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Abstract 
A subset of traveling wave solutions of the quintic complex Ginzburg-Landau 
equation (QCGLE) is presented in compact form. The approach consists of 
the following parts: 1) Reduction of the QCGLE to a system of two ordinary 
differential equations (ODEs) by a traveling wave ansatz; 2) Solution of the 
system for two (ad hoc) cases relating phase and amplitude; 3) Presentation 
of the solution for both cases in compact form; 4) Presentation of constraints 
for bounded and for singular positive solutions by analysing the analytical 
properties of the solution by means of a phase diagram approach. The results 
are exemplified numerically. 
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1. Introduction 

As a partial differential equation (PDE) the quintic complex Ginzburg-Landau 
equation (QCGLE) is one of the most studied nonlinear equations in physics. 
Apart from many applications in the natural sciences [1] [2], the equation is in-
teresting in and of itself: as a nonintegrable, nonlinear PDE; it admits a reduc-
tion to an autonomous ODE described in the simplest case by introducing the 
new variable z x ct= − , where x is a space coordinate and t is time (traveling 
wave reduction). While integrable PDEs are “easy” to solve by the Inverse Scat-
tering Transform, for nonintegrable PDEs no such method is known to obtain 
solutions. 
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Probably, due to this reason, several non-perturbative methods have been 
proposed to find some particular solutions of (partly) nonintegrable systems 
(“tanh-method”, “exponential-method”, “Riccati-method”, “Jacobi expan-
sion-method”, ...., see also [3] and references therein). A comprehensive treat-
ment of the QCGLE using Panlevé analysis is presented in [4] [5] [6] [7]. In par-
ticular, an algorithm able to provide in closed form all those traveling wave solu-
tions that are elliptic or degenerate elliptic has been applied to the QCGLE (re-
sults in [4], Equation (52) and in [5], Section 6). 

As a starting point for perturbation calculations or stability analysis exact 
traveling solutions of nonlinear equations such as (2) below are very useful, 
however rare. Remarkably, if certain constraints for the parameters are satisfied, 
solutions can be derived. In [8] [9] [10], special relations between phase and 
amplitude of the traveling wave are assumed in the solution ansatz, leading to 
particular analytical solutions. Following this path, we propose a relatively sim-
ple (ad hoc) approach which allows us to find exact analytical solutions not 
known in the relevant literature. 

The rest of the paper is organised as follows. In Section 2 we reduce the 
QCGLE to a system of two ordinary differential equations, specify it for two par-
ticular (ad hoc) relations between phase function and amplitude, and describe 
the procedure to obtain the ansatz parameters 0 1, , , ,c d b bω  and constraints of 
these relations. An exact solution together with its dependence on the parame-
ters of the QCGLE is presented in Section 3. For elucidation examples are pre-
sented in Section 4. In Section 5, the paper concludes with comments on articles 
having a certain contact to the present paper and with suggestions for further 
investigations. 

2. Reduction of QCGLE to First Order Nonlinear ODEs 

We seek particular (traveling wave) solutions [2] [8] [9] [10] [11] 

( ) ( ) ( )( ), e , , ,i x ct tx t f x ct cφ ωψ ω− −= − ∈ ∈R R            (1) 

where f and φ  are real-valued, of the QCGLE 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 4
3 3 5 5

2

1 1 2

, , , , ,

, , 0,

i x t c ih x t x t c ih x t x t
t

c ih x t i x t
x

ψ ψ ψ ψ ψ

ψ εψ

∂
+ + + +

∂
∂

+ − − =
∂

    (2) 

with complex-valued function ( ),x tψ  and with real dimensionless constants 

1 3 5 1 3 5, , , , , ,h h h c c cε . As mentioned in the Introduction, Equation (2) has a wide 
range of applications. Thus the meaning of variables and parameters may be 
quite different (see [1] [8] and references therein). Usually, x denotes the scaled 
propagation distance and t the scaled time. 

To find real , , ,f cφ ω , together with corresponding assumptions and con-
straints for their existence, we insert ansatz (1) into Equation (2), set z x ct= − , 
introduce ( ) ( )2F z f z= , ( ) ( )z zτ φ′= , and separate real and imaginary parts. 
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Hence we obtain the system of two ordinary differential equations for functions 
( )F z  and ( )zτ  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

2 3 4 2 2 2
3 5 1

2 2
1 1 1 1

4 4 4 4 4

4 4 2 0,

F z c F z c F z c z F z c z F z

h z F z F z c F z h z F z c F z F z

ω τ τ

τ τ

+ + + −

′ ′ ′ ′′+ − + + =
 (3) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

2 3 4 2 2
3 5 1

2 2
1 1 1 1

4 4 4 4 2

4 4 2 0.

F z h F z h F z h z F z cF z F z

c z F z F z h F z c z F z h F z F z

ε τ

τ τ

′− + + + −

′ ′ ′ ′′+ + + − =
 (4) 

As mentioned above, there is a general method in the literature [5] [12] to 
find all elliptic solutions of the QCGLE. We note however that the explicit solu-
tion obtained by this method (see Equation (52) in [4b]) exists at the price of 5 
constraints among the coefficients of the system (3)-(4). Thus it is obvious to try 
for a different approach. In particular, we seek for solutions ( )F z  of the sys-
tem (3)-(4) by assuming [8] [9] [10] two possibilities for ( )zτ  

( ) ( )
( )

,
F z

z d
F z

τ
′

=                         (5) 

( ) ( )0 1 ,z b b F zτ = +                       (6) 

where real constants 0 1, ,d b b  are to be determined. 
We consider the solutions ( )F z  of the system (3)-(4), with assumptions for 
( )zτ  from above, and determine parameters 0 1, , , ,c d b bω  for both cases (5), 

(6) separately. In each part (for (5) and for (6)) we derive the solution ( ),x tψ  
and study its properties (disregarding its stability). We note that system (3)-(4) 
is equivalent to (13)-(14) in [5]. 

To simplify formulas we use the abbreviations 
2 2

1 1 1 2 3 1 1 3 3 1 3 1 3

4 5 1 1 5 5 1 5 1 5

, , ,
,

= + = + = −

= + = −

D c h D c h c h D c c h h
D c h c h D c c h h  

in what follows. 

First, we consider Equations (3), (4) subject to ( ) ( )
( )

F z
z d

F z
τ

′
= . Equations (3), 

(4) read in this case 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

2 3 4
3 5

22
1 1 1

4 4 4 4

1 4 4 2 0,

F z c F z c F z cdF z F z

c d F z h d c F z F z

ω ′+ + +

′ ′′− + + + =
         (7) 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

2 3 4
3 5

22
1 1 1

4 4 4 2

1 4 4 2 0.

F z h F z h F z cF z F z

h d F z c h F z F z

ε ′− + + −

′ ′′+ + + − =
          (8) 

By eliminating ( )F z′′  from (7) and (8), we obtain for ( )F z′  

( ) ( ) ( ) ( )2 1

1

,
2
ccF z F z a bF z fF z
dD

 
′ = ± + + + 

 
           (9) 

with 

( ) ( )
( )

2 2
1 1 1 11

2 2 2
1 1

2 2 2 2
,

4 1 4
c dh dc hc ca

d D d d D
ε ω+ + −

= +
+

            (10) 
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( )
3 2

2
1

4 2
,

1 4
dD D

b
d d D

−
=

+
                      (11) 

( )
5 4

2
1

4 2
.

1 4
dD D

f
d d D

−
=

+
                      (12) 

Using (9), we get 

( ) ( ) ( ) ( )
( ) ( )

2
1

2
1

2 3 4
.

22

a bF z fF z ccF z F z
dDa bF z fF z

 + + ′′ ′= ± +
 + + 

         (13) 

Substituting (9) and (13) to the system (7)-(8), we obtain the following equiv-
alent system only in terms of ( )F z  and the parameters of QCGLE 

( ) ( )( )
( ) ( ) ( )

( ) ( )
( )( ) ( ) ( )

( ) ( )

2 2 2 2 2 2
1 1 1 1 1 1 1 1 1

2 2 2 2 2 2
1 1 1 1 1

2 2 2
1 1 1 1 1

2 2 2 2
1 3 1 1 1

2 2 2 2
1 1 1 1 1

2 2
1 5 1

4 2 4 2 4

4 4 4 16

2 8 10 3

8 2 2 3

8 3 2

4 4 3 4

acdD h d c c c c d c h c h d

ad D c c d h d d D a bF z fF z

F z bcdD h d c h d c

d D c b c c d h d a bF z fF z

F z cdD f c c h d h d

d D c f c c

ω

+ + + + +

+ − + + + +
+ + +

+ + − + + + 
+ + +

+ + −( )( ) ( ) ( )2 2
1 18 0d h d a bF z fF z + + + =

    (14) 

and 

( )( ) ( )
( ) ( ) ( )

( ) ( )( )
( )( ) ( ) ( )

( ) ( )( )

2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2
1 1 1 1 1

2 2 2 2
1 1 1 1 1 1

2 2 2 2
1 3 1 1 1

2 2 2
1 1 1 1 1 1 1

4 4 2 4 4

4 4 4 16

2 8 4 3

8 2 3 2

8 2 2

acdD c h d c h d c h c c c h d h d c h

ad D h d c d h d D a bF z fF z

F z bcdD c d c h d c h

d D h b c d h h d a bF z fF z

F z cdD f c h d c h d c h

ε

+ − − + − −

+ + − − + +
+ + − −

+ + − + + + 
+ + − −

+ ( )( ) ( ) ( )2 2 2 2
1 5 1 1 14 4 8 4 3 0d D h f c d h d h a bF z fF z + + − + + =

   (15) 

In Equations (14)-(15) the coefficients in front of ( )F z , ( )2F z ,  
( ) ( )2a bF z fF z+ +  as well as free coefficients must be equal to zero, leading 

to equations which imply 0c =  necessarily. With 0c =  the system (14)-(15) 
can be simplified to the following system of six equations: 

( ) ( )2 2
1 1 1 1 1 14 4 4 , 4 4 4 ,a c d h d c a h d c d hω ε= − − = + −         (16) 

( ) ( )2 2
1 1 1 3 1 1 1 32 3 2 , 2 3 2 ,b c d h d c c b h d c d h h− − = + − = −        (17) 

( ) ( )2 2
1 1 1 5 1 1 1 54 8 3 4 , 4 8 3 4 .f c d h d c c f h d c d h h− − = + − = −       (18) 

Combining the first Equation (16) and (10), we obtain 

( )2
1 1 1

2
1 1 1

4 4
.

4 4

c d h d c

h d c d h

ε
ω

− −
=

+ −
                    (19) 
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Furthermore, Equations (16)-(18) are solved by 
2 2 2 2

3 3 2 5 5 4

2 4

3 9 8 2 4 3
and .

4 2
D D D D D D

d d
D D

− ± + − ± +
= =       (20) 

Consistency of d’s in the Equation (20) leads to the constraints 
2 2 2 2

3 3 2 5 5 4

2 4

3 9 8 2 4 3
,

4 2
D D D D D D

D D
− ± + − ± +

=             (21) 

necessary for the existence of solutions d. 
Thus, parameters ,d ω  and , ,a b f  in Equation (9) are expressed according 

to (19)-(20) and (10)-(12), respectively in terms of the parameters of the QCGLE 
(with constraint (21)). The solution ( )F z  of Equation (9) is presented below. 

Second, considering the case ( ) ( )0 1z b b F zτ = + , and inserting ( )zτ  into 
the system (3)-(4), we get 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ( )

2 2 3 2 4
0 1 0 3 1 1 0 1 5 1 1

2 2
1 1 0 1 1

4 4 2 4

4 2 2 0

cb c b F z c cb c b b F z c c b F z

c F z h b F z b F z F z c F z F z

ω + − + + − + −

′ ′ ′′− + + + =
  (22) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )

22 2 3 2 4
1 0 3 1 0 1 5 1 1 1

2
1 0 1 1 1

4 4 2 4

4 2 8 2 0.

h b F z h h b b F z h h b F z h F z

c b c F z c b F z F z h F z F z

ε ′− + + + + +

′ ′′+ − + − =
 (23) 

Eliminating ( )F z′′  from (22) and (23), ( )F z′  can be derived as 

( )
( )( ) ( ) ( ) ( )

( )

2 3
1 0 1 2 1 1 4

1
0 1 1 1

.
2

2

h cb c F z D ch b F z D F
F z

cc b D b D F z

ω ε+ − + + +
′ =

− −
     (24) 

Assuming for simplicity 1
0

12
ccb
D

= , we get 

( )
( ) ( ) ( )

2
21

1 1 1 1 2 4
1

1 1

2
2

c ch c ch b D F z D F z
D

F z
b D

ω ε
 

+ − + + + 
 ′ = −       (25) 

and hence 

( )
( )( ) ( )1 1 4 2

1 1

2
.

2
ch b D D F z F z

F z
b D

′+ +
′′ = −              (26) 

Substitution of (25) and (26) into system (22)-(23) and considering vanishing 
coefficients of powers of ( )F z , leads to 

( ) 2
1 1 1 1 12 0,D h c c c hω ε− + =                    (27) 

4 2 2 2
1 1 1 1 4 1 1 1 516 3 16 0,b c D c D c b D D− + + =                (28) 

2
1 2 4 1 1 1 34 0,c D D b c D D+ =                     (29) 

( )( )
( ) ( )( )

2 2
1 1 1 1 2 1 1 1 4 1 2 1 4 1 4

2 2 2 2
1 1 1 1 1 1 1 1 1

2 2 2

4 3 16 0,

cc h b D D c c c h D D D c D h D

b D c c c h D c h c

ε ω

ε ω

− + + − +

− − + + =
      (30) 
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where 1 10, 0, 0c h b≠ ≠ ≠  have been assumed. Parameters 1,bω  and c must 
satisfy system (27)-(30). Equation (27) implies 

2
1 1 1 1

1 1

2
.

2
c D c c h

h D
ε

ω
−

=                      (31) 

Solutions of (28) and (29) are 
2 2

5 5 42
1

1

2 4 3
4

D D D
b

D
+ +

=                     (32) 

and 

2 4 2
1

1 3

,
4
D Db
D D

= −                         (33) 

respectively. Inserting ω  into (30) and solving for c we get 

( )
( )

2 2 2 2 2
1 2 1 2 1 1 1 1

1
2 2

1 1 1

2 4 4 3
.

3 4

h D D D b D c h
h

c
b h c

ε
− ± + +

=
+

           (34) 

Consistency of (32) and (33) yields the constraint 
2 2

4 2 2 3 5 4 34 3 0.D D D D D D D+ − =                  (35) 

With (31), (32) (or (33)), (34) all parameters in (25) are determined in terms 
of the parameters of the QCGLE, so that (25) can be solved for ( )F z  subject to 
(35). 

3. Traveling Wave Solutions 

The nonlinear first order ODEs (9) (with 0c = ) and (25) can be solved by 
standard methods yielding ( )F z  as an inverse function of an elliptic integral, 
but not ( )F z  explicitly. Thus, it is obvious to look for another possibility to 
find elliptic solutions of (9) and (25). With F ′  according to (9), 0c =  neces-
sarily, and hence, taking into account (10)-(12) and (16)-(21), the solution of 
system (7)-(8) uniquely can be rewritten as 

( )( ) ( ) ( ) ( )2 4 3 24 6F z F z F z F zα β γ′ = + +              (36) 

with 

, , .
4 6
b afα β γ= = =                     (37) 

Thus, Equation (9) (with 0c = ) and Equation (36) are equivalent. 
Following the same line with F ′  according to (25) (using (22) or (23), 

(27)-(35)) we obtain (36), and hence equivalence of (25) and (36). The coeffi-
cients in (36) are given by 

( ) ( )22
1 1 2 4 1 1 24

2 2 2 2 2 2
1 1 1 1 1 1

, , .
4 8 24

ch b D D ch b DD
b D b D b D

α β γ
+ +

= = =        (38) 

The solution of (36) is well known (see [13], Equation (17)). With some algebra 
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we get 

( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )

2 2 2
0 0 0 0

0 2 2 2 2 2
0 0 0 0

2 4 6 4 8 4 2 5
,

4 4 2 4 4

F F z z F z F
F z F

z z F F F F
α β γ γ β γβ γ

α β γ β αγ βγ γ

′+ + ℘ + ℘ + + ℘ − −
=

℘ − ℘ + + + − + +

(39) 

where ( )2 3; ,z g g℘  denotes Weierstrass’ elliptic function with invariants 
2 3

2 33 ,g gγ γ= = −  and ( )0 0F F=  as an integration constant is the intensity 
( )F z  at 0z = . The invariants 2 3,g g  can be expressed in terms of the ansatz 

parameters and the coefficients of the QCGLE. For the case (5) we obtain 
2 3

2 3,
12 216
a ag g= = −                      (40) 

with a given by Equation (10). For case (6) we get 

( ) ( )
2 32 2

1 1 2 1 1 2
2 32 2 2 2

1 1 1 1

3 , ,
24 24

ch b D ch b D
g g

b D b D

   + +
   = = −
   
   

         (41) 

with 2
1b  according to Equations (32) or (33) has been used. 

Integration of Equations (5) and (6), using Equation (39), yields the phase 
function ( )zφ . For case (5) we obtain 

( )

( ) ( ) ( ) ( )
( ) ( )( ) ( )

2 2 2
0 0 0 0

0 2 2 2 2 2
0 0 0 0

2 4 6 4 8 4 2 5
log ,

4 4 2 4 4

x

F F x x F x F
d F

x x F F F F

φ

α β γ γ β γβ γ

α β γ β αγ βγ γ

 ′+ + ℘ + ℘ + + ℘ − − = ⋅
 ℘ − ℘ + + + − + + 

 

(42) 

where 2 3, , , ,g gα β γ  given by (37) and (40), respectively and chirp parameter d 
by (20). Since 0c =  in this case F and φ  are stationary. As is known [8], sub-
ject to certain conditions, traveling wave solutions can be obtained from the sta-
tionary solutions applying a Galilean transformation (see [8], Equation (53)) 

( ) ( )
2

2, , , , e , ,ψ ψ
 
 + 
 ′ ′ ′ ′ ′= + = = =

vi vx t

x x vt t t x t x t v const  
to solutions (39) and (42). —We disregard this possibility to find solutions of the 
QCGLE. 

For case (6), integral ( ) ( )( )0 1 dz b b F z zφ = +∫  with ( )F z  according to 
(39), cannot be evaluated in closed form (in general). With respect to the exam-
ple presented below, for particular 0F , integration yields a closed form result. If  

0 , 0, 0F β α β
α

= − > <  (see example in Section 4), solution ( )F z  reads 

( )
( ) ( ) ( )

( ) ( )

2 3 5
2

2 3

2 4
2

2

2 2 4
3 9

2 42
3 9

z z z
F z

z z

β β β β
α α αα α

β β
α α

′℘ − ℘ − ℘ +
=

℘ + ℘ −
         (43) 

and 
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( ) ( ) ( )
2 2

1
0 1

2log log ,
3 32

bz b b z z zβ β βφ
α α αα

     = − + ℘ − − ℘ +             
  (44) 

where 2 3, , ,g gα β  are given by (37) (
22

3
βγ
α

= ), (40) and by  

21 2 4
0 1

1 1 3

,
2 4
cc D Db b
D D D

= = −  with c according to (34). 

It should be noted that in both cases (40) and (41) the discriminant of 
( )2 3; , ,z g g℘  vanishes, so that ( )z℘  degenerates to trigonometric  

( 2 30, 0g g> > ) or hyperbolic ( 2 30, 0g g> < ) functions, thus depending on the 
sign of γ  in (37) and (38) (see [14], 18.12). Hence, ( )F z  according to (39) 
must be rewritten in two versions. In the following, we are preferring to main-
tain form (39) since it is rather compact and independent on the sign of γ . 

Summing up, solutions (1) of Equation (2) can be derived if ( )zφ′  and 
( )F z , z x tω= − , are related by (5) or (6), with ( )F z  given by (39) subject to 

certain constraints and conditions for 0 1, , , ,d c b b ω . It is necessary to check 
consistency of the results with the initial assumptions { }0 1, , , , , ,f c d b bφ ω ⊂ R . 
This will be done in the following. 

First, we note for case (5) that 2 3, , , ,g gα β γ  are real (see Equation (10) with 
0c = ). Chirp parameter d is real and hence ω  since (20) is satisfied. Con-

straint (21) is necessary for unique existence of d. 
Second, for case (6), 2 3, , , ,g gα β γ  are real (see Equations (37), (40)) if c is 

real according to Equation (34) and hence ω . Thus, real c implies nonnegative 
radicand in Equation (34). Constraint (35) is necessary for unique 2

1b . —We 
emphasise that real 2 3, , , ,g gα β γ  are important for evaluation of Equations 
(38), (39). 

Third, we note that real 2 3,g g  imply real ( )2 3; , ,z g g℘  and ( )2 3; , ,z g g′℘  
if z is real (see [14], 18.5). Thus, ( )F z  according to (39), is real, since  

2
0 04 6 0F Fα β γ+ + ≥  due to Equation (38). 

Due to the properties of ( )2 3; ,z g g℘  (poles and periods) and the depen-
dence of the denominator on 0, , , Fα β γ , a singularity analysis of ( )F z  w.r.t. z 
on the basis of (39) is very difficult. Indeed, what can be stated is that ( )F z  
exhibits only poles w.r.t. z, consistent with a Theorem by Conte and Ng [7]. To 
conclude, there is consistency between the results obtained and the initial as-
sumptions for 0 1, , , , , ,f c d b bφ ω . 

As is known [15], that Equation (38) alone is suitable to study the nature of 
the solution ( )0; , , ,F z F α β γ  by considering the graphs ( ){ }2 ,F F′  of Equa-
tion (38) (denoted as “phase diagram” in the following). Types are depicted in 
Figure 1. 

It is clear that the choice of the intensity 0 0F >  in relation to the zeros of ( )2F ′  

(
2

1 2,3
2 4 6

0,F F
β β αγ

α
± −

= = − ) is essential for the singularity behaviour of 

( )F z . 0 0F >  must be chosen such that ( )
0

2
| 0
F F

F
=

′ ≥ . In this manner certain  
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Figure 1. Phase diagrams (types) ( )( ) ( ){ }2
,F z F z′  according to Equation (37) corresponding to bounded or singular solutions 

( )F z . Green domains: bounded solutions; red domains: singular solutions. (a) 2
3 0 20 , 0, 0, 0,3 2F F F α γ β γα β< ≤ ≤ < < > < , 

periodic ( )F z . (b) 2
0 20 , 0, 0, 0,3 2F F α γ β γα β< ≤ > > < < , pulse-like ( )F z ; 0 3F F> , singular. (c)  

0 20 , 0, 0,F F α γ β< ≤ < > ∈R , pulse-like ( )F z . (d) 2
0 3 20 , 0, 0, 0,3 2F F F α γ β γα β< ≤ = > > < = , kink-like ( )F z ;  

0 2 3F F F> = , singular. (e) 0 20 , 0, 0, 0F F α γ β< ≤ < = > , algebraic pulse-like ( )F z . (f) 22 3 , 0, 0β γα α γ< > > , unbounded 

( )F z  for any 0 0F > . Comments in the text. 

 
domains are defined (labelled green or red in Figure 1), where ( )( )2

F z′  is 
bounded (in a finite interval) or unbounded (in an infinite interval), respectively. 
Characterisation in the phase diagram conditions (PDCs) (a)-(f) in the captions of 
Figure 1 (periodic, pulse-like, kink-like) is well known in the literature [15]. 

The foregoing results can be summarised as follows. Bounded or unbounded 

solutions ( )( ) ( ) ( )( ), cosx t F x ct x ct tψ φ ωℜ = − − −  of Equation (2) exist if 

( )zφ′  and ( )F z , z x ct= −  are related by ( ) ( )
( )

F z
z d

F z
φ

′
′ =  or  

( ) ( )0 1z b b F zφ′ = + , if the amplitude ( )F z  satisfies the ODE  
( )( ) ( ) ( ) ( )2 4 3 24 6F z F z F z F zα β γ′ = + + , and if the parameters of the QCGLE 

satisfy the PDCs associated to Figure 1 together with certain constraints (see, 
e.g., (21), (35)). The parameter range for existence of these particular solutions is 
the subspace (in parameter space) defined by the PDCs and the constraints. 

4. Examples 

To elucidate the foregoing results, we first consider ( ) ( )
( )

F z
z d

F z
φ

′
′ =  with 0c = .  
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Needless to say, that if all parameters are prescribed, constraints (21) are not sa-
tisfied in general. Due to (21) one of the parameters { }, , , 1,3,5j jh c jε =  cannot 
be prescribed. As a solution of (21), this parameter must be inserted into (20) 
leading to (lengthy) expressions for d, hence for 2 3, , , , ,g gω α β γ  and, finally, 
to ( )F x  and ( )xφ  according to (39) and (42), respectively. For simplicity, we 
assume a particular solution of (21) w.r.t. 3h  and 5h . If 

3 1 5 1 3
3 5

1 1 1

2 3
, , 1,

c h c h c
h h sign

c c c
= = = ±               (45) 

the constraint (21) 
2 2 2 2

3 3 2 5 5 4

2 4

3 9 8 2 4 3
4 2

− + − ± +
=

∓D D D D D D
D D  

(where ∓  and ±  corresponds to sign in (44)) is satisfied and c is real (see 
Equation (34)), we obtain 

1 1

1 1

,
2
c cd
h h

ε
ω= − = −                      (46) 

2 2
5 1 3 1 1

1 1 1 1 1

4 2
, ,

3
c h c h h
c D c D D

ε
α β γ= = = −                (47) 

2 2 3 3
1 1

2 32 3
1 1

4 8
, .

3 27
h hg g

D D
ε ε

= =                    (48) 

Subject to (47) the PDC according to Figures 1(a)-(f) must be evaluated. For 
instance, parameters 

1 3 5 1 3 5 0
1 31, 1, , 1, 2, , 1, 4
8 8

c c c h h h Fε= − = − = = − = − = = − =    (49) 

are consistent with the PDC of Figure 1(a). In this case ( )F x  (see Figure 2) is 
periodic with period p (see [14], 18.12.30) 

 

 
Figure 2. Intensity ( )F x  according to Equation (37) and parameters (48). 
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1

1

.
D

p
hε

=
π

                         (50) 

A plot of ( )( ) ( ) ( )( ), cosx t F x x tψ φ ωℜ = −  with ( )xφ  according to (42) is 
shown in Figure 3. 

The second case ( ) ( )0 1z b b F zφ′ = +  can be exemplified following the line 
presented before. If 

( )2 2
5 1 3 3 1 3 1 3

5 2 2
3 1 1 3 3 1 3

3 4
,

4 3

h c c c h h c h
c

c h c c h h h

− −
=

+ −
                 (51) 

constraint (35) is satisfied. Subject to (51), parameters 

1 3 5 1 3 5 0
3 7, 1, 2.5, 1, 1, 1, 1,
4 32

c c c h h h Fε= − = = − = = − = − = =   (52) 

are consistent with the PDC of Figure 1(d). Coefficients , ,α β γ  and invariants 

2 3,g g  are given by (37) and (40), respectively. Two field patterns of  
( )( ),x tψℜ  are shown in Figure 4(a) and Figure 4(b). We note that the PDC 

according to Figure 1(d) is the only possible, since , ,α β γ  according to (39) 
imply 23 2αγ β= , independent on the choice of { }, , , 1,3,5j jh c jε = . As men-
tioned above, the unbounded (“spiky”) solution ( )F z , depicted in Figure 4(b),  

appears because 0F  is greater than the double root ( )3 1.73γ
β

− ≈  of  

( ) ( ) ( )4 3 24 6 0F z F z F zα β γ+ + = . 

As is known [16] [17] [18] phase diagram analysis is an effective approach to 
study existence and parameter dependence of the solutions ( )F z  of the nonli-
near ODE (36). For instance, parameters (49) correspond to a physical (bounded 
and nonnegative) solution ( )F x  according to (39) and hence to a physical 
( ),x tψ . The associated PDC together with the corresponding constraint(s) de-

fine a subspace and thus a range of parameter variation. The (particular) con-
straint 

 

 
Figure 3. Field pattern according to Equation (1) and parameters (48). 
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2 2 2 2
3 3 2 5 5 4

2 4

3 9 8 2 4 3
4 2

− − + − + +
=

D D D D D D
D D  

is satisfied by (45). Thus the range { }0 1 3 5 1, , , , ,F c c c hε  is defined by the PDC of 
Figure 1(a) only. With parameters (see (49)) 1 1c = − , 3 1c = − , 1 1h = − , 

3 1
3

1

2c h
h

c
= , 5 1

5
1

3c h
h

c
= , evaluation of the PDC leads to the range { }0 5, ,F cε  

depicted in Figure 5. With parameters 5
1
8

c = , 3 1
3

1

2c h
h

c
= , 5 1

5
1

3c h
h

c
= , 

1ε = − , 0 4F = , evaluation of the PDC yields to the range { }1 3 1, ,c c h  depicted  
 

 

Figure 4. Field patterns according to Equation (1) and parameters (51): (a) 0
7
32

F = ; (b) 0 6F = . Comments in the text. 

 

 
Figure 5. Parameter region for allowed { }0 5, ,F cε  according to phase diagram Figure 

1(a) and parameters: 1 3 1 3 51, 1, 1, 2, 0.375c c h h h= − = − = − = − = . 
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Figure 6. Parameter region for allowed { }1 3 1, ,c c h  according to phase diagram Figure 

1(a) and parameters: 5 3 5 0
1 , 2, 0.375, 1, 4
8

c h h Fε= = − = = − = . 

 
in Figure 6. Further triples of { }0 1 3 5 1, , , , ,F c c c hε  can be considered correspon-
dingly. Thus the whole range of parameter variation of (49), associated to solu-
tion ( )( ),x tψℜ , depicted in Figure 3, can be determined. —Needless to say, 
this kind of considerations also applies to solutions corresponding to Figures 
1(b)-(e). 

5. Conclusions 

In conclusion, we presented an approach to obtain closed-form traveling wave 
solutions of the QCGLE. The central assumptions are restrictions on the depen-
dence between ( )zφ′  and ( ) ( )( )2F z f z=  according to Equations (5) and (6). 
The solution ( )F z  is compactly represented by Equation (39) in terms of 
Weierstrass elliptic function ( )2 3, ,z g g℘  (disregarding the fact that ℘  is de-
generating due to the vanishing discriminant of ℘). As a consequence, the 
phase function ( )zφ  can be represented in closed form analytically (see Equa-
tions (42) and (44)). The behavior of ( )F z  is studied by means of a phase dia-
gram approach leading to conditions for “physical” (periodic, pulse-like, 
kink-like) solutions ( )F z  as well as to conditions for unbounded (“spiky”) solu-
tions ( )F z . In particular, we obtained the remarkable result that no bounded so-
lution exists if the parameters of the QCGLE satisfy the condition 22 3 0β γα− < , 
where , ,α β γ  are given by (37) or (38) and irrespective of 0 0F > . —The phase 
diagram approach is also suitable to investigate the parameter dependence of solu-
tions (see Section 4). 

Finally, we compare our approach with some other methods for getting solu-
tions of the QCGLE. 
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1) The “simple technique” presented in [8] leads to some results that are con-
sistent with corresponding results above: Assumption (5) in [8] is essentially the 
same as Equation (5) above. Results (11) and (12) in [8] are the same as (20) and 
(19) above, respectively. It seems that (14) in [8] is identical with (21) above. Pe-
riodic solutions ( )F z  are not presented in [8], though they are possible solu-
tions of Equation (34) in [8], that has the same structure as Equation (36) above. 
By using (38) with (10)-(12), it seems that (36) above and (34) in [8] are consis-
tent. Nevertheless, ( )f t  according to (35) in [8] is not the general solution of 
Equation (34) in [8]. 

2) Based on numerical simulations, extreme amplitude solutions of the 
QCGLE are reported in [19]. Whether they are related to the unbounded solu-
tions above (see Figure 4(b)) is an open question. 

3) The particular relations (3.38 a,b), (3.51 a,b), (3.57 a,b) used in [2] lead to 
exact solutions that describe fronts (kinks), pulses, sources and sinks. Obviously, 
as in [9], periodic solutions are not presented. 

4) In [9], based on a Laurent expansion ansatz and a particular relation be-
tween amplitude and phase function (see Equations (12), (14) in [9]), exact solu-
tions are derived (see Equation (20) in [9]). 

5) In our estimation, even if we take into account recent publications ([3], and 
references therein), the most comprehensive general (without particular rela-
tions between phase and amplitude) treatment to obtain exact solutions of the 
QCGLE is presented in [4](a) [5] ([11], Equations (33), (34)) ([4](b), Equation 
(52)) [6] ([7], Equation (50)). Comparing the solutions in [4](b) and [11] with 
solutions (39), (42) and (43), (44) above, we first note that the number of con-
straints are different. Solutions (37), (42) are associated to two constraints as one 
of the four possibilities of (21); the particular solutions (33), (34) in [11] are 
connected with 3 and 5 constraints, respectively. As mentioned above, the gen-
eral solution (52) in [4](b) exists subject to 5 constraints. With respect to the 
formal representation of amplitude and phase, we secondly note that results in 
[4](b) and [11] are simpler than our results above. The same holds for Equation 
(50) in [7]. However it seems that—in the general treatment—the question of 
defining conditions for physical solutions is not addressed. This is not a trivial 
problem (if, for example, solution (52) in [4](b) is considered, meromorphic M 
must be non-negative and φ′  must be real). These requirements must be dis-
cussed subject to the (well known) analytical properties of ( )2 ξ℘  and ( )2ξ℘  
and subject to 5 constraints). —Obviously, the phase diagram approach is suita-
ble not only for studying the parameter dependence of solutions outlined above, 
but also for specifying the parameters such that solutions (39), (42), (43), (44) 
and hence ( )( ),x tψℜ  are physical. 

6) For the cubic Ginzburg-Landau equation the non-existence of elliptic trav-
eling wave solutions has been proved [20]. So it is obvious to consider our result  

above if 5 5 0c h= = . With ( ) ( )
( )

F z
z d

F z
φ

′′
′ =  we obtained 0c =  necessarily, 
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consistent with the proposition in [20]. According to (20), (21) it follows 0d =  

and hence ( )z constφ = . For case ( ) ( )0 1z b b F zφ′ = + , we assumed 1
0

12
ccb
D

=  

for simplicity, leading to 1 0b =  (see (32), (33)), and 0b →∞ , in contradiction 
to bounded ( )zφ′ . 

Summing up, for both cases (5) and (6), our results are consistent with [20]. 

Without assuming 1
0

12
ccb
D

=  the question of consistency is open. —With  

respect to case (6), we conclude, that the non-existence claim in [20] is not valid 
in the cubic-quintic case. 

Directions in which further investigations can go should be indicated. First, it 
would be interesting to find more relations than (5) and (6) in order to increase 
the solution set of the QCGLE. Secondly, it would be important to find generali-
sations for ansatz (5) as well as for (6) by, for example, including a further para-
meter. Thirdly, if (5) and (6) are modified by “small corrections”, the solutions 
presented above may be taken as start solutions (different from solutions of the 
NLSE) for a perturbation approach. Finally, a stability analysis of the solutions 
found with respect to the parameters of the QCGLE as well as with respect to 
“small” perturbation of f seems possible. 
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