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Abstract 
Considered in this note are numerical tracking algorithms for the accurate 
following of implicit curves. We start with a fixed point on the curve, and 
then systematically place on it additional points, one after the other. In this 
note we first go over the basic procedure of moving forward tangentially from 
an already placed point then orthogonally returning to the curve. Next, we 
further consider higher order forward stepping procedures for greater accu-
racy. We note, however, that higher order methods, desirable for greater ac-
curacy, may harbor latent instabilities. This note suggests ways of holding 
such instabilities in check, to have stable and highly accurate tracing methods. 
The note has several supporting numerical examples, including the rounding 
of a dynamical “snap-through” point. 
 

Keywords 
Implicit Functions, Curve Tracing, Linear Tangential Leap, Nonlinear Leaps, 
Maintaining Stability, Orthogonal Landing, Cornering a Snap-Through 

 

1. Introduction 

Pursuing a smooth implicit trajectory such as an energy level line is of great in-
terest in numerical analysis and has attracted considerable attention [1] [2] [3] 
[4] [5] in recent years. In principle, such tracing entails marking close points on 
an implicit curve. Once a point is secured on the curve, a short distance forward 
leap is executed to place an initial point in the vicinity of the curve. Then, a re-
turning iterative procedure is carried out to come back and land on the curve. 
To stay close to the curve, this stepping-out from the curve to the next initial 
guess is plausibly made by a tangential move at a prescribed step size. Orthogon-
al [2] iterative corrections are then carried out to bring the initially placed point 
ever closer to the curve. 
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The method, by dint of its orthogonal descent, is successful in rounding sharp 
bends as it follows the twists and turns of contorted trajectories. Still, the pre-
dictor leap ignores all previous information about the curving of the trajectory. 

We propose here to improve the accuracy of the leap-out with a higher order 
parametrization of the trajectory by Bezier-like polynomial approximations. 
With their ability to bend, these approximations are likely to deposit an initial 
guess closer to the traced implicit curve for a hopefully quicker correction. We 
have shown that positioning an initial guess closer to the traced trajectory may 
well have both advantages of reducing the initial error in the following New-
ton-Raphson [6] correction, and also of improving the orthogonality of the 
landing approach along a gradient closer to the true one at landfall. 

2. Linear Leap 

Consider the implicit function ( ),z f x y=  of which the level curve 0z =  we 
desire to trace. Let ( )0 0,A x y  be a point on the curve such that  
( ) ( )0 0, 0f A f x y= = . See Figure 1 below. 
Let xf f x= ∂ ∂  and yf f y= ∂ ∂  be the partial derivatives of f with respect 

to x and y, respectively, at point ( )0 0,A x y . The total differential  
d d dx yz f x f y= + , for differentials d ,dx y , is reduced along the level line to 

d 0 d dx yz f x f y= = +                       (1) 

or in vector form 

( ) ( ), d ,d 0x yf f x y⋅ =                       (2) 

where the first vector in the dot product is the gradient f∇  to f at point A, and 
where the second vector is colinear with the tangent line to 0f =  at point A on 
the curve. 

Thus, the equation of the tangent line to the curve at point A is 

( ) ( )0 0d d 0 or 0
A AA A

f f f fx y x x y y
x y x y

   ∂ ∂ ∂ ∂   + = − + − =      ∂ ∂ ∂ ∂      
    (3) 

and we propose to leap forward from point A and place predicted point B on 
the tangent line at distance ε . Evidently, for any such d ,dx y  point 
( )0 0d , dB x x y y+ +  is on the tangent line to ( ) ( )0 0, , 0f x y f x y= =  at point 

A. 
Stepping out from point A to point B is what we term a linear tangential leap.  

 

 
Figure 1. Implicit level curves. 
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Restricting the differentials to 2 2 2d dx y ε+ = , namely, to a tangential forward 
leap of size ε , results in 

2 2 2 2
d , dy x

x y x y

f f
x y

f f f f
ε ε= = −

+ +
               (4) 

with signs chosen to produce a clockwise tracking. 
For instance, if 

( ) 2 2, 1,f x y x y= + −                       (5) 

then 

2 , 2x yf x f y= =                        (6) 

and 

0 0d , d .x y y xε ε= = −                       (7) 

Thus, a tangential leap originating at ( )0 0,A x y  terminates here at point 
( ) ( )1 1 0 0 0 0, ,B x y B x y y xε ε= + − , such that 

( )( )2 2 2 2 2 2
1 1 0 0 1 1x y x y ε ε+ = + + = +                 (8) 

and ( )0 0, 0f x y = , ( ) 2
1 1,f x y ε= . See also [7]. 

3. Linearized Orthogonal Landing 

We consider point ( )1 1,B x y  as situated on the curve  
( ) ( ) ( )1 1, ,f x y f B f x y= = , having the tangent line 

( ) ( )1 1d d 0 or 0.
B BB B

f f f fx y x x y y
x y x y

   ∂ ∂ ∂ ∂   + = − + − =      ∂ ∂ ∂ ∂      
    (9) 

See Figure 1. 
Point C is the intersection point of the line orthogonal to this tangent line and 

the curve 0f = . To reach point C from point B we seek the corrections dx and 
dy such that 

( ) ( ) ( )1 1d , d 0 under the restriction that d d 0.y x BB
f x x y y f x f y+ + = − =  (10) 

This system of equations is approximately solved with the differential lineariza-
tion 

( ) ( ) ( ) ( )1 1 1 1d , d , d d 0x yB B
f x x y y f x y f x f y+ + = + + =        (11) 

to yield 

2 2 2 2d , dx y
x y x y

f fx f y f
f f f f

= − = −
+ +

              (12) 

in which function f and its partial derivatives xf  and yf  are evaluated at 
point ( )1 1,B x y . 

If ( )f C  is deemed not sufficiently small, then point C is taken in place of 
point B and the linearization is repeated. 

For the unit circle the coordinates of point C are 2 1 2 1d , dx x x y y y= + = + , 
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where ( )1 1,x y  are the coordinates of predicted point B, and where d ,dx y  are 
from Equation (12). Now 

( ) ( )
2 2 4

2 2 2 2 2

1, 1
4 1

f x y x y ε
ε

= + − =
+

               (13) 

which is indeed tiny if 1ε � . 
To summarize: if point ( )0 0,A x y  is on the curve, then point ( )1 1,B x y  is 

the point reached by a tangential leap of size ε  away from point A, and point 
( )2 2,C x y  is the point reached by a single orthogonal correction away from 

point B and towards the curve. For the unit circle 

( ) ( ) ( ) ( ) ( )2 40, , .f A f B O f C Oε ε= = =             (14) 

See also [7]. 

4. A Detailed Numerical Example 

Consider the implicit function 

( ) 2 2, 2 4 0z f x y y xy x= = + + − =                 (15) 

which we may turn here explicit, by a mere solution of a quadratic equation, to 
have 

21 1 16 7 , 2.2857 2.2857.
2 2

y x x x= − ± − − ≤ ≤            (16) 

At first, we look for the critical points of function f. For this we differentiate f 
explicitly with respect to x to have 

2 4 0yy y xy x′ ′+ + + =                      (17) 

in which d dy y x′ = . Zero slope, or 0y′ = , occurs at 4 0y x+ = , which with 
( ), 0f x y =  yields 

2 20.5345, 4 2.138.
7 7

x y= = = − = −               (18) 

To determine the nature of the critical point, we implicitly differentiate Equation 
(17) once more with respect to x to have 

2 2 4 0.y y yy y y xy′ ′ ′′ ′ ′ ′′+ + + + + =                 (19) 

At the critical point 0y′ = , and with x and y from Equation (18), we have from 
Equation (19) that 

2 14 0
7

y′′ = >                         (20) 

implying that the nature of the critical point is a local minimum. 
Now to the leap-and-land. The equation of the tangent line to this curve at 

point ( )0 0,A x y  is 

0 0
0 0

d d 0, d , df fx y x x x y y y
x y

 ∂ ∂  + = = − = −  ∂ ∂   
          (21) 

or here 
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( ) ( )0 0 0 04 d 2 d 0.x y x x y y+ + + =                  (22) 

Specifically, for point ( )0,2A  

12d 4d 0, or 2.
2

x y y x+ = = − +                  (23) 

A leap of 1.2ε =  brings us to point ( )1.07331,1.46334B  on the tangent 
line. At point B we write the function 

( ) 2 2 2 2
1 1 1 1, 2 0, 2 6.016.f x y y xy x k k y x y x= + + − = = + + =       (24) 

The tangent line to this curve at point B is 

1 1
1 1

d d 0, d , df fx y x x x y y y
x y

 ∂ ∂  + = = − = −  ∂ ∂   
          (25) 

or specifically 

5.75659d 4d 0.x y+ =                      (26) 

The line orthogonal to this second tangent line is 

4d 5.75659d 0.x y− =                      (27) 

All as seen in Figure 2. 
Next we apply the landing correction 

( )1 1d , d 0f x x y y+ + =                      (28) 

by the constrained linearization 

1 1

d d 0, 4d 5.75659d 0f fx y x y
x y

 ∂ ∂  + = − =  ∂ ∂   
           (29) 

 

 
Figure 2. Level curve of an implicit function. 
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and obtain 

2 2d 0.236176,d 0.164108 or 0.837137, 1.29924x y x y= − = − = =    (30) 

for point C, which is indeed nearly on the curve. In fact ( ) 0.177248f C =  in-
stead of zero. To get point C closer to the curve, we may apply another orthogo-
nalization and linearization. Also, a smaller leap ε  would have resulted in 
point C closer to the curve. 

5. Higher Order Leaps 

For a quadratic leap, we start with three points already placed on the curve, say 
( )1 1 1,P x y , ( )2 2 2,P x y , ( )3 3 3,P x y . Parametrization of the interpolant to the 

trajectory over the three points is achieved with 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 1 1 2 2 3 3,x t x t x t x t y t y t y t y tφ φ φ φ φ φ= + + = + +   (31) 

where 1 2 3, ,φ φ φ  are the three Lagrange interpolation functions 

( ) ( )( ) ( ) ( ) ( ) ( )1 2 3
1 11 2 , 2 , 1
2 2

t t t t t t t t tφ φ φ= − − = − − = − −       (32) 

with parameter 0, 1t t= =  and 2t = , at 1 2,P P  and 3P , respectively. At 
3t = , Equation (31) predicts the coordinates 

( ) ( ) ( ) ( )4 1 3 2 4 1 3 23 3 , 3 3 .x x t x x x y y t y y y= = = + − = = = + −      (33) 

A higher order, cubic, parametrization of an interpolant to the trajectory over 
four points similarly produces 

( )
( )

5 1 2 3 4

5 1 2 3 4

4 4 6 4 ,

4 4 6 4 .

x x t x x x x

y y t y y y y

= = = − + − +

= = = − + − +
               (34) 

6. Bézier Curve Leaps 

Use of partial derivatives allows the construction of a quadratic Bézier-like ap-
proximation to the trajectory [8] over only two points. Let ( )1 1 1,P x y  and 

( )2 2 2,P x y  be two such points on the trajectory. The quadratic parametric ap-
proximation to both x and y between 1P  and 2P  is of the general form 

2 2
0 1 2 0 1 2, , 0 1x a a t a t y b b t b t t= + + = + + ≤ ≤            (35) 

where the coefficients of the approximation are to be determined from the initial 
and end conditions at 1P  and 2P . Let x�  and y�  denote the derivatives of x 
and y with respect to parameter t. At any point t on the trajectory  

( ) ( ),x x t y y t= = , and 0x yf x f y+ =� � . For the quadratic approximation of Equ-
ation (35), 1 22x a a t= +� , 1 22y b b t= +� . Requiring , ,x y x� , and y�  at 1P  
where 0t =  and at 2P  where 1t =  produces the equations 

1 0 1 0,x a y b= =  
2 0 1 2 2 0 1 2,x a a a y b b b= + + = + +                 (36) 

( ) ( )1 1 1 1 2 1 2 2 1 20, 2 2 0x y x yf a f b f a a f b b+ = + + + =  
that are solved to yield the coefficients 
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1 0 1 0,x a y b= =  

( ) ( )1 1 2 2 1 1 2 2
2 2,x y x ya fy f x f y b fx f x f xδ δ δ δ= − + = +
∆ ∆

       (37) 

2 1 2 1,a x a b y bδ δ= − = −  
where 1 2 1 2x y y xf f f f∆ = − , where 2 1x x xδ = − , and where 2 1y y yδ = − . At 

2t =  we then have 

( )3 1 2 1 3 1 2 12 3 4 3 , 3 4 3 .x x t x x a y y y b= = = − + − = − + −         (38) 

7. Improved Accuracy with a Quadratic Leap 

Consider the circular level line ( ) 2 2, 1 0z f x y x y= = + − = . A linear leap of size 
ε  from point ( )0,1P  on top of the circle sends us to point ( ),1Q ε  that is at  

distance 21
2
ε  from the circle, provided that 1ε � . A quadratic approximation  

through points ( )1 sin 2 ,cos 2P θ θ− , ( )2 sin ,cosP θ θ− , ( )3 0,1P  with a rela-
tively small θ  produces out of Equation (33) the predictions 

( ) ( )3 2
4 4

5 1and 1
6 2

x x y yθ θ θ θ θ= = + = = −            (39) 

for the coordinates of point 4P , that is at the mere distance of ( ) 423 24 θ  from 
the circle. 

8. Now the Landing 

Let ( )0 0,P x y  now be a point not on the trajectory, ( )0 0, 0f x y ≠ . Point P can 
be considered as being on the level curve ( ) ( )0 0, ,z f x y f x y= = , with a gra-
dient ( )0 0,x yf f f∇ =  that is orthogonal to the level curve ( ) ( )0 0, ,f x y f x y=  
and therefore also nearly orthogonal to ( ), 0f x y = . Linearizing the correction 
( )0 0d , d 0f x x y y+ + =  we get 0 0 0d d 0x yf f x f y+ + = . To achieve an orthogonal 

aim for the landing of the corrected point we require the colinearity condition 
( ) ( )0 0d ,d ,x yx y f fλ=  for scalar λ . The linearization fixes λ  as 

0
0 02 2

0 0

and d , d .x y
x y

f
x f y f

f f
λ λ λ= − = =

+
            (40) 

The coordinates of point P are corrected thereby to 1 0 dx x x= + , 1 0 dy y x= + , 
and the procedure may be repeated. 

Figure 3(a) below shows a fourteen-step tracking of the unit circle  
( ) 2 2, 1 0f x y x y= + − =  by linear leaps of 0.49ε =  and a single orthogonal 

Newton-Raphson landing correction. 

9. A Full Numerical Experiment and a Warning 

Figure 3(a) shows a fourteen-step tracking of the unit circle  
( ) 2 2, 1 0f x y x y= + − =  by linear leaps of 0.49ε =  and a single orthogonal 

linear (actually Newton-Raphson) correction. The vectorial plot clearly shows 
the tangential leap and the orthogonal landing on the drawn circle. Figure 3(b)  

https://doi.org/10.4236/am.2021.127042


I. Fried 
 

 

DOI: 10.4236/am.2021.127042 594 Applied Mathematics 
 

 
Figure 3. A leap and one orthogonal land on a unit circle. 

 
is a vectorial plot of a nine-step quadratic leap carried out according to Equation 
(33), coupled with a single, linearized, orthogonal Newton-Raphson correction. 
Notice the relentless, undesirable growth of the step size in the quadratic me-
thod. 

10. An Unstable Leap and Its Stabilization 

Unfortunately, recursive formula (33) used to obtain the tracing of Figure 3(b) 
is unstable. Indeed, writing it in the general form 

3 2 13 3 0, 1,2,3,n n n nx x x x n+ + +− + − = = �              (41) 

we observe that it is solved by n
nx z=  for number z that satisfies the cubic 

characteristic equation 

( )33 23 3 1 1 0.z z z z− + − = − =                   (42) 

Since this equation has three equal roots 1 2 3 1z z z= = = , 
2

1 2 3nx c c n c n= + +                       (43) 

where 1 2 3, ,c c c  depend on the initial conditions 1 2 3, ,x x x . In fact, from 

1 1 2 3 2 1 2 3 3 1 2 3, 2 4 , 3 9x c c c x c c c x c c c= + + = + + = + +         (44) 

we obtain that 

( ) ( )1 1 2 3 2 1 2 3 3 1 2 3
1 13 3 , 5 8 3 , 2 .
2 2

c x x x c x x x c x x x= − + = − + − = − +    (45) 

Now, if 1 20, 1x x= =  and 3 2x = , then 1 1c = − , 2 1c = , 3 0c = , and 
1nx n= − +  so that 1 1n nx x+ − =  for all n. But if 1 20, 1x x= =  and 3 2x ε= + , 

then 1 1c ε= + , 2
31
2

c ε= − , 3
1
2

c ε=  and ( )( )11 1 2
2nx n n nε= − + − − , so that 

( )1 1 1n nx x nε+ − = + −  with a growing factor of 1n + . To control and subdue 
the parasitic linear growth, or contraction, of the distance between nx  and 

1nx + , a proper value for the predicting t has to be chosen in Equations (31) and 
(32) to maintain a nearly constant step size. Instead of 3t =  we set 3t ε= +  
in the Lagrange interpolation functions (32) to have the prediction 

( ) ( )2 2 2
4 4 1 2 3

3 1 5 11 3 4 3
2 2 2 2

x x x x xε ε ε ε ε ε ε   = = + + + − − − + + +   
   

   (46) 

or 

https://doi.org/10.4236/am.2021.127042


I. Fried 
 

 

DOI: 10.4236/am.2021.127042 595 Applied Mathematics 
 

2
4 3 1 2 3 1 2 3 1 2 3

3 5 1 13 2 4
2 2 2 2

x x x x x x x x x x xε ε   − = − + + − + + − +   
   

   (47) 

and a similar expression for 4 3y y− . Compactly written 
2 2

4 3 1 2 3 4 3 1 2 3,x x a a a y y b b bε ε ε ε− = + + − = + +           (48) 

from which we obtain 

( ) ( )
( ) ( )

( ) ( )

2 2
4 3 4 3

2 2 2 2 2
1 1 1 2 1 2 2 2 1 3 1 3

3 2 2 4
2 3 2 3 3 3

2 2 2

2

x x y y

a b a a b b a b a a b b

a a b b a b

ε ε

ε ε

− + −

= + + + + + +

+ + + +

        (49) 

that we equate to ( ) ( )2 2
2 1 2 1x x y y− + −  to have a quartic equation for ε . For 

well placed initial points 1ε �  we may ignore the 3ε  and 4ε  terms in Eq-
uation (49) to be left with a quadratic equation for ε . Employing this stabiliza-
tion procedure, we traced the unit circle as shown in Figure 3(c), using the three 
starting points ( ) ( ) ( )1 2 20,1 , sin ,cos , sin 2 ,cos 2P P Pθ θ θ θ , with 15θ = π . The 
typically computed ε  hovered around 0.04. 

11. A “Snap-Through” Oscillation of a Pre-Stressed Double 
Rod System 

Figure 4(a) shows a system of two equal, pin-joint, supposedly massless, elastic 
rods of elastic constant k, fixed at pivots A and B. At their junction the rods car-
ry a mass m that is initially held at distance 0x  from midpoint M on line AB. 
At this position the length of each rod is ( ) 2

0 01l x x= + . It is assumed that at 
length 0l  the rods are free of stress. If ( )0 0l x l> , then an initial restoring pull 
is being exerted on m with the intention of propelling it towards point M. As-
suming that the rods obey Hook's law, the energy equation of the system be-
comes 

( ) ( )2 2
2 2 2
0 0 0

2 21 1 .k ky l x l x
m m

+ − = + − + �             (50) 

The unstressed length of the rods has a critical value 
2
0

0 2
0

1
2 1 1

crit
x

l
x

=
+ −

                      (51) 

 

 
Figure 4. (a) A spring-mass system and (b) its computed phase portrait. 
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for which mass m reaches point M with zero velocity but with the rods still 
packing the potential energy ( )2

01k l− . The system comes to an unstable sym-
metrical standstill waiting for a disturbance to trigger a snap-up or a snap-down. 
For 0 0 critl l<  mass m arrives at point M with a residual velocity that helps carry 
it over past line AB, allowing m to complete its travel to 0x x= − , and then back 
in a periodic motion. 

In fact, if ( )0 0 1 , 0critl l ε ε= − > , then mass m reaches point M with a velocity 

( ) 2
0

20 kx x x
m
ε= =�                       (52) 

and through implicit differentiation of Equation (50) we have further that 

( ) ( ) 0
2
0

1
0 0, and 0

l
x x x x

xε
−

= = = =�� ���                (53) 

indicating that ( )0x x = →∞���  as 0ε → . The butterfly-shaped phase portrait 
of the spring-mass system in Figure 4(b) is, indeed, seen to have a waist of di-
minishing girth as 0 0 critl l→  with a turning-back that tends to become critical-
ly sharp. The computation described in Figure 4(b) was carried out with a tan-
gential search step of size 0.1ε = , for ( )0 tan 60x = ˚ , for which 0 1.5critl = , 
with 0 1.499l = , and 85 steps. Observe the deftness with which the gradient 
landing scheme sparsely places successive hits on flat sections of the curve, but 
clusters them closer around sharp bends. 

12. Conclusion 

We have considered in this paper the basic tangential leap followed by an or-
thogonal landing method for tracing implicit curves. We have then suggested a 
more accurate quadratic forward leap. However, such a leap may become unsta-
ble and we have shown how to restrain these possible instabilities to have a sta-
ble and accurate method. It would be of interest to consider next how to eco-
nomize on the differentiations to have a more efficient method. 
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