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Abstract 
I provide a critical reassessment of David Mermin’s influential and mislead-
ing parable, “Quantum Mysteries for Anyone”, identifying its errors and re-
solving them with a complete analysis of the quantum experiment it is meant 
to portray. Accessible to popular readership and requiring no knowledge of 
quantum physics at all, his exposition describes the curious behaviour of a 
machine that is designed to parody the empirical results of quantum experi-
ments monitoring the spins of a pair of electrons under various conditions. 
The mysteries are said to unfold from contradictory results produced by a 
signal process that is proposed to explain them. I find that these results derive 
from a mathematical error of neglect, coupled with a confusion of two dis-
tinct types of experiments under consideration. One of these, a gedankenex-
periment, provides the context in which the fabled defiance of Bell’s inequa-
lity is thought to emerge. The errors are corrected by the recognition of func-
tional relations embedded within the experimental conditions that have been 
long unnoticed. A Monte Carlo simulation of results in accord with the actual 
abstemious claims of quantum theory supports probability values that Mer-
min decries as unwarranted. However, the distribution it suggests is not de-
finitive, in accord with the expressed agnostic position of quantum theory 
regarding measurements that cannot be executed. Bounding quantum proba-
bilities are computed for the results of the gedankenexperiment relevant to 
Bell’s inequality which inspired the parable. The problem is embedded in a 3 
× 3 design of Stern-Gerlach magnet orientations at two observation stations. 
Computational resolution on the basis of Bruno de Finetti’s fundamental 
theorem of probability requires the evaluation of a battery of three paired li-
near programming problems. Though technicalities are ornate, the message is 
clear. There are no mysteries of quantum mechanics that derive from mista-
ken understandings of Bell’s inequality… for anyone. 
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1. Reassessing the Quantum Mysteries of David Mermin 

Detailed mathematical formalities of theoretical quantum mechanics preclude 
their understanding by even the technically sophisticated among the generally 
educated public. Replete with measurement operator matrices on a Hilbert space 
of quantum states and a peculiar style of notation that is unique to them, en-
gagement with their prescriptions is forbidding. Aware of the widespread public 
interest in the inscrutable content of the theory, David Mermin [1] devised an 
engagingly simple parable to provide an exhibition of touted features of myste-
rious quantum behaviour as they have been long understood. Requiring no 
knowledge of any aspect of quantum physics at all, the exposition merely de-
scribes a machine that sends a pair of balls in opposite directions from a central 
station C to detectors at stations A and B. The balls can address each detector in 
three different ways, represented by three numbered settings of a dial on its face. 
Thus, there are nine different conditions under which an experimental run of 
the machine can be conducted. Coloured lights, either red or green, at the two 
detectors, provide signals as to what occurs in the encounters of the balls at the 
two stations. Statistical properties of the signal performance in a sequence of op-
erations of the device are reported and explained in such a way as to exhibit one 
of the defining puzzling mysteries of quantum theory: the purported defiance of 
Bell’s inequality by the probabilistic behaviour of entangled particles.  

Questions arise concerning the physical process of production of the ma-
chine’s output. This evidently involves entangled probabilities of light signals at 
the stations A and B, each of which depends on both the dial setting at its own 
station and the setting at the other station. This is despite the fact that there is no 
physical connection between the stations which might convey information be-
tween them regarding their respective dial settings. An information transmission 
scheme is envisioned by which the pair of balls may carry within themselves 
unobserved encoded messages to stimulate the observed entangled behaviour of 
the light signals. Although this is shown capable of accounting for regularly 
matching signals when the dial settings are identical, an enigma arises when the 
settings are different. Any such scheme appears to instigate matching light sig-
nals at the two stations with a frequency exceeding 1/3 in situations for which 
the machine is known to exhibit such signalling with probability of only 1/4. The 
machine behaviour is touted as mysterious, defying explanation by encoded 
messages and portraying one of the great mysteries of quantum analysis. 

Upon completion of the exhibition, it is explained to any QM-enlightened 
readership that the parable of the mysteries actually mimics the situation of a 
real quantum experiment. This would involve the transmission of a pair of elec-
trons in opposite directions over long distances toward two observation stations 
at which Stern-Gerlach magnets identify the electromagnetic spin of each elec-
tron as directed up or down. The magnets at the two stations can each be set up 
in any of three differently angled directions perpendicular to the direction of the 
incoming electrons. These alternative directions are represented in the parable 
by the three different settings of the dials at stations A and B. The statistics re-
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ported in the parable summarizing signal behaviour of the machine over se-
quences of experiments at each dial pairing correspond to what is expected of 
the spin observations according to the principles of quantum theory. 

The reported results are both simple and stunning. The professor teased that 
he could actually create this machine using the results of paired quantum expe-
riments as the generators of the random outcome sequences. Requiring an effort 
which he assured would be somewhat less than the order of the Manhattan 
project, he proclaimed that “the conundrum posed by the behavior of the device 
is no mere analogy, but the atomic world itself, acting at its most perverse.” 

So engaging, simple, and startling is Mermin’s exhibition that the piece has 
become standard fare for the exposition of Bell’s inequality to students ever since, 
both students of physics and of philosophy, even at graduate levels. Moreover, it 
is included in a welcome and popular collection of his essays on matters of theo-
retical physics meant for the generally educated public, Boojums all the way 
through: communicating science in a prosaic age. Immensely successful and in-
fluential, it has been reprinted by now in nine hardcover and five paperback edi-
tions. The exposition of “Quantum Mysteries” was lauded by Richard Feynman 
as “one of the most beautiful papers in physics that I know of” according to the 
preface to the volume [2]. 

However, the lionization of Mermin’s article by another leading figure of 
twentieth century physics does not make it correct. I make bold here to display 
that his amusing allegorical presentation of the situation is both mistaken and 
misleading. A recognition of my assessment here, in tandem with my arguments 
in [3] and [4] will suggest a revision of physicists’ attitudes towards the interpre-
tation of quantum theory, and the mistaken supposed defiance of Bell’s inequa-
lity in particular. 

David Mermin is one of the most accomplished physicists of our era, a che-
rished professor in the Department of Physics at Cornell University for many 
years. It is edifying to view his curriculum vitae at the public website at cor-
nell.edu. Along with the publication of his own extensive research results, he has 
been seriously committed to the exposition of contemporary findings of theo-
retical and applied physics to the general public. In addition to 138 technical 
publications, his curriculum vitae includes 20 pedagogical articles and 29 general 
writings. This does not make him immune to mistakes. We all make mistakes. It 
is with due respect for his accomplishments and appreciation of his personal 
style that I explain in this article the serious consequences of his mistaken un-
derstanding of Bell’s theorem and its implications. Feeling gauche to refer to him 
regularly throughout the essay as “Mermin”, I refer to him alternately as “the 
professor”. I intend this with respect.  

Of course I invite you to read or to reread the parable of “Quantum Mysteries 
for Anyone” for yourself, along with the preface to Boojums as a prelude to 
studying my exposition. Both are available online. However, to make this pres-
entation self-contained I will begin Section 2 with a faithful outline of the myste-
ries as they are portrayed, firstly with a description of the properties of the ma-
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chine’s operation, and then with a display of the mysterious behaviour attributed 
to its conduct. Reflection on the structure of the argument allows us to recognize 
a sleight of hand in its application to the description of the machine’s activity. 
This involves consideration of a gedankenexperiment which underlies the sup-
posed defiance of Bell’s inequality. Section 3 is devoted to the structure of the 
material problem of quantum physics that the professor would have us ignore in 
deference to thinking about his wondrous machinery. We shall find that the ac-
tual problem under consideration involves a system of restrictive functional re-
strictions that are ignored in his proposed assessment of its behaviour. 

Section 4 presents a Monte-Carlo simulation of the quantum gedankenexpe-
riment which recognizes these functional relations, displaying a frequency of 
matching lights on the order of 0.375 in situations for which Mermin proclaims 
his machine to provide only 0.25. The simulation subscribes completely to the 
probabilities specified by quantum theory in all appropriate instances. Section 5 
then completes the computational analysis of the quantum gedankenexperiment, 
relying on the application of Bruno de Finetti’s fundamental theorem of proba-
bility to identify the bounds on the relevant probabilities that quantum theory 
actually motivates. Quantum theory is quite explicit in refraining from asserting 
joint probabilities for the outcomes of measurement operators that do not 
commute. Nonetheless the prescriptions it motivates do imply precise bounds 
on such probabilities which cohere with the explicit assertions it does provide. 
My discussion concludes in Section 6 with an overview of what is to be learned 
from this exercise, and a recognition of precursings of the analysis here already 
aired in the technical physics literature. 

2. Mermin’s Machine and Its Puzzling Properties 

From a box, labeled c in Figure 1, two apparently indistinguishable balls are 
ejected in opposite directions toward identical receivers at stations labeled a and 
b. There are no discernible connections between these components of the ma-
chine, a, b, and c. Each receiver has a dial on its face that can be positioned to 
any one of three settings, numbered 1, 2, and 3. Neither receiver is advised of the 
dial setting on the other receiver. In whatever way this pair of dials are set, when 
the balls enter the receivers at the stations, each station will flash one of two 
lights, coloured Green and Red. The results of a sequence of machine experi-
ments are recorded using ordered notation such as 12GR. This would designate 
that an observation was made with the dial at a set to 1 and that at b set to 2, and 
that the coloured light observed at a is Green while that at b is Red. Thus, a  
 

 

Figure 1. “The complete device. (a) and (b) are the two detectors. (c) is the box from 
which the two particles emerge.” The original caricature of Mermin’s mysterious machine, 
reprinted with permission from The Journal of Philosophy 78(7): 397-408, 1981. 
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sequence of such observations at various dial settings might look something like 
12GG, 31RG, 13GR, 22RR, 32RR, 12RG, 21GR, and so on. 

Here is how the machine works. A pair of apparently identical balls is ejected 
from box C in opposite directions toward the detectors A and B at whatever dial 
settings are arranged there, and the signal lights are observed. Once the result is 
recorded at these settings, another pair of balls is sent out to the detectors in 
whatever numbered dial settings are then arranged for them. Such experimenta-
tion continues sequentially with new pairs of indistinguishable balls. When the 
dials at A and B happen to be set to the same number for any run, then the co-
lours of the flashing lights are always observed to be either both Red or both 
Green, with equal frequencies of 1/2 as GG and as RR. On the other hand, when 
the dials are set at different numbers, the signal lights flash the same colour 1/4 
of the time, and flash different colours 3/4 of the time. In the former cases, half 
of the time the identical colours show GG, and half the time they show RR. In 
the latter cases, half of the time the flashing colours show GR, and half the time 
they show RG. There is no apparent regularity in the orders of their appearance. 

The puzzling question and the source of the mystery involved concerns the 
determination of what could account for such observable results. It seems odd 
that the signal behaviour at each detector depends on the dial setting at the other 
detector, yet there is no obvious way for the two receivers to communicate with 
one another as to the positions of their dial settings. Proposed as a solution is 
that while the two balls sent to A and B are apparently identical to one another 
in every way, the character of each pair may be different in successive runs in a 
way that is not noticeable to the eye. On any given run, the two balls may be 
somehow encoded each with the same one of eight possible labels: GGG, GGR, 
GRG, RGG, GRR, RGR, RRG, or RRR. During a long sequence of runs, the 
source bin of the pairs of balls provides equal numbers of balls encoded with 
each of these eight configurations, in a random order. When either ball from an 
identically encoded pair such as RGR, for example, enters a detector station, the 
signal light would flash Red if the dial at that station were set at 1, would flash 
Green if the dial were set at 2, and would flash Red if it were at 3. That is, what-
ever the encoded message on the pair of balls may be, the colour flashed at each 
detector would match its dial setting with the associated colour designated at 
that position on the ball’s encoding string.  

Such a scheme would easily account for the fact that when the identically en-
coded pair of balls enter the two detectors, the signal lights would always flash 
the same colour if the detector dials were set to the same number. The balls 
would be coloured either both Green or both Red, depending on the specific 
identical encoding of the pair of balls and the setting of the dials. But what if the 
dials at A and B point to different number settings? 

2.1. Mysterious Behaviour: Can You Believe It? 

The professor pronounces that if such a scheme were in vogue, the proportion of 
runs in which the lights signal the same colour would exceed 1/3 whenever the 
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dials are set differently at the two stations. This would obviously defy the known 
result that the frequency with which matching lights are observed in such situa-
tions equals 1/4. Here is his reasoning. The dial settings at A and B are different 
from one another in six of the nine paired dial settings: 12, 13, 21, 23, 31, and 32. 
If the encoded message were RRR or GGG, the signal lights would always shine 
the same colour as the encoded ball enters the detectors at these settings. Now 
consider any encoded message that involves two designations of one colour and 
one of the other, for examples RRG or GRG. In response to such an encoding, 
say RRG, the colour signals at the two stations would be the same for two of the 
six possible dial settings of the receivers (settings 12 and 21). In the other four 
settings (13, 23, 31 and 32) the colour signals would be different. Thus, when 
responding to a long sequence of balls encoded in any of the eight ways, the 
lights will signal the same colour in at least 1/3 of the runs when the dial settings 
differ. Responding to two of the codes they always would match, while to any 
one of the other six codes the coloured lights would match at two of the six dif-
fering dial pairings. This argument is said to display the mysterious character of 
this machine. The encoding of the balls would suffice to explain why the flashing 
lights show the same colour when the dials are set identically at A and B. How-
ever, when the dials are set to different numbers, the encoding scheme would 
seem to imply that at least 1/3 of the observations should exhibit matching co-
lours. Mysteriously, the machine is known to produce matching colours in only 
1/4 of the runs with such settings. 

An invisible encoding of the balls seems to contradict the facts of the empiri-
cal observations of the machine performance. It appears that the proposal of the 
hidden encoding cannot account for the facts. No other proposal has been of-
fered that can account for the assured matching light signals whenever the dials 
happen to be set the same. There must be some mysterious connection between 
the machine components and the observation process itself to account for the 
facts. 

Would you like to dwell on this puzzle yourself for a while if you have not al-
ready done so? Literally thousands upon thousands of people have done so, and 
have been taken in by a sleight of hand in the argument. Without warning or 
fuss, Professor Mermin has switched the setting of the game on us! Rather than 
counting the spin products as each pair of balls enters the machine at a dial set-
ting, he is counting the spin products for each pair of balls as it would pass all six 
of the mixed dial settings. His reported lighting statistics pertains to one game, 
and his counting of the matching colours pertains to another, two completely 
different games. As we shall see, it makes sense to consider both games, but they 
are different for different reasons. We require some more thinking. 

2.2. The Sleight of Hand 

We could use a random number generator both to simulate both the behaviour 
of the mysterious machine and to simulate the emission of colour-coded balls, 
with quite different results. In the first case, it is easy enough to generate colour 
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signals that always appear randomly as GG or RR when the dials are set identi-
cally, but that appear in each of these ways only 1/8 of the time when the dials 
are set differently, while appearing then as GR and RG each 3/8 of the time. In 
the second case we would randomly pick an encoding design for the emitted pair 
of balls and a paired dial setting for the receivers, determining the light signals 
from the coding rule. These latter results would not match the operations of 
Mermin’s machine. Examine firstly the columns of Table 1. These each display 
the light signal responses of the machines at one of the nine dial settings to indi-
vidual pairs of the eight ball encodings listed along the rows, as described in 
Mermin’s proposal. In columns for which the dials are set differently, the light 
signals are matching for 1/2 of the ball codings, not 1/4. The proportion of 
matching lights would reduce to 1/3 only if balls coded GGG or RRR were never 
introduced to the detectors, while the six mixed encodings were introduced at 
random. The proportion could reduce to 1/4 only if the distribution of emitted 
ball encodings varied according to the paired dial settings. 
 
Table 1. Encoded messages and their induced responses. The minus symbol (−) desig-
nates the display of matching light colour signals, and the plus symbol (+) designates dif-
ferent coloured lights. 

Dials 11 12 13 21 22 23 31 32 33 

Setting 1 2 3 4 5 6 7 8 9 

GGG − − − − − − − − − 

GGR − − + − − + + + − 

GRG − + − + − + − + − 

RGG − + + + − − + − − 

GRR − + + + − − + − − 

RGR − + − + − + − + − 

RRG − − + − − + + + − 

RRR − − − − − − − − − 

 
However, the professor motivated his claims regarding matching-colour fre-

quencies among encoded balls by an argument based on a different situation: 
experimental results from sending each single pair of encoded balls to detectors 
at all nine dial setting pairs. His count of two matching lights among six obser-
vations arose from observing each pair of mixed-encoded balls such as RRG as it 
enters all six distinct station pairings with differing dial settings: 12, 13, 21, 23, 
31, 32. These counts are exemplified in the rows of Table 1. To propose that 
counts from this experiment can represent counts from the original experiment 
(each pair of balls addresses only a single setting of the dials) amounts to a 
sleight of hand.  

Now who said anything about subjecting a pair of encoded balls to all nine of 
the paired dial settings? In the operations of the machine which exhibit 1/4 
matching lights at different dial settings, each pair of balls is ejected toward a 
single setting of the dials at stations A and B, and the result might be recorded as 
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something such as 32GR or 13RG. But not both!… not to speak of results of this 
pair of balls sent to the receivers at the seven other dial pairings. If we would like 
to study the observed light signals when any single pair of encoded balls is sent 
to the detectors at all nine paired dial settings, we would require a recording 
structure more elaborate. We shall have reason to make such a study if we are to 
examine the relevance of the machine behaviour to the touted violation of Bell’s 
inequality by the probabilities of quantum physics, and we shall. 

Suppose we order the detector dial settings as 11, 12, 13, 21, 22, 23, 31, 32, 33, 
and send each pair of identical uncoded balls to all of them. Designating match-
ing-light-colour observations by a −1 and mixed-light-colour observations by +1, 
the experimental results would be recorded not merely by something like 13RG, 
but rather something like ( )1, 1, 1, 1, 1, 1, 1, 1, 1− − + + − + − + − . Recognizing that 
the vector components 1, 5, and 9 must all equal −1 because the light colours 
surely match at these settings, it would appear there would be scope for a sizea-
ble number of distinct observation vectors to arise from such a 9-ply experi-
mental run, perhaps even 62 64=  of them if the other six might each be either 
−1 or +1. We shall learn about this in time when we address the actual gedanke-
nexperiment of quantum physics that the mysterious machine is proposed to 
emulate. 

In order to make a Monte Carlo experiment of the imagined scenario, sending 
each pair of balls to all nine dial-pair settings at the stations, we would need to 
observe the light signal responses at every one of them. The accumulating data 
matrix would have size N × 9 rather than merely N × 1. Of course we shall want 
to use appropriate quantum probabilities when generating such a sequence, and 
we shall. (These, remember, involve matching coloured light probabilities of 1/4 
when the two dials are set differently.) When we do this in the context of a real 
quantum experiment, surprisingly we shall find frequencies of matching lights 
exceeding 1/3 among the different-dial-setting runs, just as Mermin has ten-
dered in his consideration of the encoded balls. The same quantum probabilities 
that generate his results of 1/4 matching light signals in runs on a sequence of 
balls each sent to a single dial setting also generate results of matching signal 
frequencies exceeding 1/3 when each pair of balls addresses all nine settings. 
There is nothing mysterious about it. What has been missed in Mermin’s ac-
counting are the same type of functional relations among the spin-products in a 
gedankenexperiment that Aspect/Bell missed in their simpler polarization expe-
riment with paired photons. It will take a while to explain the situation. 

However there is another peculiarity to be noticed in the presentation of Ta-
ble 1. While you follow the professor across a row for any mixed-colour encoded 
ball in noting the two of six matching light colour results when the two dials are 
set differently, notice also that there are only four distinct rows of nine-vectors 
that can possibly result from the scheme using the eight types of ball encodings. 
There are only eight rows to the Table, and the final four rows duplicate the first 
four rows, listed in reverse order. Just a few paragraphs ago we were imagining 
the possibility of several possible nine-vector observational results in the second 
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scenario of machine operation, as many as 64. Now it is evident that the vector 
( )1, 1, 1, 1, 1, 1, 1, 1, 1− − + + − + − + −  which we suggested as an exemplary possibil-
ity would not be a possibility at all under the encoded-ball scheme, despite it 
identifying matching lights in two of the six paired dial settings that differ. In 
fact, there are only four distinct nine-vectors of result possibilities arising from 
the eight encoding designs. The bottom line for now is that this scheme of send-
ing encoded balls to detectors at all nine dial settings is a proposition completely 
different from that which yields the proclaimed results of Mermin’s machine. 
We shall sort this all out forthwith. 

To clarify the situation requires a diversion into the real quantum experiment 
that the professor would have us ignore while we are enticed to marvel at his 
mysterious machine. My plan is to begin with a presentation of the relevant 
practical quantum experiment that can be and has been conducted many times. 
Then we shall embellish the context to a gedankenexperiment designed to assess 
the implications of Einstein’s principle of local realism and his challenge to the 
completeness of quantum theory. This is the context in which the specification 
of Bell’s inequality is entertained, and the context for which Mermin’s second 
version of the game is appropriate as an emulation. It is only once we recognise 
the structure of this matter that we will be able to identify prospective quantum 
probabilities when a single pair of balls visits all nine designs of dial settings.  

Once we have studied the structure of the real quantum experiment and its 
associated gedankenexperiment, we shall design and conduct a Monte Carlo ex-
periment as a prelude to a complete analysis of the entire situation based strictly 
on the limited claims of quantum theory. Surprisingly, the simulation also exhi-
bits matching light frequencies exceeding 1/3 under conditions that Mermin 
proposes as mysterious. But the Monte Carlo simulation will not constitute the 
end of our analysis. As with my solution to the simpler experimental context of 
Aspect/Bell in [3], we will find in the complete analysis that quantum theory 
does not propose a joint probability distribution over the complete space of 
possible gedanken observations. Rather, in its current incomplete form it speci-
fies a multi-dimensional polytope of such distributions, and explicitly renounces 
any prospect for refining it. The simulation design, while natural, is not the only 
design that QM theory would allow, and we shall see why. This is all sounding 
fairly complicated. However, it is merely a matter of plodding on to sort things 
out. 

3. What Are We Really Talking about? 

Professor Mermin understands the mystery to convey that while there are no 
obvious physical connections between the three pieces of the experimental de-
vice, A, B, and C, the attempt to explain its experimental features by unobserva-
ble instructions encoded within the balls is futile. Such an explanation might ac-
count for the specified observable outcomes of the machine when the dials are at 
A and B set identically as 11, 22, or 33, but it seems to provoke specific observa-
tions of flashing lights that do not match what we experience when running the 
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machine at other dial pairings. The alternative he proposes is to recognise that 
indeed the operation of the recorders actually is connected in some mysterious 
way, suggesting “connections of no known description, that serve no purpose 
other than relieving us of the task of accounting for the behavior of the device in 
their absence.” This is the purportedly mysterious behaviour of quantum me-
chanics as is currently widely promoted. However Mermin engages such specu-
lations no further, as the task proposed for his exposition was merely to state the 
conundrum, not to resolve it. The parable is concluded. 

After completing his description of the mystery, the professor presents an in-
sightful discussion of the relevance of the parable to issues raised by Einstein, 
Podolsky, and Rosen [5] in their proposition that the theory of quantum me-
chanics must be incomplete. While they had presented arguments that may ap-
pear telling regarding the activity of the machinery when the dials are set identi-
cally at A and B, their arguments appear to fail in situations in which the dials 
are set differently. This was a situation they did not assess, consumed as they 
were in their article with claims about the reality of quantum states and their 
observations that could be predicted with certainty. The implications for quan-
tum behavior portrayed in the parable by different dial settings at A and B did 
not become evident until the startling research results of John Bell. These have 
been understood to display that if one presumes Einstein’s principle of local 
realism and the relevance of hidden variables, then the specifications of quantum 
theory defy some standard inequalities of probability theory.  

Mermin’s exposition concludes with a description of the contextual quantum 
experiment that the parable is meant to portray, emphasizing that such detail 
can be conveniently ignored while the significance of the mystery is absorbed in 
awe. This is a well-known quantum experiment involving a pair of electrons that 
are propelled in opposite directions toward identical detecting devices of 
Stern-Gerlach magnets at stations A and B, each of the magnets oriented at one 
of three specific angles within the plane perpendicular to the incoming electrons. 
The detectors identify the magnetic spins of the electron pair, each in either the 
direction “up” or “down”, denoted by 1A = +  or 1A = − , and similarly for the 
value of B. Rather than ignoring the experimental physics as suggested, the re-
mainder of my exposition now is oriented to a detailed assessment of the exact 
specification of this experiment and the proclamations of quantum theory that 
concern it. We shall find that the parable fails to represent the situation ade-
quately, for the same reason that Aspect’s assessment of Bell’s inequality fails in 
the simpler case of a pair of photons presented to two paired polarization angles. 
It is a mathematical error of neglect. 

3.1. The Quantum Experiment in Its Gedanken Extension 

Remember that the simple quantum gedankenexperiment of Aspect/Bell con-
cerned a cerebral assessment of possibilities for the combined result of four 
practical experiments, each of which can be engaged, but for which the engage-
ment of all four simultaneously is recognized as impossible. The same style of 
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investigation will pertain to our considerations now. We shall examine the 
(im)possible imagined results of a nine-ply Stern-Gerlach thought experiment 
conducted on a single pair of electrons. This is the context to which Bell’s in-
equality pertains and in which the principle of local realism is relevant. Now it is 
a pair of electrons that are propelled in opposite directions toward the stations of 
Alice and Bob. In a real experiment, each is charged with observing one of the 
pair as it passes a magnet oriented in one of three different directions relative to 
vertical up and down. The vertical position is designated as the zero position, 
and the other two are directed in twists of negative and positive angles relative to 
this zero. The possible pairings of these magnet orientations at the two stations 
specify 3 × 3 possibilities for a paired choice of them at the two stations during 
any experimental run. The vector outcome of spin-products occurring in a run 
of a thought experiment, sending a single electron pair to all nine paired magnet 
orientations, will be denoted G9, the “G” standing for “gedankenvector”. 

Initially we shall designate the three possible magnet orientations of each spin 
observation variable by the subscripts n, z, or p, so to represent its alignment 
relative to vertical as negative, zero, or positive. We may write Ap or Bz, for ex-
amples. When referring to a spin observation at a generic magnet orientation we 
may write the quantities A and B without subscript, or we may use a subscript 
letter “d” considered as a variable. Eventually we shall assess the specific setup in 
which the two chosen magnet orientations differ by the angles −120˚, 0˚, and 
+120˚. This is the setup relevant to the probability assessments prescribed in 
Mermin’s parable. Deliberations of quantum theory specify probabilities for the 
possible paired observations of spins as up or down at the two stations, casually 
denoted as , ,P P P++ +− −+ , and P−−  appropriate to any such angle pairing. Equi-
valently, they specify the expectation of the spin product, ( )E AB . 

In the gedankenexperiment, Alice and Bob will observe the spins of a pair of 
electrons in every paired directional setting of their magnets. Their respective 
observations named A and B would be recorded as either +1 or −1 to designate 
an observation of spin “up” or “down”. We shall denote the possible results of 
their nine paired observations by product event designations such as  
( )( )1 1n zA B= + = − , ( )( )1 1n zA B= + = + , ( )( )1 1p nA B= + = + , or  
( )( )1 1z zA B= + = − , and so on, results exhibiting spin-products of −1, +1, +1 
and −1 respectively. My use of arithmetic notation means that each of these 
product events indicates whether the joint observation of spin values at site A 
and site B arises in a particular configuration or not. There will be nine of them. 
The number of prospective nine-tuples of observation products could be as large 
as 92 512= . This number of possibilities will be reduced shortly on account of 
theoretical speculation and on account of the particular directional angles we 
employ in the experiment’s design.  

We shall begin by considering a list of all the possible results of the paired ob-
servations at A and B that could be entertained according to Einstein’s conten-
tious (and currently widely rejected) “locality” condition. This involves a propo-
sition that lies outside the technical domain of quantum theory. It accepts that 
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the electron spin observation made by Alice in any specific magnet orientation is 
a result assessed with a quantum probability entangled with that of Bob’s magnet 
direction in that instance. However it proclaims that no matter what her magnet 
orientation may be in any particular experimental run, Alice’s spin observation 
in this instance would be the same (either up or down) no matter what be the 
corresponding orientation of Bob’s magnet and his spin observations in im-
agined companion experiments on the same pair of electrons.  

The reason such a claim lies outside the scope of quantum theory is that the 
distinct operator matrices for observation of a single pair of electrons addressing 
two different designs of magnet orientations do not commute. Thus, quantum 
theory itself says nothing about their joint product results at the two designs. 
The complete experiment, a thought experiment, presumes that a single pair of 
electrons passes by the two magnets in all nine of their paired orientations. The 
principle of local realism stipulates that if Alice’s spin observation is, say, +1 in a 
specific magnet orientation when Bob’s relative orientation angle is +120˚, then 
Alice’s would also equal +1 in this instance if Bob’s magnet were oriented rela-
tively at 0˚ and/or at −120˚ as well. Bob’s spin observations might equal either 
+1 or −1 in either case. Although Alice’s actual measurement for a particular 
electron spin is proposed to be invariant with respect to the setting of Bob’s de-
tection angle, this principle respects nonetheless an assertion of entanglement of 
the electrons. This understanding derives from the specification of quantum 
theory that ( )( ) ( )211 1 | cos 2

2
P A B θ θ= + = − =    at any single relative angle 

setting, where θ  is the relative angle between Alice’s and Bob’s magnet orienta-
tions. Equivalently the specification is ( ) ( )2| 1 2cos 2E AB θ θ= − . This is the 
relevant prescription of quantum theory.  

The principle of local realism implies that in measuring the spins at all nine 
angle orientation pairs for the gedankenexperiment, each of the observers would 
register only three distinct spin values. According to this premise, each of the 
observed values of ,n zA A , and pA  in the nine-ply experiment would be the 
same no matter which of the station B magnet orientations it were paired with, 

,  n zB B , or pB . The same would hold for the observation values of the B’s. 
These six observation values would display themselves among nine specific ob-
servation pairs of the form ( ),d dA B . There appear to be only 62 64=  con-
ceivable instantiations of these six spin observations that would respect the prin-
ciple of local realism in any run of the gedankenexperiment. However, the 
probabilistic assertions of quantum theory reduce the number of these possibili-
ties still further. Consider the prescription of quantum theory pertinent to a any 
experimental setup in which Alice’s and Bob’s magnet orientations are identical, 
and we measure the spin values ( ),n nA B , or ( ),z zA B , or ( ),p pA B . Quantum 
theory stipulates that in any such experiment we must observe opposite spin 
values at stations A and B. For the quantum prognostication stipulates that 
( )1| 0 1d dP A B θ= − = = , and equivalently ( )| 0 1d dE A B θ = = −    whenever 

the two magnet orientations are identical. It is impossible for the spin observa-
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tions at Alice’s and Bob’s stations to be the same when their magnet orientations 
are the same. An implication of these quantum probabilities along with the prin-
ciple of local realism is that there are not 64 possible results of the gedankenex-
periment, but rather only 8. Let’s examine them. 

3.2. Specifying the Possible Results of the Stern-Gerlach  
Gedankenexperiment 

Let’s cut to the quick, and present for comment a list of all possible results of the 
3 × 3 gedankenexperiment that might be observed for a single pair of electrons 
passing the magnets in all of their possible relative orientations. The possibilities 
constituting the experimental ensemble are presumed to be limited by the prin-
ciple of local realism and the assertions of quantum theory, particularly as they 
are relevant to component experiments in which the orientations of Alice’s and 
Bob’s magnets are identical. That is, we shall examine the “realm matrix” of all 
possibilities for the unknown observation vector ( )T

6 , , , , ,n z p n z pA A A B B B≡G  
that could result from the running of such a nine-ply-thought-experiment. 
These are followed by the vector of spin-products 

( )T
9 , , , , , , , ,n n n z n p z n z z z p p n p z p pA B A B A B A B A B A B A B A B A B=G  

that such an array of spin observations would imply for the nine paired magnet 
orientations. Partitioned (for reasons to be seen) vertically into three sections 
and horizontally into two for examination, the realm matrix appears as 

1

2

3

6

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1

  

n

z

p

n

z

p

n n

n z

n p

z n

z z

z p

p n

p z

p p

n n

n z

n p

z p

A
A
A
B
B
B

A B
A B
A B
A B
A B
A B
A B
A B
A B

A B
A B
A B

A B

 
  ∗ − − − −
  − − ∗ − − 

− − ∗ − − 
  − − − − ∗ 

− − 
 
 ∗∗∗
 
 
 
 
 
 

= 
 
 
 
 
 
 
 
 
∗∗∗ 

 
 
 
 
 
 
 

R

1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

∗ − −
− − ∗ − −
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
− − − − ∗ − − − −
− − ∗ − −
− − ∗ − −
− − ∗ − −
− − − − ∗ − − − −
− − ∗ − −
− − ∗ − −
− − ∗ − −
− − − − ∗ − − − −
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
− − − − ∗ − − − −
− − ∗ − −
−1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− ∗ − − 
 − − ∗ − − 

 

Within the first vertical partition of the named vector appear the six observa-
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tions of Alice and Bob in the performance of the nine experiments:  
( )T

, , , , ,n z p n z pA A A B B B . While each component of the 6 × 1 vector can equal ei-
ther −1 or +1, the components of the second triple in any column, ,  n zB B , and 

pB , must be the negative values of the first three components of that column. 
This is a prescription of quantum theory. The spin directions of Alice and Bob 
must oppose one another when their magnet orientations are the same. Each of 
the eight columns displaying an array of Alice’s spin possibilities at her three 
magnet orientations is accompanied by a display of Bob’s opposing spin values 
at his matching orientations. To the contrary, when the magnet orientations of 
Alice and Bob differ, then a spin observation at A in either direction might be 
accompanied by a spin observation at B in either direction as well. The 
spin-product might equal −1 or +1. Composing the columns of the middle parti-
tioned section of this realm matrix are the arithmetical products of each of the 
three A’s with each of the three B’s appearing in the same column. There are 
nine such product quantities. The product d dA B  equals −1 whenever the mag-
net directions at stations A and B are identical. The third partitioned sections of 
the named quantity vector and of its realm matrix merely repeat rows 1, 2, 3, and 
6 of the middle partition. We shall discuss them when it becomes appropriate.  

3.3. A Substantive Recognition: Functional Relations among  
Spin-Products 

A substantive matter to recognise about this realm matrix is that the four col-
umns of the right partition of the middle section constitute a folded replica of 
the columns of the left partition of that section. The middle section of column 5 
is identical to that of column 4. That of 6 is identical to column 3, and so on, un-
til the midsection of column 8 is identical to that of column 1. Thus, the middle 
partition of the realm matrix has only 4 distinct columns, rather than 8 as the 
top partition appearing above it does. Moreover, the middle partition matrix has 
only four distinct rows rather than nine as one might naively suspect. This fact 
has important ramifications for the analysis of the hypothetical problem of nine 
distinct Stern-Gerlach experiments on the same pair of electrons!  

In the first place, the realm matrix for the spin-product vector resulting from 
the gedankenexperiment on a single pair of electrons consists of only the left half 
of the middle partition matrix above, a 9 × 4 matrix. For reference in ensuing 
discussions, we shall refer to this realm matrix for the vector of nine 
spin-product observations in the gedankenexperiment as 9,4R . What is more, 
some of the rows of this complete matrix are obtainable via specific functions of 
other rows in that section. As long as any two rows of 9,4R  constitute the carte-
sian product { }21, 1− + , the remaining seven rows are determined by a function 
of them, an “into” mapping with the structure { } { }2 71, 1 1, 1− + → − + . Consider, 
for example, the rows 2 and 3 of 9,4R . Their column pairs exhaust the cartesian 
product { }21, 1− + , constituting the domain of a function. For each of these pairs 
in the domain, the remaining seven columns provide a unique vector within 
{ }71, 1− + . We shall designate this function with the notation 23 1456789→ . 
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In fact there are twelve such functional relations that inhere within the struc-
ture of the realm matrix 9,4R . Using the same functional notation, we can list 
them as: 

23 1456789→     34 1256789→     47 1235689→  

26 1345789→     36 1245789→     48 1235679→  

27 1345689→     38 1245679→     67 1234589→  

28 1345679→     46 1235789→     78 1234569→  

The first of these arrows denotes the functional relation among the columns of 
spin-products we have just described. It denotes a mapping from { }21, 1− +  into 
{ }71, 1− + . The subsequent arrow structures all describe functions as well. All 
that is required is that the two rows of 9,4R  corresponding to the domain va-
riables exhibit among their column pairs the component vectors of { }21, 1− + . 
This list of functional relations embedded in the realm matrix is exhaustive. 
There are six paired spin products corresponding to experiments with different 
magnet orientations at the stations of Alice and Bob, these being the compo-
nents 2, 3, 4, 6, 7, and 8 of any spin-product vector. There are 6

2 15C =  possi-
ble choices of two spin-products to consider as elements of a possible function 
domain. However three such choices of two of them fail to provide a valid func-
tion domain: (2, 4), (3, 7), and (6, 8). That is, attempted mappings of 24 onto 
1356789, of 37 onto 245689, and of 68 onto 1234579 all fail to identify a function. 
For example, the column pairs from rows 2 and 4 do not exhaust { }21, 1− + . 
Furthermore, when they repeat they correspond with two distinct tentative ob-
jects in { }71, 1− + . The relation this structure provides for consideration does 
not constitute a function. 

In the second place worthy of note, the twelve embedded functional relations 
among the spin products we have recognized are not linear. If they were, the 
rank of the realm matrix 9,4R  would be only two, but it is four! This is a feature 
crucial to the implications of quantum theory for assessing the prospective re-
sults of the gedankenexperiment. Quantum theory makes specific expectation 
(and probability) assertions regarding the spin product possibilities for any two 
domain variables among our listed functions, considered as distinct isolated ex-
periments. If the functional relations we have enumerated were linear then these 
would imply precise expectations for the range variables. As it is, the assertions 
of quantum theory will stipulate only bounds on the expectations for the 
spin-products of the range variables in any such case. This situation inheres 
some intrigue. The conditional distribution for any seven products in a range 
vector given the results of the domain vector would be degenerate at their func-
tion value. Yet their joint probability distribution with the domain variables 
cannot be determined precisely. We shall see more of this. 

A further remark of note concerns the paired repetitions found among rows 2 
and 4, rows 3 and 7, and rows 6 and 8 in the central vertical partition of this 
realm matrix. These identities exhibit specific symmetries among components of 
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the spin-product vector of a gedankenexperiment run: the commutativity of 
spin-product observations with respect to the orientations of their detecting 
magnets. Noting the names of the spin-product quantities whose observation 
possibilities constitute the repeating rows, these repetitions specify that 

n z z nA B A B= , n p p nA B A B= , and z p p zA B A B=  in any imagined run of the ex-
periment. This feature of symmetry will come to bear on our computations of 
probability bounds for gedankenresults deriving from the claims of quantum 
theory, restricted by its avowed uncertainty principle. 

A final surprise can be seen among the columns of the partition matrix 9,4R . 
Although we have mentioned nothing at all about encoded balls while con-
structing it, it is apparent that the columns of 9,4R  match the row designations 
in Table 1 which repeat themselves. These exhibit the light signal responses of 
Mermin’s mysterious machine to his explanatory suggestion of encoded balls. 
We shall come back to this recognition too in due time. 

4. A Simulation Experiment, Using QM Motivated  
Probabilities 

We shall now capitalize on our recognition of the functional relations embedded 
in the realm matrix 9,4R , by conducting a simulation experiment appropriate to 
the restricted experiment. It represents the situation Professor Mermin thought 
he was assessing when he evaluated the behaviour of his mysterious machine in 
response to colour-encoded balls at all nine dial-pair combinations. Our simula-
tion is meant to elucidate the structure that the theory of quantum mechanics 
designates as appropriate to the assessment of Bell’s inequality in the context of 
its associated gedankenexperiment. It will generate a sequence of twelve million 
gedankenvectors 9G , these being the simulated spin-products of electron pairs 
that each pass all nine paired magnet orientations, obeying the probabilistic pre-
scriptions of quantum theory.  

The experiment will be conducted in twelve configurations, corresponding to 
the twelve functional relations enumerated in Section 3.3. Data are generated that 
correspond to a gedankenexperiment of Stern-Gerlach apparatus with the angled 
magnet direction possibilities for both Alice and Bob set at all three of their orien-
tations relative to vertical in the ( ),x y  plane, −120˚, 0˚, and +120˚. This plane of 
directions is perpendicular to the direction of the incident electrons, exactly as de-
scribed in the conclusion to the “Quantum Mysteries for Anyone”. We shall de-
note the relative angle between Alice’s and Bob’s magnet orientations in any 
paired direction setup by B Ad dθ = − . The nine paired direction possibilities yield 
orientations that differ by angles of 0θ =   when the A and B observations are 
( ),n nA B , ( ),z zA B , and ( ),p pA B ; of 120 240θ = + = −   when the A and B 
observations are ( ),n zA B , ( ),z pA B , and ( ),p nA B ; and of 120 240θ = − = +   
when the A and B observations are ( ),n pA B , ( ),z nA B , and ( ),p zA B . Rows 1, 5, 
and 9 of our realm matrix 9,4R  correspond to an orientation difference angle 

0θ =  ; row numbers 4, 8, and 3 pertain to the difference angle 120θ = −  ; and 
rows 7, 2, and 6 pertain to the difference angle 120θ = +  .  
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The simulation begins with a routine pertinent to the spin-product function 
23 1456789→ . It first generates observation values for components 2 and 3 of 
the spin-product vector independently according to standard QM specifications 
of probabilities for differing spin observations at these magnet orientation pair-
ings. These prescribe the quantum probabilities 

1| 120   1 4   1 | 120n z n pP A B P A Bθ θ   = − = − = = = − = +   
  , 

which correspond to the frequencies reported by Mermin in the observations of 
his machine. The coloured lights match only 1/4 of the time when the stations’ 
magnet orientations differ.  

Appropriately then, from each eventuality of the two outcome values so gen-
erated for components 2 and 3, the associated spin-product values for compo-
nents 1, 4, 5, 6, 7, 8, 9 are computed according to the functional rule we have 
designated with the notation 23 1456789→ . In each of these cases, the distribu-
tion of these latter component values given the spin-product pair simulated for 
the components of the domain is degenerate on their function value. This de-
rives from the structural features of the possible spin-product observations. 
From one million such generations the number of occurrences of −1 are counted 
and recorded in the spin-product columns 1 through 9.  

The results of the simulation yield surprising counts which can be displayed as 
 

23 1000000 250191 250332 250191 1000000 625225 250332 625225 1000000 1456789 

 
The number at the far left edge of this row of such counts designates the row 

numbers of function domain observations that were selected by the pseudo ran-
dom numbers of MATLAB, while the number at the far right edge identify the 
corresponding rows in the range that were computed via appropriate function 
rules. Understanding this, you should read this report line as identifying 
1000000 counts of spin-product observations −1 in experiment columns 1, 5, 
and 9. (Mermin’s lights always flash the same colour when the dials at A and B 
read the same.) Counts of −1 amounted to 250191, 250332, 250191, and 250332 
as recorded in experiments 2, 3, 4, and 7, respectively, two pairs of which involve 
repetitions. Finally, identical counts of 625225 were recorded in both columns 6 
and 8. (The identical counts in three of the column pairs result from the com-
muting symmetries which we found to insist that n z z nA B A B= , that 

z p p zA B A B= , and that p n n pA B A B=  when the experiments run gedankenly in 
tandem. This feature arises naturally in the function-based generations of the 
simulation.) 

Notice particularly, that the repeated count of 625225 corresponding to spin 
products z pA B  and p zA B  differs markedly from the claims of Professor 
Mermin that the experiment should yield a number near to 250000 in every 
spin-product column for which the difference in orientation angle is 120θ = −   
or 120θ = +  . We can now understand why this has occurred! On account of 
the functional relations required among the spin-product observations, only a 
select two of the spin-product values can be generated freely according to QM 
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probability relations as specified by the well-known cosine squared equations.  

( )( ) ( )211 1 |   cos 2
2

P A B θ θ= + = − =    

The remaining seven must be determined from the values of these two ac-
cording to the functional relation we are considering, which binds them all. 

Now there is nothing special about the experimental components 2 and 3 
which we allowed to be chosen freely by their quantum probabilities. We have 
seen that there are twelve such domain choices of experimental pairs that can be 
used to generate the gedanken spin vector. We shall now examine a full array of 
simulation results deriving the other eleven choices of the function domain as 
well. They will be found to allay misdirected concerns aired in the parable re-
garding proportions of matching light colours proclaimed to differ from 1/4. 
Such concerns are appropriate in real physical experiments in which sequences 
of electron pairs engage any single pair of differing magnet orientations. But 
they are not appropriate to a gedankenexperiment motivated by quantum theory 
and local realism in which each pair passes all nine magnet orientation pairings. 
Let’s look at the complete results. 

4.1. An Array of Simulation Results Generated by Twelve  
Functional Relations 

Displayed in Table 2 are results of twelve simulation runs that are structurally 
identical in their generation to those I have already described for the function 
23 1456789→ . Distinct runs were based on QM probability assertions applied 
to the two domain variables of each of the twelve functional relations we have 
recognized. In each set of runs, spin-products were generated for two appropri-
ate function domain variables using QM probability simulations. Then the re-
maining seven were computed from these using the relevant function specifica-
tions we have identified. Nonetheless the output of each 9-vector generated re-
spects the injunctions of all twelve function rules. Without further ado, Table 2 
below presents the results of these simulations, presented according to the same 
reporting structure used in the previous Subsection. In fact, the first row of this 
Table repeats the results that were reported there. 

Each row of these Simulation Count results is based upon quantum probabili-
ties relevant to a distinct function whose domain rows are displayed in its left 
edge column. Columns numbered 1, 5, and 9 (not counting the edge columns) 
show that the generated spin-product is negative at all three configurations in 
which magnet orientations at the sites A and B would be identical. The products 
of the simulated spin observations yield counts of 1000000 in these columns, ex-
actly as expected in quantum theory. The negative spin-product counts at the 
other gedanken configurations vary. For example, row 3 of the Table, which 
identifies in its left edge column the relevant functional relation as 27 1345689→ , 
exhibits counts of 250096 and 250274 in matrix columns 2 and 7, as expected 
according the probability specifications of quantum theory applied to a single  
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Table 2. The letter D at top left stands for “Domain” of a function. Twelve simulation counts of negative spin-products. 

D 1
n nA B  2

n zA B  3
n pA B  4

z nA B  5
z zA B  6

z pA B  7
p nA B  8

p zA B  9
p pA B  Range 

23 1000000 250191 250332 250191 1000000 625225 250332 625225 1000000 1456789 

26 1000000 249641 625501 249641 1000000 249912 625501 249912 1000000 1345789 

27 1000000 250096 250274 250096 1000000 624192 250274 624192 1000000 1345689 

28 1000000 250188 625260 250188 1000000 250060 625260 250060 1000000 1345679 

34 1000000 250777 250397 250777 1000000 624338 250397 624338 1000000 1256789 

36 1000000 625459 249849 625459 1000000 249814 249849 249814 1000000 1245789 

38 1000000 624890 250619 624890 1000000 250277 250619 250277 1000000 1245679 

46 1000000 250093 624872 250093 1000000 249855 624872 249855 1000000 1235789 

47 1000000 249640 249716 249640 1000000 625256 249716 625256 1000000 1235689 

48 1000000 249483 625658 249483 1000000 249411 625658 249411 1000000 1235679 

67 1000000 625506 249710 625506 1000000 249974 249710 249974 1000000 1234589 

78 1000000 625491 249736 625491 1000000 249681 249736 249681 1000000 1234569 

Sum Simulation Counts by Product Column: 

 12000000 4501455 4501924 4501455 12000000 4497995 4501924 4497995 12000000  

Proportions of Negative Spin-Products by Product Column: 

 1.0000 0.3751 0.3752 0.3751 1.0000 0.3748 0.3752 0.3748 1.0000  

 
experimental magnet settings. However, in columns 6 and 8 of row 3, among the 
range variables of the constraining function both counts are found to be 624192, 
not near to 250000 at all! 

Similar structures govern the simulation counts in all rows of the count matrix 
shown in Table 2: two of the column elements of each row exhibit identical 
counts in the vicinity of 625000 while four column elements are in the vicinity of 
250000, arising as two identical count pairs. No matter which pair of function 
domains is used to generate the nine columns of results, the counts are always 
identical in columns 2 and 4, in columns 6 and 8, and in columns 3 and 7. The 
requirements of commuting spin observations such as n z z nA B A B=  are satis-
fied simply by recognition of the functional relations among spin products. 

Summing the twelve columns of these simulation counts (which each arise 
from 1 million simulated Stern-Gerlach experiments) yields further results of 
interest. Quite striking in fact are the implied proportions of differing spin-products 
exhibited at the several paired angle orientations. These proportions are not dis-
played as three 1’s and six 0.25’s as proclaimed by Professor Mermin. The three 
1’s surely appear in the expected places, but of the remaining six columns we 
find all the proportions near to 0.375, defying his claim to the proportion arising 
as 1/4. Indeed, the proportions we have generated in the quantum gedankensi-
mulation are reminiscent of the frequency behaviour of encoded balls which had 
worried him in his parable, motivating him (with many others) to decry the sen-
sibility of Einstein’s suggestion of hidden variables in quantum behaviour. Nev-
ertheless, such ball coding was not employed at all in the simulated generation of 
these results. 
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4.2. Comments, a Qualification, and a Query 

Don’t get me wrong. If you would do a sequence of simulation experiments at a 
specific pairing of differing magnet orientations using quantum probabilities, 
you would find the spin-product values to equal −1 in close to 1/4 of these cases. 
However, if you do a long sequence of simulated experiments that gedankenly 
subjects the electrons to all nine paired magnet angle directions in the way local 
realism restricts them, you would find the proportion of spin-products equal to 
−1 at about 0.375 whenever the relative angle between the magnets equals −120˚ 
or +120˚. This happenstance governs the counts displayed in columns 2, 3, 4, 6, 
7, and 8. The result has nothing to do with Mermin’s proposed explanation of 
“the mystery” involving colour-encoded balls. It derives from a recognition of 
the functional relations embedded into spin-product possibility vectors in the 
gedankenexperiment. A situation clearly distinct, when the rows are produced 
by gedankenly submitting each pair of electrons to all nine of the relative angle 
settings, many elements of the cartesian product { }61, 1− +  for the unequal 
magnet angle designs would constitute impossible outcomes of the spin-product 
functions that govern the experiment. Each of the allowable result vectors re-
spects twelve functional mappings of { }21, 1− +  onto { }71, 1− + . 

Professor Mermin’s fabulous machinery produces no mysterious results at all. 
The character of the matrix of results would be different, depending on which of 
the two different ways that the results are generated. This is not surprising. 

One way to simulate the gedankenexperiment as supported by the probabili-
ties of quantum theory would be to pick sequentially (randomly, uniformly) one 
of the functional relations that bind the spin-products { } { }2 71, 1 1, 1→− + − + , to 
generate a vector of nine-tuple observations as we have described. Then pick a 
functional relation again to generate the next 9-vector of results. Continuing 
with this process we would generate a sequence of such 9-vectors, and accumu-
late the counts of negative spin-products at the nine angle pairings across the 
sequential generations. This process would result in proportions of negative 
spin-products as appear in the final line of Table 2. However, this result could 
hardly be claimed to be a definitive prognostication of quantum theory relevant 
to the gedankenexperiment. Be aware that the nine component vector results of 
the experimental runs involve simultaneous results of observations at angle 
pairings whose operator matrices do not commute! Quantum theory explicitly 
says nothing specific about such impossible experimental results.  

So what does quantum theory say, and how can we present it in a complete 
and concise way? Consider again a single functional relation such as 23 1456789→ . 
Well, quantum theory is quite specific in identifying a probabilistic structure 
governing the possible results at either of the two relative angles between the 
Stern-Gerlach magnets that appear in the function domain. However, it is also 
quite explicit in denying any motivation for making claims about simultaneous 
spin-product results at any two relative angle settings for which the observation 
matrix operators do not commute, these two in particular. The results of this 
simulation activity I have just proposed could be admissible according to the 
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logic of quantum theory, but there is no reasoning that would make the joint 
distribution they imply definitive. There is no requirement that function do-
mains be picked randomly and uniformly at all, as I have done here. We could 
generate other distributions of results if we picked them according to some other 
random scheme. 

The way to characterize the complete space of joint probability distributions 
over gedanken results that cohere with the positive claims of quantum theory is 
to assess a battery of linear programming computations. These can identify the 
bounds on probabilities for the range settings of the constraining functions that 
would cohere with the specifications that quantum theory does provide for re-
sults of function domain settings. To produce such an assessment is the burden 
of our next Section. This involves investigating the implications of Bruno de Fi-
netti’s “fundamental theorem of probability” for the nine proposed Stern-Gerlach 
gedankenexperiments, all performed on the same pair of electrons. We turn to 
this investigation now. 

5. Characterizing a QM Probability Polytope for  
Stern-Gerlach Gedankenexperiments via de Finetti’s FTP 

If you are not familiar with Bruno de Finetti’s fundamental theorem of probabil-
ity [6], Chapter 3.10, then you should read a brief commentary and description 
of the theorem in linear programming form which I attach to this essay as an 
Appendix. In a word, the theorem identifies a linear programming problem that 
characterizes the bounds on the probability for any event that are required by its 
coherency with other probabilities that are taken as given. An application of this 
theorem to the assessment of the Aspect/Bell error was made in Section 7 of my 
article [3] about supposed inequality violations entitled, “Quantum violations of 
Bell’s inequality: a misunderstanding based on a mathematical error of neglect”. 
If you would like a pedagogical introduction to the theorem, explaining both its 
construction and an explanation of what is so fundamental about it, either be-
fore or after you continue reading the present text, I suggest an examination of 
my book [7], Chapter 2.10, pages 99-113.  

The remainder of this Section presents an analysis of the implications of 
theoretical quantum probabilities for the imagined results of the now classic ge-
dankenexperiment on a pair of electrons propelled toward the Stern-Gerlach 
magnets of Alice and Bob. It covers a description and a formalization of 
QM-motivated probability assertions appropriate to the several problems posed, 
and displays computational results that identify the bounding implications for 
other probabilities about which the theory is silent. Although quantum theory 
says nothing precise about the gedanken results, the FTP places definitive re-
strictions on what would cohere with what quantum theory does say. 

Section 5.1 is simply discursive, describing conversationally the setup of the 
linear programming problems relevant to our discussion. It does not dwell on 
explicit formal definitions of all notation, but rather proceeds straightforwardly 
with discussion using vocabulary that is standard in LP methods. Section 5.2 
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presents formal algebraic detail of the quantities and constraints involved in 
these LP problems. Section 5.3 then displays numerical results that portray the 
polytope of probability vectors representing the coherent content of recognized 
quantum theory as it is relevant to these matters. 

5.1. A Linear Programming Problem Identifying QM Probabilities  
That Recognize Functional Restrictions: A Discursive  
Introduction 

To begin, we shall presume standard expectations (and probabilities) of quan-
tum theory for the spin-products in the domain experiments 23, and use a linear 
programming format to specify bounds on implied probabilities for spin-product 
observations in the range experiments 1456789 imagined to be concurrent in the 
thought experiment. Once we are clear on how this works we shall describe how 
such a set of min/max computations would be replicated and concatenated for 
all twelve functional restriction structures. 

Familiar by now with the quantum probability distributions for the outcomes 
of any real experiment, you should recall that the probabilities for the four poss-
ible outcomes of the spin observations, ++, +−, −+, and −−, can all be identified 
from the probability for any one of them, say P++ . For the four quantum proba-
bilities resolve to P P++ −−=  along with [ ]1 1 2

2
P P P+− −+ ++= = − . Furthermore, 

this probability is uniquely related to the expected value of the spin product via 
the equation ( )E AB P P P P++ +− −+ −−= − − + , which then equals 4 1P++ − . The 
probability for a spin-product of −1 resolves to [ ] ( )1 1 2P AB E AB= − = −   . 

In the context of any component experiment for which the relative angle be-
tween the two magnet orientations is equal to θ , these relations specify 

( ) ( )21 1 cos 2
2

P θ θ++  = −   and ( ) ( )21 2cos 2E AB θ θ= −   . For reference in 
our computations relevant to Mermin’s problem, these spin-product expecta-
tions resolve to | 120 | 120 0.5E AB E ABθ θ   = − = = + =   

   and  
| 0 1E AB θ = = − 

 .  
Correspondingly,  

1| 120 1| 120 0.25P AB P ABθ θ   = − = − = = − = + =   
  , and  

1| 0 1P AB θ = − = = 
 .  

Here is the problem, stated directly in conversational English, presuming familiar-
ity with all algebraic notation and detail. We are to investigate the QM-motivated 
probability specifications for the 4 possible observation vectors of nine spin-products 
observed by Alice and Bob in a 3 × 3 paired-angle-thought-experiment on the 
same pair of electrons. Each of these vectors specifies an array of values for all 
nine components of the spin-product gedanken vector we shall call 

( )T
9 , , , , , , , ,n n n z n p z n z z z p p n p z p pA B A B A B A B A B A B A B A B A B≡G  

These are the quantities that are crucial to the specifications of quantum 
theory. A complete list of their possible gedanken observations constitutes the 
four columns of the left half of the middle partition of the realm matrix we 
created in Section 3.2, and designated as 9,4R . Only four of the nine rows of this 
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matrix are distinct, the other five being repetitions. 
Among these possible 9-dimensional vectors of spin-products, there are only 

two dimensions of free observations, on account of the functional restrictions 
embedded within them. For example, the observations at the magnet configura-
tions numbered 2, 3 would functionally identify the results at configurations 1, 4, 
5, 6, 7, 8, 9 according to quantum theoretic specifications enhanced by Einstein’s 
presumed principle of local realism. However, this functional relation is evi-
dently non-linear, for the rank of the realm matrix of nine spin-product possi-
bilities is 4. This rank corresponds to any four distinct rows of 9,4R . Thus, the 
specification of quantum expectations pertinent to the domain configurations of 
rows 2 and 3 would place only polytopic bounds on the cohering probabilities 
for the other spin-products they imply. 

If we were to specify a complete distribution of probabilities over the four 
possible spin-product outcome components of the function domain, { }21, 1− + , 
our problem would be over. However, quantum theory explicitly disavows an 
assertion of a complete distribution vector 4q  over these possibilities, for this 
would entail a specification of joint probabilities for the results of non-commuting 
Hermitian operators on the state space of the electron pair. While quantum 
theory specifies precise probabilities for the two possible values of the 
spin-product observation d dA B  at any experimental paired angle setting of 
Stern-Gerlach magnets, it explicitly says nothing about the joint outcomes of the 
spin-products observed at both settings 2 and 3, for example. Nonetheless, 
quantum theory does specify explicitly cohering probabilities regarding the out-
comes of the spin-product experiment at each of the configurations 2 and 3 sep-
arately. Observations at this pair of settings constitute the domain of the func-
tion we have designated as 23 1456789→ . 

An aside of detail should clarify the preceding disavowal. While QM theory 
would clearly specify probabilities such as ( )( )1 1n zP A B = = −   and  

( )( )1 1n pP A B = = +   for example, deriving from the expectations ( )n zE A B  
and ( )n pE A B , it explicitly disavows assertions of the form  

( )( )( )( )1 1 1 1n z n pP A B A B = = − = = +  . The former two assertions each specify 
a standard probabilistic assertion of quantum theory relative to a pair of spin 
observations at a specific paired angle setting; whereas the latter assertion would 
entail a claim about joint observations of spins at both zB  and pB , observa-
tions represented by non-commuting Hermitian operators. However, a joint 
probability of this sort would be required in order to specify precise values for 
components of the vector 4q , flaunting this abstemious honesty. Quantum 
theory does not provide for a complete distribution of probabilities for the four 
possible spin-product components of { }21, 1− + , neither at the domain pairing 
23, nor any other pair of domain variables among the twelve functions embed-
ded in the observation realm. 

Suppose then that we entertain the cohering expectations of quantum theory 
pertinent to the isolated domain products 2 and 3. What would these imply for 
the cohering expectations of spin-products 1, 4, 5, 6, 7, 8, and 9 determined in 
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their function range? Based on the associated rows of the realm matrix for the 
spin products, these expectations would place two linear restrictions on the 
components of any prospective gedankenvector 4q . Along with the constraint 
that their components are all non-negative and sum to 1 (unity), a linear pro-
gramming routine would identify a pair of solution vectors 4minq  and 4maxq  
that produce the extreme feasible values of the objective functions ( )d dE A B  
for any range orientation pairing, subject to the quantum theoretical linear con-
straints on spin-products 2 and 3. (These are in addition to the requirement that 
( ) 1E AB = −  for the spin-products of orientation pairs 1, 5, and 9, a condition 

specified by quantum theory which underlies the entire problem.) The linear 
coefficients of the objective function can be identified from appropriate rows of 
the realm matrix. 

As it turns out, with expectations specified for any pair of two domain va-
riables, there is only one range variable whose extreme cohering expectations we 
shall need to investigate. Remember that considerations of symmetry in the 
problem imply the equality of the spin products n z z nA B A B= , n p p nA B A B= , 
and z p p zA B A B= . These correspond to the identity of rows 2 and 4, 3 and 7, 
and 6 and 8 in the realm matrix 9,4R . Thus, with expectations settled at −1 for 
the negative spin-products at orientations 1, 5, and 9, asserting quantum theo-
retic expectations at orientations 2 and 3 would imply the same expectations at 
orientations 4 and 7 as well. This would leave only spin-product expectations for 
orientations 6 and 8 to be investigated, and these must be identical. As a result, a 
single pair of min/max linear programming problems would identify the bounds 
on the entire cohering expectation vector. This is what we shall formalize now. 

The paired solution vectors 4minq  and 4maxq  contain the information that 
puts bounds on the general problem solution we seek: to identify the extreme 
vectors 4q  that satisfy all QM-motivated probability specifications relevant to 
the gedankenexperiment and also support appropriate cohering range expecta-
tions. We will need to determine this pair of solution vectors for the min/max LP 
problems appropriate to each of the twelve function domains we have identified. 
It would be the entire resulting space of vectors that represents the implications 
of quantum theory pertinent to the magnetic spin-product gedankenexperiment 
on an electron pair. 

Before presenting the numerical results of these computations, let’s examine a 
formal identification of the quantity vectors that play the central roles in the li-
near restrictions of the several linear programming problems we have deli-
neated. 

5.2. Algebraic Representation of the LP Constraints 

Our goal is identify the prognostications of quantum theory regarding a gedan-
kenexperiment: Mermin’s physics problem of two electrons engaging the nine 
component 3 × 3 design of Stern-Gerlach magnets at the stations of Alice and Bob. 

Let ( )T
9 , , , , , , , ,n n n z n p z n z z z p p n p z p pA B A B A B A B A B A B A B A B A B=G  denote the 
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column vector of imagined spin-product outcomes of the nine experiments on a 
single pair of electrons. 

Let ( )9,4 9≡R R G  designate the realm matrix of possibilities for the gedan-
kenobservation vector 9G . We have already displayed it as the left half of the 
middle matrix partition of the large realm matrix we constructed in Section 3.2. 
We shall refer to individual rows of this matrix by using the denotation i⋅r  for 
values of the row numbers 1, ,9i =  , and to individual columns of this matrix 
by j⋅r  for values of the column numbers 1,2,3,4j = . 

The bold vector 41  denotes a row vector of four 1’s.  
Furthermore, let the column vector 9b  denote the numerical values of the 

quantum theoretic expectations for the components of 9G  when they each de-
signate the outcome of a single real experiment on a pair of electrons at a specific 
angle pairing of the S-G magnets.  

Finally, let 4Q  denote the column vector of events whose components iden-
tify whether the observation vector 9G  would happen to equal the various 
columns of 9,4R . That is, the component ( )9j jQ ⋅= =G r . Each of these four 
events equals 1 or 0, and only one of them equals 1. 

Notice that whereas quantum theory specifies expectations for the compo-
nents of 9G  when each is entertained as the spin-product of a unique pair of 
electrons in individual experiments standing alone, it does not specify expecta-
tions for the components of 4Q . For these events identify the joint outcomes of 
several incompatible experimental observations. However, the linear program-
ming problems we now address codify restrictions on the space of such expecta-
tion vectors that would cohere with what quantum theory does say about the 
domain experiments individually. 

To begin, we should formalize the linear programming investigations required 
by the spin-product function 23 1456789→  which we have discussed infor-
mally in the details of the preceding subsection: 

Find the vectors 4minq  and 4maxq  that yield the minimum and the maxi-
mum values of 6 4⋅r q  subject to the conditions that 

2 2

3 4 3

4

  
1

b
b

⋅

⋅

   
   =   
   
   

r
r q
1

, 

where each component 0iq ≥ . 
We shall denote these two solution vectors by 4min 23 6⋅q  and 4max 23 6⋅q . For 

once we determine them, we shall need to repeat such computational LP 
searches so to determine extreme vectors appropriate to the other eleven 
spin-product functions that govern possibilities for the spin-product vector 9G  
as well. Formally, this would amount merely to changing the coefficient vectors 

2⋅r  and 3⋅r  in the LP domain constraints, and changing the objective function 
coefficients 6⋅r  accordingly so to represent the range variable whose expecta-
tion bounds we search. In principle, there could be 24 such extreme solution 
vectors. However, on account of duplications among the row vectors of 9,4R , 
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there are only three distinct LP problem pairs among these, and six distinct solu-
tion vectors. It should be evident, for example, that 4min 23 6 4min 47 8⋅ ⋅=q q  and 

4max 23 6 4max 47 8⋅ ⋅=q q . The LP problems that they resolve are numerically identical. 
It is a feature of coherent probability structures that any convex combination 

of coherent expectation assertions is also coherent. It is the convex hull of all the 
six extreme expectation vectors that represents the quantum theoretic prognos-
tications for the gedankenexperiment. 

5.3. Computational Results 

The six solution vectors that resolve the three distinct pairs of LP problems in-
volved in this investigation are displayed as 4 × 1 columns in the top section of 
Table 3. The notational subscripts in their column headings specify the form of 
the LP problems from which they derived. Although they were designed to iden-
tify extreme values of expected spin-products at specific magnet orientations, the 
probabilities underlying each of these extreme solution vectors would specify 
cohering expectation values for every one of the spin-products that result from a 
“run” of the gedankenexperiment at all nine relative angle configurations. These 
implied nine-vectors of expected spin-products are printed immediately below 
the solution vectors in the Table to which they correspond. The rank of the ma-
trix of solution vector columns is 4. 
 
Table 3. Extreme spin-product expectations for unique LP solutions. 

LP solutions 4min 23 6⋅q  4min 26 3⋅q  4min 36 2⋅q  4max 23 6⋅q  4max 26 3⋅q  4max 36 2⋅q    

1q  0.25 0.25 0.25 0 0 0   

2q  0 0 0.75 0.25 0.25 0.5   

3q  0 0.75 0 0.25 0.5 0.25   

4q  0.75 0 0 0.5 0.25 0.25   

E (spinprod)       QM Sim 

( )1n nE A B  −1 −1 −1 −1 −1 −1 −1 −1 

( )2n zE A B  0.5 0.5 −1 0.5 0.5 0 0.5 0.25 

( )
3n pE A B  0.5 −1 0.5 0.5 0 0.5 0.5 0.25 

( )4z nE A B  0.5 0.5 −1 0.5 0.5 0 0.5 0.25 

( )5z zE A B  −1 −1 −1 −1 −1 −1 −1 −1 

( )
6z pE A B  −1 0.5 0.5 0 0.5 0.5 0.5 0.25 

( )
7p nE A B  0.5 −1 0.5 0.5 0 0.5 0.5 0.25 

( )z 8pE A B  −1 0.5 0.5 0 0.5 0.5 0.5 0.25 

( )
9p pE A B  −1 −1 −1 −1 −1 −1 −1 −1 
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To the right of the six E(spinprod) vectors in the Table appear two additional 
column vectors for purposes of comparison. The column headed by QM exhibits 
the standard expectations of quantum mechanics for the spin-product to be ob-
served in an actual experiment at any single one of the various paired angle con-
figurations. The final additional column headed by Sim exhibits expectations for 
spin-products as 0.25 corresponding to those proportions of differing spin ob-
servations (−+) or (+−) that were generated in our simulated gedankenexperi-
ment in Section 4.1, with those proportions rounded to 0.375. The simulations, 
remember, relied upon quantum-theory-motivated probabilities to generate the 
emergence of spin-products at each of the domain configurations, and then relied 
on the functional relations to yield the other seven dimensional components ac-
cordingly. The simulated behaviour of each electron pair involved its engaging 
the magnet orientations at detection stations in all nine of their experimental 
paired orientations. This is the situation that provoked Mermin’s rejection of the 
message-encoded balls explanation. 

The glory of Table 3 is that its columns specify the extreme points of a 
bounding polytope of expectation vectors supported by quantum theory as it 
would be relevant to the spin-products of a gedankenexperiment on a single pair 
of electrons at all nine of the possible orientation pairings. The fundamental 
theorem of probability does not identify a specific vector of expectations for 
spin-products at every one of the nine paired magnet orientations. Neither do 
the prescriptions of quantum theory, which avoid precise assertions regarding 
the joint outcomes of non-commuting measurements. Rather, they specify a 
space of such allowable expectation vectors which cohere with the assertions 
about real experiments that quantum theory actually is endowed to assess. Based 
on the QM motivated probabilities that constrained the several LP computations, 
the conclusion to this exercise is that the sought-for vector of gedanken expecta-
tions needs merely sit somewhere within the convex hull of the E(spinprod) 
vectors appearing as the first six columns in the lower half of the Table.  

The rank of the matrix of 9-D expectation vectors appearing in Table 3 is only 
four. These four dimensions are spanned by the rows 1, 2, 3, and 6 of the Table. 
The other rows are repeats of these, so we could have listed four different rows, 
but the result would be the same. In order to discuss these results in the same 
terms with which Professor Mermin assessed the behaviour of his machine, we 
shall transform these expectations into the probabilities they imply for negative 
spin values in Table 4. Expressed as a function of θ , this linear transform is 

( ) ( ){ }1 1 2P AB E ABθ θ= − = −        for each relative angle between the mag-
net orientations. 

One of the features of these computational results is that we can now make 
sense of the simulation results we generated in Table 2. These, remember, defied 
Professor Mermin’s claims regarding results that would obtain in such (impossi-
ble) experimentation on a single electron pair. The simulated counts of negative 
spin-products shown in that Table yielded proportions on the order of 0.375 for 
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six of the Stern-Gerlach orientation pairings. These differ markedly from the 
Mermin proclamation that proportions of negative spin-products would hardly 
differ from 0.25 at these settings, but they do exhibit the order of magnitude that 
he found upsetting. As a marginal statement in the context of the gedankenex-
periment, quantum theory specifies only ( ) [ ]1 0.25,1n zP A B = − ∈ , for example, 
which can be seen by reading along the rows of Table 4. But we can be more 
specific in understanding the three such marginal assessments of probability re-
garding ,n z n pA B A B , and z pA B . Since the top row of the Table is constant at 
the value of 1, we can recognize that the convex hull enclosing the first six col-
umn vectors of this matrix constitutes a 3-D polytope within a hyperplane in the 
4-D space. It is displayed in Figure 2 as a tetrahedron that has lost one of its tips. 
 
Table 4. Probabilities for negative spin-products along extreme solution vectors. 

LP solutions 4min 23 6⋅q  4min 26 3⋅q  4min 36 2⋅q  4max 23 6⋅q  4max 26 3⋅q  4max 36 2⋅q  QM Sim 

( )1
1n nP A B = −  1 1 1 1 1 1 1 1 

( )2
1n zP A B = −  0.25 0.25 1 0.25 0.25 0.5 0.25 0.375 

( )
3

1n pP A B = −  0.25 1 0.25 0.25 0.5 0.25 0.25 0.375 

( )
6

1z pP A B = −  1 0.25 0.25 0.5 0.25 0.25 0.25 0.375 

 

 

Figure 2. The three dimensional polygon constituting the convex hull of probabilities for 
negative spin products in a gedankenexperiment when the Stern-Gerlach magnet direc-
tions are not set identically. Professor Mermin’s proclaimed point of probabilities in these 
three dimensions, (0.25, 0.25, 0.25), is exterior to this polytope, while the simulation vec-
tor of probabilities (0.375, 0.375, 0.375) is a point well within the hull as a convex combi-
nation of its vertices. 
 

Regarding the first six columns of Table 4 as vertices of a quantum theoretical 
probability polytope for negative spin-products, we can determine that the ap-
pended final column vector headed by Sim is located within their convex hull. 
Algebraically, it is equal to the convex combination of those columns with con-
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vexity coefficients ( ),0, ,0,1 6 1 12 1 2,1 4 . In contrast, the appended column 
headed by QM does not lie in this convex hull. It cannot be expressed as a con-
vex combination of the vertex vectors. To proclaim it as representing the pre-
scriptions of quantum mechanics for the outcome of the gedankenexperiment 
would be incoherent. The accompanying relegation of Einstein’s principle of lo-
cal realism amounts to nonsense. When the operation of Professor Mermin’s 
machine is applied to the gedankenexperiment, the crude vector of quantum 
probabilities representing his provocative claims lies outside of the convex hull 
of probability vectors that are supported by the results of quantum theory. His 
assertions and his concerns derive from a mathematical error of neglect, similar 
in structure to the error we have found in the claims of Aspect/Bell. 

6. A Mystery Exposed 

In challenging the purported mysteries of quantum physics, we have now been 
through an exercise of tedious mathematics and computation. It is time to con-
clude with an overview of what we have learned. I will be brief and frank in con-
cluding. An extensive discussion of issues in quantum theory that impinge on 
the foundations of probability will require a presentation of its own [8]. 

There is nothing wrong with Professor Mermin’s machine, and furthermore 
there is nothing mysterious about it. The machine quite accurately portrays the 
probabilistic structure of the current propositions of quantum theory regarding 
the experimental observation of magnetic spins of paired electrons as they pass 
angled Stern-Gerlach magnets at two distantly separated detection stations. To 
be explicitly precise, the machine is designed to exemplify the structure of theo-
retical and empirical results from sequential observations of distinct electron 
pairs ejected to any one of nine different paired experimental settings, similar in 
design. Each of the paired dial settings on the two machines constitutes a differ-
ent type of experiment. At three of the paired angle magnet orientations when 
the two settings are identical, every observation of the spin-product equals −1. 
The spins ( ),A B  observed at the two stations are recorded as either ( )1, 1− +  
or ( )1, 1+ − . At any one of the six other paired settings in which the magnet 
orientations differ, long sequences of observations yield spin-products equal to 
−1 in 1/4 of the runs, and +1 in 3/4 of the runs. For any individual unique expe-
riment designed with such a structure, quantum theory asserts only the proba-
bility of 1/4 for the negative spin-product. The quantum probability for the elec-
tron spin behaviour at station A depends on the orientation of the magnet at sta-
tion B as well as that at station A. 

Many regard this result to be mysterious in itself, involving what Einstein had 
referred to as “spooky action at a distance”. The source of this attitude derives 
from the imagination that the probabilistic behaviour of quantum activity cor-
responds to a feature of randomness inherent in the particle structure. Nature at 
its fundamental base is considered to be random, governed by recognizable 
probability distributions, derivable by theoretical acumen and tamed at classical 
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scales of mass phenomena by the laws of large numbers. It is this conception of 
the matter to which Einstein objected. He proposed with EPR that the stochastic 
aspect of quantum theoretic results derives rather from the incompleteness of 
the theory and from our uncertainty regarding the influence of unknown and 
unobserved “supplementary variables” pertinent to the conditions of any specific 
experimental run. This proposal would relegate “the mystery” of quantum re-
sults to the same category involved in common mysteries of activity at classical 
scales of magnitude, such as “where did I leave my keys?”. Maybe here, maybe 
there. It is the codification of symmetries in our uncertainty regarding condi-
tions of the experimental problem that yields probabilistic prescriptions regard-
ing the quantum mechanics. Conditional probabilities for the outcome of one 
quantity that vary with the outcome of a conditioning event are a standard fea-
ture of distributions that represent exchangeable (symmetric) judgments. There 
is no implication that the conditioning event has actually been observed. A con-
ditional probability will be specified conditioned on the negated event as well. 
Both, together, characterise an asserted quantum probability distribution for the 
possible paired results of the experiment. 

When regarded as properties of the particles themselves, the quantum proba-
bilities of Mermin’s machine do seem to pose the mysterious question of how 
the probabilistic activity of the electron at station A can depend on the magnet 
angle (dial) setting at station B if there is no way for the status of the setting at B 
to be communicated to station A when an electron (a ball) arrives there. The 
resolution of this enigma proceeds from recognition that probabilities are not 
properties of particles at all, but rather formally assessed representations of our 
considered uncertainty about observable quantities. For now, I shall focus my 
conclusion here on what the professor proclaims as a challenge to this point of 
view. It underlies a mistaken attitude that is held virtually universally among 
quantum theorists today: the defiance of Bell’s inequality in a gedankenexperi-
ment on a single pair of electrons at all nine experimental settings defies not only 
the reasonability of local realism at the quantum scale and the proposition of 
supplementary variables pertinent to quantum behaviour, but the uncertainty 
interpretation of probabilities itself in accounting for the evidence of quantum 
experiments. Indeed it is a common misconception that the defiance of the in-
equality arises in quantum mechanical assessment of spin product expectations 
for any electron pairs whatsoever, gedanken or not.  

Professor Mermin models the action of supplementary variables by encoded 
designations of colour schemes on the balls ejected toward the stations. He pro-
poses this as a model of most any supplementary variables explanation of the 
quantum experiment, on the same metaphorical order as the machine with balls 
models the observation of electron spin behaviour. Such a proposal could be fair 
enough, though one might quibble with its adequacy for representing the sub-
stance of the supplementary variables viewpoint. Nonetheless, his analysis of the 
activity of an encoded pair of balls when they arrive at all nine dial settings ge-
nerates what he considers to be an even deeper mystery. Although the scheme 
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surely ensures matching light signals when the dials are set identically, he moti-
vates the proportion of matching lights (spin-products equal to −1) deriving 
from such a scenario as equal to more than 1/3. It is this result, which he pro-
poses as an instance of the supposed defiance of Bell’s inequality, that is seen to 
constitute the mystery of quantum behaviour: apparently no supplementary 
features of the experimental situation can account for the known behaviour of 
quantum experiments.  

It is this result that is just plain wrong. Examining the real quantum experi-
ment which we are coaxed to ignore, we have found embedded within the cor-
responding thought experiment a surprising feature that has long been unno-
ticed. Subjecting each pair of electrons to spin-detection at all nine of the paired 
angle settings would engender an array of restrictive functional relations among 
the nine observed spin results. The professor neglects these symmetric function-
al relations mapping { }21, 1− +  into { }71, 1− +  in his analysis of the situation. 
His claims regarding the machine behaviour yielding matching lights in 1/4 of 
such gedanken observations when the switches differ are blatantly false. They 
rely on the possibility that any string of nine-tuples deriving from the cartesian 
product { }61, 1− +  of spin possibilities could designate the outcome of such a 
thought experiment. We have seen otherwise … that many such strings of 
spin-products are impossible. The space of possibilities derives rather from the 
cartesian structure { }21, 1− + , replicated in several different pairs of angled 
magnet orientations. The four possible results of each domain pair of spin ob-
servations is mapped into restrictive completions within the space of { }71, 1− + . 
Moreover, we have used computational procedures of linear programming to 
identify precisely the polytope of probabilistic assertions regarding the outcomes 
of the gedankenexperiment that represent the honest claims of quantum theory 
relevant to this matter. 

The probabilities for matching lights proclaimed by Mermin are representable 
by a nine-tuple vector that does not lie within the convex hull of the coherent 
vectors supported by quantum theory. We have created a Monte-Carlo simula-
tion of results of a scenario which is both wholly consistent with quantum theory 
and also respects the restrictive symmetric functional relations that govern the 
structure of the experiment. It generates proportions of matching lights on the 
order of 0.375, precisely on the order of magnitude that the professor would 
have us suspect on account of his error of neglect. This vector does reside within 
the convex hull of extreme gedanken probabilities required by coherency. But 
there is still more to say about this! 

One of the most famous features of quantum theory, known widely by name 
to the general public, is the relevance of Heisenberg’s uncertainty principle. Un-
der the guise of that name, the principle concerns physical experiments with 
electrons that attempt to measure both the position and the velocity of an elec-
tron at a point in time. What the principle recognizes is that it is impossible to 
make such a joint measurement of both of these characteristics of the electron at 
the same time. We can make a measurement of one or the other, but not both. 
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Technically, the quantum theory identifies this impossibility by the characteriza-
tion of the two measurements of the quantum state via Hermitian operators that 
do not commute. Quantum theory can specify probability distributions for 
possible values of either of these measurements on an electron. However, it 
cannot and does not provide an assessment of a joint probability for the obser-
vation of both measurements. For such an operation is impossible. It is the in-
commensurability of measurements characterised by matrix operators which do 
not commute that is the general form of the uncertainty principle of theoretical 
quantum mechanics. 

The incommensurability of simultaneous observation of paired electron spins 
at several different paired magnet orientations in a gedankenexperiment belies 
the professor’s claims about his machine in this context. Quantum theory does 
not identify a joint probability distribution for the results of all nine of them. 
This limitation has long been recognized since the early insights of Fine [9] [10] 
and subsequently in challenges by Hess and Phillip [11], among others. These 
have been regularly rebuffed in mainstream literature which has heralded the 
rejection of local realism on this account. Nonetheless the message relevant to 
the incompleteness of quantum theory is clear and is accentuated by the delibe-
rations I have reported herein. A stirring review by Kupczynski [12] has recently 
supported a revived reconsideration of the widely acclaimed rejection of local 
realism.  

Quantum theory does provide precise probabilities for the four possible ob-
servations of spin pairs at any single paired orientation, these being ++, +−, −+, 
or −− at the two detection stations. Moreover, it can stipulate probabilities for 
such outcomes from several distinct experiments on an electron pair at differing 
magnet angles, realizing albeit that only one of them can be engaged. These are 
the probabilities used in linear programming routines that identify the restric-
tions on range probabilities provided by individual assessments of domain 
probabilities. However, for the joint distribution of all nine measurements it 
leaves four dimensions of freedom remaining unascertained. The probability 
distributions of quantum theory for the results of a real experiment on an elec-
tron pair at any one of the nine design orientations may not be considered to be 
a marginal distribution from a joint distribution. There is no joint distribution 
over these imagined experimental results supported by quantum theory in its 
current formulation! Any vector within the polytope of feasible joint distribu-
tions can be transformed mechanically into a vector of marginal probabilities for 
the spin products at any magnet orientation pair, but no one of these constitutes 
a marginal distribution pertinent to all feasibilities. 

In particular, the result of our simulated experiment using the probabilistic 
assertions of quantum theory cannot be presumed to provide a definitive proc-
lamation of quantum mechanics. It is intriguing that it generates coherent 
probabilistic activity that emulates precisely behaviour of the sort that Professor 
Mermin had relegated. Yet the implications of the simulation are not decisive. 
Its generation had embedded into it a formulation of independence among the 
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outcomes of any two spin-products observed among the domain arguments of 
the functions. While feasible in the context of the agnostic stance of the theory 
relative to incommensurable measurements, this is surely not a requirement of 
the theory. Furthermore, in the context of the active claims of the theory re-
garding the entanglement of spin observations at distant detection stations, it 
ought well be considered suspect by those who might like to think about such 
things. We are left with the realization that quantum theory provides only a 
convex polytopic boundary of probabilities for the result of the gedankenexpe-
riment to which Bell’s inequality is relevant. Bell’s inequality is defied by none of 
the distributions within the polytope that is entertained by quantum theory as 
we know it. While we are avowedly still to understand completely the physical 
details of quantum behaviour, they inhere no mysteries in themselves … for an-
yone. More hoojums than boojums. 
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Appendix: The Fundamental Theorem of Probability 

The fundamental theorem of probability (FTP) specifies that when probabilities 
or expectations for any N quantities whatsoever are assessed with the vector of 
values Np , then bounds on a cohering expectation for any further ( )st1N +  
quantity can be computed via a linear programming routine. The theorem was 
first named in de Finetti [6] (Chapter 3.10), though it is as old as his famous lec-
tures at the Institute Henri Poincaré in 1935. It was first presented in linear pro-
gramming form in the article of Bruno and Gilio [13]. The theorem extends na-
turally to specify bounds on expectations for general quantities (“previsions” in 
de Finetti’s nomenclature) as presented in the article of Lad, Dickey, and Rah-
man [14]. It is discussed pedagogically in Lad [7] (Chapter 2.10, pp. 99-113). 

Theorem: Suppose the realm matrix ( )1N +R X  for the vector of quantities 

1X  through 1NX +  has K columns. These columns exhaust all possibilities for 
prospective quantity observations under consideration. Define the vector 1N +r  
as the final row of this realm matrix corresponding to the possibilities for the 
quantity 1NX +  as the last component of the observation vector, and the matrix 

,N KR  as the N initial rows of the realm matrix corresponding to the concomi-
tant possibilities for the first N components of 1N +X . The design of the linear 
programming routine is to find the column vectors Kq  for which the linear 
combination 1N K+r q  achieves minimum and maximum values subject to the N 
linear restrictions that ,N K KR q  equals Np , along with the restrictions that the 
components of Kq  are non-negative and that they sum to 1. If there is no feas-
ible solution to these problems, then the assertion of the N expectations that 
have been presumed is incoherent. 

Comment: The linear restrictions on Kq  ensure that as long as ( )1NE X +  is 
within the extremes of 1N K+r q  determined by the theorem, the expectation of 
the full vector ( )1NE +X  would then lie within the convex hull of the columns 
of its realm matrix. This is the general condition of coherency. 
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