
Journal of Transportation Technologies, 2021, 11, 404-411
https://www.scirp.org/journal/jtts

ISSN Online: 2160-0481
ISSN Print: 2160-0473

DOI: 10.4236/jtts.2021.113026 Jul. 19, 2021 404 Journal of Transportation Technologies

A Dynamic Leader Election Algorithm for
Decentralized Networks

Vijay K. Madisetti, Siddhanta Panda

Georgia Institute of Technology, Atlanta, USA

Abstract
Leader election algorithms play an important role in orchestrating different
processes on distributed systems, including next-generation transportation
systems. This leader election phase is usually triggered after the leader has
failed and has a high overhead in performance and state recovery. Further,
these algorithms are not generally applicable to cloud-based native microser-
vices-based applications where the resources available to the group and re-
sources participating in a group continuously change and the current leader
may exit the system with prior knowledge of the exit. Our proposed algorithm,
the dynamic leader selection algorithm, provides several benefits through selec-
tion (not, election) of a set of future leaders which are then alerted prior to
the failure of the current leadership and handed over the leadership. A specific
illustration of this algorithm is provided with reference to a peer-to-peer distri-
bution of autonomous cars in a 5G architecture for transportation networks.
The proposed algorithm increases the efficiencies of applications that use the
leader election algorithm and finds broad applicability in microservices-based
applications.

Keywords
Bully Algorithm, Peer-to-Peer Services, Dynamic Leader Algorithm, 5G,
Cloud-Native Functions and Microservices

1. Introduction

In a computer cluster comprising multiple computers or nodes, the bully algorithm
is primarily used to elect a coordinator that can serve as an orchestrator among
the processes to select the node with the highest priority hosted on the cluster
[1]. A priority is assigned by virtue of a load balancing algorithm very similar to
those used in operating systems [2].

How to cite this paper: Madisetti, V.K.
and Panda, S. (2021) A Dynamic Leader
Election Algorithm for Decentralized Net-
works. Journal of Transportation Technol-
ogies, 11, 404-411.
https://doi.org/10.4236/jtts.2021.113026

Received: June 28, 2021
Accepted: July 16, 2021
Published: July 19, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jtts
https://doi.org/10.4236/jtts.2021.113026
https://www.scirp.org/
https://doi.org/10.4236/jtts.2021.113026
http://creativecommons.org/licenses/by/4.0/

V. K. Madisetti, S. Panda

DOI: 10.4236/jtts.2021.113026 405 Journal of Transportation Technologies

The traditional bully algorithm as shown in Figure 1 is triggered when and
after a leader/coordinator fails and is unresponsive. One of the nodes in the cluster
then initiates a broadcast asking for an election once it realizes the leader has
potentially crashed. This, in turn, triggers broadcasts from every other node in
the cluster. In the end, a new leader is elected.

If there are N nodes in the cluster, in the worst-case scenario, the total number
of messages exchanged is N(N + 1)/2 or O(n2). This algorithm has proved to be
useful in applications such as cloud computing and within datacenters.

In certain scenarios, such as ad-hoc networks of microservices, these algorithms
may not be efficient or suitable for reasons that will be outlined below. For in-
stance, peer-to-peer distribution of a “data center on wheels” comprising auto-
nomous cars that are continually in motion would imply that cars (and their
processing units) will be continuously entering and leaving the radio ranges of
clusters [3]. The traditional algorithms are not suitable because nodes in such a
network (including the current leader, elected leader, or the node calling the
election) may leave the system at any point.

2. Related Work

There are several different leader election algorithms widely used in dependa-
ble distributed systems. Cloud service providers, such as Amazon Web Services
(AWS) [4], Windows Azure [5], and Google Cloud [6] use leader election algo-
rithms as a means for assigning nodes and microservices for different purposes.
AWS, Azure and Google Cloud use algorithms such as Paxos, RAFT and soft-
ware such as Apache Zookeeper that monitor leader “heartbeat” to detect fail-
ure to call for leader elections [4] [5] [6]. In addition to the bully algorithm, the
Ring Algorithm (Chang and Roberts Algorithm) is also commonly used for leader
elections [7]. Recently local leader election protocols for decentralized vehicular

Figure 1. Traditional bully algorithm is employed by node 4 to elect a new leader only
after detection of the crash of the current leader 7. After an election takes place, a new
leader 6 takes over.

https://doi.org/10.4236/jtts.2021.113026

V. K. Madisetti, S. Panda

DOI: 10.4236/jtts.2021.113026 406 Journal of Transportation Technologies

traffic regulation involving a Vehicle to Vehicle (V2V) communication in a 5G
architecture [8]. Additional modified bully algorithms have been developed for
use in wireless networks [5] and cloud-based systems [9] and other contexts [10].
All these algorithms are triggered only after the failure of the appointed leader.

In many cases it is possible to predict in advance when the leader is about to
fail. This motivates a dynamic leader algorithm where the leader can be “elected”
through pre-selection quickly, prior to predicted exit (or failure) of the current
leader. The number of messages in the worst-case is reduced by an order of mag-
nitude and simulations show improvement of average number of messages ex-
changed over previous approaches.

3. Proposed Approach

Our proposed dynamic leader algorithm, while broader than discussed here, can
be studied through the following exemplary embodiments:

1) Variation 1: Once an exit is predicted from the cluster, a current leader
probes all the nodes and decides (according to a cost function) which unit to re-
linquish its state to (and thus pre-selecting a new leader) prior to exiting the
cluster (See Figure 2).

2) Variation 2: Once elected to leadership, a leader designates another node to
share its leadership state and maintains a “leadership list” to aid in handover
prior to its predicted exit from the cluster (See Figure 3).

3) Variation 3: Once elected to leadership in the cluster, a current leader de-
signates a set of nodes that will be sharing its state at all times to aid in handover
during and prior to its predicted exit from the cluster (See Figure 4).

In all these three variations of the dynamic leader algorithm, the elected leader
decides which node(s) shares its state. Instead of waiting for the leader to go

Figure 2. Operation of variation 1.

https://doi.org/10.4236/jtts.2021.113026

V. K. Madisetti, S. Panda

DOI: 10.4236/jtts.2021.113026 407 Journal of Transportation Technologies

Figure 3. Operation of Variation 2 with a leadership list of two.

Figure 4. Variation 3 with a leadership list of four.

offline and trigger the traditional bully algorithm to elect a new leader, our pro-
posed algorithm presents a potential way of electing and handing over (prior to
failure) to a new leader with a reduced number of messages, which lessens the
latency of the entire process compared to that of the traditional bully algorithm.

The three variations of the algorithm differ based on when the leader decides
which node(s) shall be provided the state on a predictive exit. The first variation
involves deciding whom to hand over the state when it predicts its exit from the
cluster. The second variation involves making this decision during the leader
election. On being elected before coordination, the leader decides which node
will get the state on predicted exit. Finally, the third variation proposes the gen-
eration of a list of prospective leaders, all of whom share the state of the leader.
This list should be generated once the leader has been elected. As a failover, the
traditional leader algorithm may be applied should a leader fail before it can ap-

https://doi.org/10.4236/jtts.2021.113026

V. K. Madisetti, S. Panda

DOI: 10.4236/jtts.2021.113026 408 Journal of Transportation Technologies

ply the dynamic leader selection algorithm.

4. Performance Evaluation for a 5G Transportation Network

We evaluate the performance of the proposed algorithms in a use case of clusters
of autonomous cars in a 5G cellular network setting to compare the performance
of the three dynamic leader algorithms against the static bully algorithm.

Within the 3rd Generation Partnership Project 3GPP 5G standards, the V2X
(Vehicle to Everything) includes communications between vehicles (V2V), vehicles
and the infrastructure (V2I), and vehicles and the network (V2N) [11]. V2X in-
volves the use of Cellular-V2X (CV2X) and IEEE V2X technologies to facilitate
efficient communications [11]. The 5G V2X infrastructure involves cars, Road
Side Units (RSU) and the cloud. The IEEE standard, IEEE 802.11p is commonly
used for wireless communications between cars and between cars and the Road
Side Units (RSU) [11]. We are considering the model as shown in Figure 5 which
demonstrates the formation of distributed networks by the autonomous vehicles
which communicate with the RSUs through the elected leader.

A cluster of cars shares information between each other, and only contacts the
data center when there is no “hit” to information within the cluster. The follow-
ing are the assumptions of the 5G V2X architecture [11]:
 Cars, containing processing units, form a cluster and continually contact and

communicate the Road Side Units through a leader/coordinator and also
with each other.

 Cars may contact every other car in the cluster through 5G transceivers.

Figure 5. The V2X environment comprising a decentralized network of autonomous cars
in communication with RSUs and the cloud.

https://doi.org/10.4236/jtts.2021.113026

V. K. Madisetti, S. Panda

DOI: 10.4236/jtts.2021.113026 409 Journal of Transportation Technologies

 All cars produce different types of requests for information that are handled
through hits/misses by other cars or by the RSU cluster. If there is a miss then
the RSU queries the base station in the cloud for the required information.

 Requests and responses may require a series of computations that other cars/
RSU may carry out.

 Which requests are handled on which processing unit is decided by the lead-
ers based on balancing load and other cost functions (e.g., network load, in-
terference, and security).

In this paper, we will interpret the number of messages exchanged as an ex-
ample of a cost function. In other words, we say a system performed poorer than
another system if and only if the number of messages exchanged was greater than
that of the latter.

The following are the possible scenarios for a cluster consisting of a set of nodes,
amongst which is a selected set of nodes belonging to a “leader list”.
 A leader could exit with/without setting up the Leader List in a predictive man-

ner.
 A leader inadvertently fails with/without setting up the Leader List.
 Any node in the Leader List exits.
 Anyone in the no-Leader List could exit.
 Anyone could enter the cluster.
 Elements in the Leader List can inadvertently fail during the simulation.

The traditional bully algorithm is called as a baseline in all the six cases. For
the dynamic leader election case with between two and ten leaders in the Leader
List, handovers occur as designed when the leader fails with the Leader List fully
set up. When anyone processing unit (or car) enters the cluster, there is some
overhead cost in determining if the tasks need to be taken up by the Leader List.
Any inadvertent failure of any element in the Leader List involves transferring
an element from the non-Leader List to the Leader List. Every attempt is made to
keep the Leader List complete with the required number of elements.

If all leaders in the Leader List fail without carrying out the steps needed, the
traditional bully algorithm would be used to determine the leader and then sub-
sequently the Leader List. This static leader algorithm is triggered when one of
the cars notices that the entire Leader List is unresponsive. Predictive exit in-
volves a car in the Leader List taking over operations from the exiting leader and
beginning orchestrations as soon as the leader exits.

Without a Leader List, the dynamic leader algorithm, on a predictive exit, probes
all the elements in the cluster linearly to select which node to relinquish the state
and elect the leader.

Figure 6 describes the number of messages exchanged for the three variations
compared to prior art static baseline. An initial fixed number of cars in the clus-
ter were subjected to event triggers from different scenarios outlined above. It is
worthwhile to note that the best case performance of all the three proposed vari-
ations is O(1) when the first car the leader requests for handover acknowledges,

https://doi.org/10.4236/jtts.2021.113026

V. K. Madisetti, S. Panda

DOI: 10.4236/jtts.2021.113026 410 Journal of Transportation Technologies

Figure 6. The proposed dynamic algorithm shows a significant improvement in the av-
erage number of messages exchanged between autonomous cars over the traditional static
leader election algorithms.

while the best case performance for the baseline static bully algorithm is O(N)
where N is the number of cars in the cluster.

5. Conclusion and Future Work

This paper has proposed new and efficient leader selection/election algorithms
in decentralized computing and communicating clusters that dynamically change
over time as in transportation networks. Current and future work is focused on
implementing these algorithms to realize network slices within the 5G/6G net-
working environments for autonomous vehicles.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Garcia-Molina, H. (1982) Elections in a Distributed Computing System. IEEE Trans-

actions on Computers, C-31, 48-59. https://doi.org/10.1109/TC.1982.1675885

[2] Kiyarazm, O., Moeinzadeh, M.-H. and Sharifian-R, S. (2011) A New Method for
Scheduling Load Balancing in Multi-processor Systems Based on PSO. 2011 Second
International Conference on Intelligent Systems, Modelling and Simulation, Phnom
Penh, Cambodi, 25-27 January 2011, 71-76. https://doi.org/10.1109/ISMS.2011.73

[3] Berger, C., Nguyen B. and Benderius, O. (2017) Containerized Development and
Microservices for Self-Driving Vehicles: Experiences & Best Practices. 2017 IEEE
International Conference on Software Architecture Workshops (ICSAW), Gothen-
burg, Sweden, 5-7 April 2017, 7-12. https://doi.org/10.1109/ICSAW.2017.56

[4] Amazon Web Services (n.d.) Leader Election in Distributed Systems.
https://aws.amazon.com/cn/builders-library/leader-election-in-distributed-systems/

[5] Windows Azure Services (n.d.) Leader Election Pattern.
https://docs.microsoft.com/en-us/azure/architecture/patterns/leader-election

[6] Google Cloud Services (n.d.) Implementing Leader Election on Google Cloud Storage.

https://doi.org/10.4236/jtts.2021.113026
https://doi.org/10.1109/TC.1982.1675885
https://doi.org/10.1109/ISMS.2011.73
https://doi.org/10.1109/ICSAW.2017.56
https://aws.amazon.com/cn/builders-library/leader-election-in-distributed-systems/
https://docs.microsoft.com/en-us/azure/architecture/patterns/leader-election

V. K. Madisetti, S. Panda

DOI: 10.4236/jtts.2021.113026 411 Journal of Transportation Technologies

https://cloud.google.com/blog/topics/developers-practitioners/implementing-leader
-election-google-cloud-storage

[7] Chang, E. and Roberts, R. (1979) An Improved Algorithm for Decentralized Extre-
ma-Finding in Circular Configurations of Processes. Communications of the ACM,
22, 281-283. https://doi.org/10.1145/359104.359108

[8] Elchamaa, R., Guériau, M., Dafflon, B., Chamoun R.K. and Ouzrout, Y. (2017) A Lo-
cal Leader Election Protocol Applied to Decentralized Traffic Regulation. 2017 IEEE
29th International Conference on Tools with Artificial Intelligence (ICTAI), Boston,
MA, 6-8 November 2017, 1013-1020. https://doi.org/10.1109/ICTAI.2017.00156

[9] Cahng, H. and Lo, C. (2012) A Consensus-Based Leader Election Algorithm for
Wireless Ad Hoc Networks. 2012 International Symposium on Computer, Consumer
and Control, Taiwan, 4-6 June 2012, 232-235. https://doi.org/10.1109/IS3C.2012.66

[10] Biswas, A. and Dutta, A. (2016) A Timer Based Leader Election Algorithm. 2016 Intl
IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted
Computing, Scalable Computing and Communications, Cloud and Big Data Com-
puting, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/
IoP/SmartWorld), Toulouse, France, 18-21 July 2016, 432-439.
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0079

[11] Abdel Hakeem, S.A., Hady, A.A. and Kim, H. (2020) 5G-V2X: Standardization, Ar-
chitecture, Use Cases, Network-Slicing, and Edge-Computing. Wireless Networks,
26, 6015-6041. https://doi.org/10.1007/s11276-020-02419-8

https://doi.org/10.4236/jtts.2021.113026
https://cloud.google.com/blog/topics/developers-practitioners/implementing-leader-election-google-cloud-storage
https://cloud.google.com/blog/topics/developers-practitioners/implementing-leader-election-google-cloud-storage
https://doi.org/10.1145/359104.359108
https://doi.org/10.1109/ICTAI.2017.00156
https://doi.org/10.1109/IS3C.2012.66
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0079
https://doi.org/10.1007/s11276-020-02419-8

	A Dynamic Leader Election Algorithm for Decentralized Networks
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Proposed Approach
	4. Performance Evaluation for a 5G Transportation Network
	5. Conclusion and Future Work
	Conflicts of Interest
	References

