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Abstract 

In the applications of Tobit regression models we always encounter the data 
sets which contain too many variables that only a few of them contribute to 
the model. Therefore, it will waste much more samples to estimate the 
“non-effective” variables in the inference. In this paper, we use a sequential 
procedure for constructing the fixed size confidence set for the “effective” 
parameters to the model by using an adaptive shrinkage estimate such that 
the “effective” coefficients can be efficiently identified with the minimum 
sample size based on Tobit regression model. Fixed design is considered for 
numerical simulation. 
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1. Introduction 

Tobit regression model is called sample selection model or restricted dependent 
variable model, see in [1] [2]. It is a kind of models whose dependent variables 
satisfy certain constraints. In some cases, it is also called truncated regression 
model or censored regression model. Tobit regression model is widely used in 
Econometrics and other research fields, and plays an increasingly important role 
in the analysis of cross-sectional data and time series data, illustrated in [3] [4]. 
However, in applications data sets we encountered usually have too many ex-
planatory variables but only a few of them contributes to the model. Methods 
such as LASSO and LARS, see in [5] [6], have been proposed to figure out the 
effective variables, however it is still intractable to know how many samples can 
identify the effective variables and simultaneously make the parameter estimates 
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achieve a pre-specified accuracy. For linear regression model, Wang and Chang 
propose a sequential shrinkage estimate method to identify the effective vari-
ables and attain accuracy of parameter estimate in [7]. For Tobit regression 
models, similar methods have not been proposed and there is still a lot of work 
to do. To handle the problem mentioned above, we propose a sequential proce-
dure for constructing the fixed size confidence set for effective parameters based 
on an adaptive shrinkage estimate (ASE) such that the effective coefficients can 
be efficiently identified with the minimum sample size under fixed design.  

The rest of this paper is organized as follows. In Section 2, we will give the 
adaptive shrinkage estimate (ASE) based on the Least Absolute Deviation Esti-
mate (LAD) of Tobit regression models and its asymptotic properties. In Section 
3, Sequential sampling strategy based on ASE and stopping rule as well as ran-
dom size confident set is presented. In Section 4, an example with numerical 
simulation is given to illustrate the performance of the proposed method via se-
quential fixed size confidence estimation using synthesized data sets. 

2. Sequential Adaptive Shrinkage Estimate Based on LAD 

2.1. Asymptotic Properties of LAD 

Suppose { }max ,a a c+ = , where c is a known constant, we can define Tobit re-
gression model as:  

{ }T
0max , , 1, 2, ,i i iy x c i nβ ε+ = + = 

                 (1) 

where iy  is dependent variable, 0β  is a p-dimensional vector of the unknown 
regression coefficients, ix  is a p-dimensional vector of covariates and iε  is a 
random error. Without losing generality, suppose 0c = . Let , 1, 2, ,i i nε =   
be independent identically distributed and follows a standard normal distribu-
tion with mean 0 and variance 2σ , then the Likelihood function will be  

( )( ) ( )( )T 1 T

0 1
1 i iL x xβ σ σ β σ−= −Φ Φ∏ ∏               (2) 

where Φ  and φ  are standard normal distribution function and density func-
tion, 

0
Π  and 

1
Π  are the products in { }: 0ii y ≤  and { }: 0ii y >  separately.  

Powell proposed a Least Absolute Deviation Estimate (LAD) of 0β  in [8], 
which is written as nβ , and minimize the function  

( ) { }T

1
max ,0

n

n i i
i

Q y xβ β+

=

= −∑                    (3) 

Under the assumptions (A1) Let supi ix < ∞  and (A2) Let the density func-
tion of the random error iε , satisfies ( )0 0f =  and ( ) 0imed ε = , then there 
exists some 0δ >  

( )T T

1
lim

log

n

i i in i
I x x x

n
λ β δ

→∞ =

> = ∞∑                  (4) 

Chen and Wu proved that 0lim , . .nn
a sβ β

→∞
=  and  

( )( ) ( ) ( )1 2
02 0 0,d

n n nf M n N Iβ β⋅ − →             (5) 
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in [9], where nI  is an identity matrix and ( )T T
0

1 0n i i i
i

M E I x x x
n

β = > 
 
∑ . 

2.2. Adaptive Shrinkage Estimate 

Let ( )nκ κ=  be a non-random function of n such that for some 0 1 2δ< <  
and 0γ > , 1 2 0n κ →  and 1 2n γδκ+ → ∞ , as n →∞ . Then, under the as-
sumptions (A1) and (A2), by using Equation (4) we can see that  

( ) ( )1 2
0 1nn Oη β β− − =  almost surely as n tends to ∞  for some 0η > . Similar 

to Wang and Chang in [6], we can define ( )ˆ
n n nIβ ε β=   as an adaptive shrink-

age estimate (ASE) of 0β , where ( ) ( ) ( ) ( ){ }1 2, , ,n n n npI diag I I Iε ε ε ε= 
 is a 

p p×  diagonal matrix.  
So far, we get good statistical properties of the proposed ASE estimate under 

non-random sample size, but our goal is to determine a sample size under which 
the ASE attains the required accuracy. So we will introduce the sequential sam-
pling scheme based on the ASE below. It is known that construction of the con-
fidence set for 0β  depends on the asymptotic distribution of ˆ

nβ  and sample 
size under sequential analysis is a random variable. So we need to study asymp-
totic properties of ASE under random sample size. Fortunately, property of uni-
form continuity in probability, see in [10] and [11], is a sufficient condition such 
that the randomly stopped sequence has the same asymptotic distribution as the 
fixed sample size estimate. That is, ( )0

ˆ , 1, 2,nn nβ β− = 
, has the property of 

uniform continuity in probability, which indicates the following Theorem holds. 
Theorem 1. Suppose that the (A1) and (A2) are satisfied, and let ( )N t  be a 

positive integer-valued random variable such that ( )N t t  converges to 1 in 
probability as t →∞ . Then  

( ) ( )( ) ( )1
0 0 0

ˆ 0,N tN t N I Iβ β −− → Σ  

in distribution as t →∞ . 
From Theorem 1, we can construct a confidence set of 0β  and a stopping 

rule on sequential sampling procedure to determine final sample size. Let  
( ){ }, : 1, 2, ,i iy x i k= 

 be the first k observations and denoted by kC . Define a 
stopping rule dN  as  

2

02inf : ,d k
k

dN N k k n
a

ν
  = ≡ ≥ ∀ ≥ 
  

               (5) 

For sequential estimation procedure, one new observation is collected at a 
time until the stopping criterion is satisfied. When the stopping rule holds, based 
on N samples a confidence set of 0β  is constructed as follow,  

( )
2

: ; 0 0,1
j

p N
N N j

N

S dR Z R I z j p
N

ε
ν

 
= ∈ ≤ = → = ≤ ≤ 
 

       (6) 

where ( )  ( )1 1 1 1

T
11ˆ ˆ

N N N N NS Z Zβ β= − Σ − . Properties of the sequential procedure 
and the confidence set NR  are summarized below. 

Theorem 2. Assume that the (A1) and (A2) are satisfied, and let N be the 
stopping time defined in Equation (5). Then: 1) 2 2

0
lim 1
d

d N a ν
→

=  almost surely; 
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2) 2 2

0
lim 1
d

d N a ν
→

= ; 3) ( )2 2

0
lim 1
d

d E N a ν
→

= ; 4) ( )0 00
ˆlim

d
p N p

→
=  almost sure-

ly; 5) ( )( )0 00
ˆlim

d
E p N p

→
=  where ν  is the maximum eigen-value of matrix 

1
0 0I I−Σ . 

3. Example and Simulation 

We evaluate the performance of the proposed method via sequential fixed size 
confidence estimation using synthesized data sets. As mentioned previously, by 
the definition of the stopping rule, when sampling is stopped, the final confi-
dence ellipsoid constructed will have the prescribed precision and coverage 
probability. Thus, we can compare the average stopping times of procedures 
based on LAD and ASE. Since the proposed method ignores the non-effective 
variables, we expect the average stopping time to be significantly smaller than 
that of the procedure based on LAD with no variable identification mechanism. 
If the p0 variables are known in advance, then the most efficient procedure is, of 
course, to use only these p0 variables. Therefore, we also construct a sequential 
procedure under such a situation, and the results of the cases with known p0 can 
serve as the baseline, in which the smallest sample size is achieved, asymptoti-
cally. 

The synthesized data sets for the model with fixed designs are generated as 
follows: the regressor ix  are generated independently from a standard mul-
tivariate normal distribution with mean 0 and identity covariance matrix 
beforehand, and the error term ie  is independently drawn from the stan-
dard normal distribution for each 1i ≥ . The system error is assumed to fol-
low the standard normal distribution. The response generated by Equation 
(1) and the true parameter ( )0 1.2, 2.0,0,0,0,0,0,0,0,0β = −  with 8 
non-effective variables. Different precisions of confidence ellipsoid 

{ }0.3,0.4,0.5,0.6d ∈  are chosen with coverage probability equal to 95%, 
0.05α =  in the simulation. We choose 1γ = , 0.55δ =  and 0.70θ =  in 

analyzing simulated data. When applying the ASE method, the regularization 
parameter ε  needs to be determined by some model selection criteria, as 
the AIC, BIC together with a GCV method. For convenience, we only use 
BIC to illustrate our method.  

Table 1 state results of sequential sampling method for cox regression. In 
the table, we list final sample size N (stopping time), 2 2d N aκ ν=  and em-
pirical coverage probability CP of the 95% confidence set NR . For all of the 
three cases: LAD, 

0
LAD p , ASE, the value κ  of is very close to 1, and the 

empirical coverage probability CP approaches the Normal 95% as d de-
creases, as stated in Theorem 2. However, the sample size N of LAD are 
much larger than those of the other two cases, and ASE has sample size very 
close to those of 

0
LAD p . In conclusion, the proposed ASE is more efficient 

than LAD.  
Table 2 reports powers of identity effective variables and effective variables 

and estimates of the regression coefficients for Tobit regression. We can see that 
numbers of incorrectly identified zero variables ( icN ∗ ) using ASE is almost close 
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Table 1. Results of sequential sampling method based on ASE, LAD with all variables and 

0
LAD p  with only 0p  non-zero variables for Tobit regression model. 

 
( )0 1.2, 2.0,0,0,0,0,0,0,0,0β = −  

0
LAD p  ASE LAD 

Design d N *κ  CP N κ  CP N κ  CP 

fixed 

0.6 85.44 (14.75) 1.008 0.96 92.32 (17.40) 1.044 0.94 327.8 (23.194) 1.01 0.92 

0.5 126.84 (19.75) 1.019 0.96 131.52 (19.13) 1.034 0.98 433.21 (29.586) 1.006 1 

0.4 179.13 (25.587) 1.001 0.94 190.34 (25.311) 1.021 0.93 674.26 (37.868) 1.003 0.90 

0.3 363.72 (38.211) 1.001 0.97 373.60 (37.087) 1.017 0.95 1203.05 (44.707) 1.002 0.94 

( )* 2 2d N aκ ν= ; CP+  is the empirical coverage probability of 95% confidence ellipsoid region NR ; ** 

Empirical standard deviations are in parentheses. 
 
Table 2. Power of variable identification and estimation of nonzero components under 
sequential sampling method based on ASE and LAD with Tobit regression model. 

 
1 21.2, 2.0β β= − =  

ASE LAD 

Design d icN ∗  cN ∗  1β  2β  icN ∗  cN ∗  1β  2β  

fixed 

0.6 0 7.912 −1.223 (0.155) 2.16 (0.010) - - −1.240 (0.13) 2.061 (0.31) 

0.5 0 7.959 −1.214 (0.129) 2.042 (0.193) - - −1.224 (0.009) 2.031 (0.066) 

0.4 0 7.982 −1.208 (0.105) 2.073 (0.112) - - −1.211 (0.054) 2.021 (0.077) 

0.3 0 7.933 −1.210 (0.076) 2.035 (0.102) - - −1.201 (0.032) 2.004 (0.043) 

icN ∗  and cN ∗  are the average number of zero components in β  correctly identified and nonzero com-
ponents incorrectly estimated as zero values, respectively; + standard deviations are in parentheses.  

 
to 0, and the number of correctly identified zero variables ( cN ∗ ) are all very close 
to the true number of effective variables (2 and 8). These results suggest that 0p̂  
is a good estimator of 0p  under the sequential sampling method based on ASE. 
The LAD procedure does not identify the effective variables, so cN ∗  and icN ∗  
are not available. In addition, all of parameter estimates of effective variables are 
very close to the true values. 

4. Conclusion 

Based on an ASE estimate of the parameter in Tobit regression model, a sequen-
tial sampling procedure is constructed to estimate a minimum sample size to 
identify the effective variables and simultaneously make estimate of parameters 
with required accuracy. We prove that the proposed sequential procedure is 
asymptotically optimal in the sense of Chow and Robbins, see in [12]. Simula-
tion studies show that the proposed method can save large sample size compared 
to traditional sequential sampling method. However, this paper supposes the 
dimension of variables is fixed, not varying as sample size. Our future work is to 
investigate the properties of sequential sampling method with varying number of 
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variables as sample size. 
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