 μmol·mol−1 P, 150 μmol·mol−1 K). There were 4 
seedlings per treatment combination (2 × 6 × 4 = 48 seedlings in each green-
house).  

The day/night air temperatures in the greenhouses were controlled at 25˚C- 
26˚C/16˚C-17˚C and the photoperiod at 16 hours in all the greenhouses. The 
natural light was supplemented using high-pressure sodium lamps on shorter 
days. All the experiment conditions (temperature, [CO2] and light) were moni-
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tored and controlled using a computerized Argus environment control system 
(Argus Control Systems Ltd, Vancouver, BC, Canada). Seedlings were watered 
as needed (generally every two days) to maintain the volumetric water content of 
the growing medium above 30%, as determined using an HH2 Moisture Meter 
and ML2X ThetaProbe (Delta-T Devices, Cambridge, U.K.). The experiment 
lasted 3.5 months.  

2.3. Gas Exchange Measurement 

Photosynthetic responses to [CO2] were measured at 50, 150, 250, 370, 550, 720, 
1000 and 1400 μmol·mol−1 [CO2] using a PP CIRAS open gas exchange system 
with a conifer leaf cuvette (PP System Inc. Amesbury, MA, USA). Other environ-
ment conditions in the leaf chamber were 25˚C air temperature, 800 μmol·m−2·s−1 
photosynthetically active radiation (saturated) and 50% RH. The measurements 
were taken on the current year foliage on the terminal shoot. All measurements 
were made between 0730-1130 h in situ. Following the measurement, the foliage 
used forthe gas exchange measurement was harvested and scanned for projected 
leaf area using WinSEEDLE (Regent Instruments Inc., QuebecCity, Canada) and 
subsequently dried at 75˚C for 48 hours for calculating specific leaf area and nu-
trient analyses. The A/Ci data were analysed using the Plantecophys package of 
R 4.0.2 to determine the maximum rate of Rubisco carboxylation (Vcmax) and 
light saturated rate of photosynthetic electron transport (Jmax). 

Leaf concentrations of nitrogen, Phosphorus and potassium were determined 
as described in [70]. Photosynthetic N-use efficiency (PNUE), P-use efficiency 
(PPUE) and K-use efficiency (PKUE) were calculated by dividing the net photo-
synthetic rate measured at the corresponding growth [CO2] by the correspond-
ing nutrient concentration. 

2.4. Statistical Analysis 

The data were examined graphically for the normality of distribution (probabil-
ity plots for residuals) and homogeneity of variance (scatter plots). Since both 
assumptions for the Analysis of variance (ANOVA) were met, no data transfor-
mation was necessary. When ANOVA showed a significant effect (p ≤ 0.05) for 
N supply or an interaction, Fisher’s Least Significant Difference (LSD) post hoc 
test was conducted. The analyses were conducted using the R software package. 

3. Results 
3.1. Net Photosynthetic Rate (Pn) 

The response pattern of photosynthesis (Pn) to N supply was affected by both 
[CO2] and nutrient ratio regime (significant 2- and 3-way interactions in Table 
1). At the ambient [CO2], the general response patterns were similar in the two 
nutrient ratio regimes: Pn increased with N increases from 10 to 150 μmol·mol−1 
and then decreased with further increases in N supply (Figure 1). Under the 
elevated [CO2], however, the response patterns diverged between the two nu-
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trient ratio regimes at N supplies above 150 μmol·mol−1: Pn in the CNR treat-
ment decreased with further increases in N supply as in the ambient CO2 treat-
ment, but no such decreases occurred in the VNR treatment (Figure 1). 

3.2. Biochemical Parameters 

Both [CO2] and nutrient ratio regime influenced the response of maximum rate 
of carboxylation (Vcmax) to N supply but neither affected the response of light 
saturated rate of electron transport (Jmax) (Table 1). While Vcmax increased with 
increasing N supply from 10 to 150 μmol·mol−1 in both [CO2] treatments, the 
response differed between the two CO2 treatments at higher N levels: Vcmax de-
clined with further increases in N supply under the ambient [CO2] but it pla-
teaued under the elevated [CO2] (Figure 2(a)). The response pattern of Vcmax to 
N supply in the CNR nutrient ratio regime was similar to that in the ambient 
[CO2] treatment while the response in the VNR was similar to that under the 
elevated [CO2] (Figure 2(a) & Figure 2(b)). Jmax generally increased with in-
creasing N supply from 10 to 150 μmol·mol−1 and declined with further increases 
in N supply, but the difference between two adjacent N levels was not always sta-
tistically significant (Figure 2(c)). The CO2 elevation significantly increased Jmax  
 
Table 1. P values for the effects of CO2 concentration (C), nutrient ratio (NR), nitrogen 
supply (N) and their interactions on physiological variables in black spruce seedlings. 

Variable 
Treatment effects 

C NR N C × NR C × N NR × N C × NR × N 

Pn 0.022 0.001 <0.001 <0.001 0.003 <0.001 0.013 

Vcmax 0.021 0.084 <0.001 0.132 <0.001 0.027 0.566 

Jmax 0.050 0.626 <0.001 0.513 0.109 0.383 0.357 

TPU 0.039 0.886 <0.001 0.930 0.103 0.341 0.293 

gs 0.100 0.274 0.314 0.746 0.250 0.229 0.427 

NUE 0.024 0.299 <0.001 0.028 0.476 0.159 0.324 

PUE 0.052 0.364 0.012 0.012 0.103 <0.001 0.003 

KUE 0.014 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Notes: Pn = net photosynthetic rate, Vcmax = maximum rate of carboxylation, Jmax = light saturated rate of 
electron transport, gs = stomatal conductance, NUE = photosynthetic nitrogen-use efficiency, PUE = phos-
phorus-use efficiency, KUE = potassium-use efficiency, Na, Pa and Ka are leaf area based foliar N, P and K 
concentrations. 1-year old seedlings were grown under two [CO2] (ambient [CO2] = 370 μmol·mol−1, ele-
vated [CO2] = 720 μmol·mol−1), 6 N concentrations (10, 80, 150, 220, 290 and 360 μmol·mol−1), and two nu-
trient ratio regimes (CNR—constant N/P/K ratios at 5/2/5 and VNR where the concentration was 60 
μmol·mol−1 for P and 150 μmol·mol−1 K at allsix N concentrations) for 3.5 months. Significant effects (p ≤ 
0.05) were bold-faced. 
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Figure 1. Net photosynthetic rate(mean ± SEM) in black spruce seedlings grown 
under two [CO2] (ambient [CO2] 370 μmol·mol−1; elevated [CO2] 720 
μmol·mol−1), 6 N concentrations (10, 80, 150, 220, 290 and 360 μmol·mol−1), and 
two nutrient ratio regimes (CNR—constant N/P/K ratios at 5/2/5 and VNR 
where the same concentrations of 60 μmol·mol−1 P and 150 μmol·mol−1 K were 
used at all six N levels). The photosynthesis was measured at the corresponding 
growth [CO2]. The significant 3-way interactions (P < 0.05) were labelled with 
lower case letters and means with different letters were significantly different 
from each other (P ≤ 0.05). 

 
(from 72.8 to 101.5 μmol CO2 m−2 s−1). However, neither nutrient ratio regime 
nor [CO2] had a significant effect on the response of Jmax to N supply (Table 1).   

3.3. Foliar Nutrient Use Efficiency 

The CO2 elevation significantly increased photosynthetic nitrogen-use efficiency 
(PNUE) and the increase was greater in the VNR than CNR treatment (Table 1, 
Figure 3(a)). Nutrient ratio regime had opposite effects on PNUE under differ-
ent CO2 treatments: under the ambient [CO2], PNUE was significantly lower in 
the VNR than in CNR; under the elevated [CO2], however, PNUE was signifi-
cantly greater in the VNR than CNR (Table 1 and Figure 3(a)). PNUE generally 
decreased with the increasing N supply (Table 1 and Figure 3(b)).  

The photosynthetic phosphorus-use efficiency (PPUE) was affected by both 
nutrient ratio and [CO2] (Table 1): under the elevated [CO2] and VNR, PPUE 
increased with increasing N supply from 10 to 80 μmol·mol−1 and then became 
relatively stable with further increases in N supply; under the elevated [CO2] and 
CNR, there was not much change in PPUE as N supply increased from 10 to 150 
μmol mol−1 N but it decreased with further increases in N supply; there was gen-
erally very little variation in PPUE under the ambient [CO2] either with nutrient 
ratio or N supply (Figure 3(c)).   
The responses of photosynthetic potassium-use efficiency (PKUE) to [CO2], nu-
trient ratio and N supply were similar to those of PPUE with the exception that 
PKUE increased with increasing N up to 150 μmol mol−1 under the elevated 
[CO2] and VNR as compared to 80 μmol mol−1 N for PPUE (Table 1, Figure 
3(c) and Figure 3(d)).  
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Figure 2. Effects of CO2 concentration (C), nitrogen supply 
(N) and Nutrient ratios (NR) on maximum rate of carboxyla-
tion (Vcmax) and light saturated rate of electron transport 
(Jmax) in black spruce seedlings. Significant effects (P ≤ 0.05) 
were indicated with “*” and means (+SEM) different letters 
were significantly different from each other. Other explana-
tions are as in Figure 1. 
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Figure 3. Effects of CO2 concentration (C), nitrogen supply (N) and Nutrient ratios (NR) 
on photosynthetic nitrogen-use efficiency (NUE), photosynthetic phosphorus-use effi-
ciency (PUE), and photosynthetic potassium-use efficiency (KUE) in black spruce seed-
lings. Other explanations are as in Figure 1 & Figure 2. 

4. Discussions 

The results of this study support the hypotheses that constant N/P/K ratios 
(CNR) would lead to reductions in photosynthetic rate at high N supplies (>150 
μmol mol−1 N) under elevated [CO2] and that CO2 elevations would modify ni-
trogen-photosynthesis relationships. The fact that photosynthesis in the variable 
N/P/K ratios (VNR) (or constant P & K concentrations) did not show any sign 
of declines at higher N supply levels under the elevated CO2 suggests that the de-
cline in photosynthesis in the CNR treatment was attributed to toxic levels of P 
or K or both. Further, under the ambient [CO2], photosynthesis at high N (>150 
μmol mol−1 N) declined in both CNR and VNR, suggesting that the decline in 
photosynthesis under the ambient CO2 was probably attributed to nitrogen tox-
icity. The above results also suggest that the CO2 elevation increased the demand 
for nitrogen to greater extents than for phosphorus and potassium. However, the 
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CO2 elevation modified the nitrogen-photosynthesis relationship only in the 
VNR treatment. Thus, it can be concluded that the highest nitrogen supply used 
in this study was not toxic to black spruce under the elevated CO2 and that the 
phosphorus and/or potassium levels in the CNR were too high at nitrogen sup-
plies greater than 150 μmol mol−1 while those in the VNR was too low to max-
imize photosynthesis. This study suggests that neither P and K concentrations 
nor N/P/K ratios should be kept constant at the current optimums when in-
creasing fertilization are used to increase plant productivity in the future. Instead 
the concentration combination of the three key nutrient elements should be 
considered as a single integrated factor. Further research is warranted to deter-
mine optimal combinations of these elements under the future doubled CO2 en-
vironment. The results of this study are consistent with the concepts of critical 
deficiency concentration and critical toxic concentration as used by some other 
researchers [18] [28] [29]. Our data suggest that the nutrient ratios and the CO2 

elevation affected photosynthesis via their effects on Vcmax but not Jmax. These re-
sults are in agreement with the findings of [14], but contradicted the results of 
[71]. The effects probably reflected specific performance of black spruce seedl-
ings growing in our wide range of N supplies and various nutrient ratios.   

The nutrient ratios modified the responses of photosynthetic use-efficiency of 
N, P and K (PNUE, PPUE and PKUE, respectively) to [CO2] and N supply. The 
CNR treatment suppressed PNUE under the elevated [CO2]. PPUE and PKUE, 
however, were suppressed by the CNR only at higher N supplies under elevated 
[CO2]. As discussed previously on the suppressions of CDC and CTC, the de-
creases in PPUE and PKUE were probably attributable to the CTC effect of K. 
The PKUE under the elevated [CO2] increased with increases of N supply in the 
VNR treatment (K availability remained equal across all N supply levels), indi-
cating the enhanced effect of increasing N supply on PKUE; the reversed trend 
occurred to the PKUE in the CNR treatment (K supply increased with increases 
of N supply), indicating the high K availability decreased the PKUE, and this 
high K availability caused the seedlings passively absorbing K, which led [K] 
passing over the level of CTC of K. In addition, the CO2 elevation in this study 
generally resulted in greater PNUE, PPUE and PKUE. The enhancing effect of 
CO2 elevation on PNUE agreed with the findings of [72], and the negative rela-
tionship between PNUE and leaf [N] was consistent with the results of [35]. The 
changes of the PNUE provided evidence that the relationship between photo-
synthesis and nitrogen was modified by nutrient ratios. 

The nutrient ratios changed the relationship between photosynthesis and leaf 
[N] in this study. [73] has pointed out that the effects of elevated [CO2] on Vcmax 
are largely through the changes in leaf [N] [73]. The results in this study indi-
cated that the relationship between Vcmax and leaf [N] was also affected by N/P/K 
ratios. The high leaf N concentration at the high N supply levels resulted in 
greater Vcmax with the VNR treatment, but not in the CNR treatment. The effect 
was probably due to the toxic effects of K. Elevated [CO2] decreases leaf [N] [49] 
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[74] and reduces net photosynthetic rates measured at a common [CO2]. Cao et 
al. ([3]) reported that the magnitude of photosynthetic acclimation in white 
birch (Betula papyrifera Marsh.) in response to CO2 elevation decreases with 
greater leaf N concentrations. Zhang and Dang [70] found that no photosyn-
thetic down-regulation occurs in white birch seedlings in response to CO2 eleva-
tion at various levels of N supply when N/P/K ratios are maintained constant. 
However, in this current study, the Na increased with the increasing N supply, 
but this ascending trend of leaf [N] did not show consistent corresponding in-
creases of net photosynthetic rate at the high N supply levels under the elevated 
[CO2], rather the trend was modified by the nutrient ratios, that the CNR de-
creased Pn and the VNR increased it. [3] reports that CO2 elevation increases Pn 
with no significant effect on Na. The changes in leaf [K] due to the effect of nu-
trient ratio treatments also showed a positive effect on Pn, indicating that photo-
synthetic responses were not only correlated to leaf [N], but also to leaf [K], 
supporting the conclusion of [3] that the relationship between photosynthesis 
and leaf [N] is influenced by nutrient ratio. 
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