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Abstract 
In this paper, the new well-posed boundary value problem to the system of 
singular nonlinear differential equations is considered, which describes the 
stationary radial outflow of anisotropic plasma from the Sun (solar wind). 
These equations are obtained on the basis of 16-moment MHD (magnetohy-
drodynamic) transport equations for a collisionless magnetized plasma, which 
takes into account the temperature anisotropy relative to the direction of the 
magnetic field and the heat flux carried by the wind. This is a generalization 
of the classical isotropic Parker model taking into account the effects of ani-
sotropy. In this paper, the equations under study are characterized as a non- 
autonomous nonlinear system of ordinary differential equations the coeffi-
cients in which degenerate and simultaneously have singularities. These equ-
ations are related to an unsolved problem in the general theory of ODEs (Or-
dinary Differential Equations). At first, according to the conditions of the 
coefficients of the equations, a non-classical boundary value problem is set, 
and the solvability is established for the same non-autonomous and nonlinear 
system of equations under consideration. The found analytical solution re-
constructs numerical solutions, which are simultaneously automatically es-
tablished by classical formulation of boundary value problem. Parker’s solu-
tions are also partially included in this obtained class of solutions, which is 
presented with strictly proves. Further, by means of the methods of “ ε
-regularization” and “fixed point” the theorem of solvability for the consi-
dered differential equations is obtained. After constructed nonsingular system 
equations with well-posed boundary value problem, the analytical solutions 
are founded. Using the sketch of graph of these solutions their family is estab-
lished.  
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1. Introduction 

In 1957, Parker showed that although solar gravity strongly attracts the solar 
corona, it is still very hot at large distances, and while gravity weakens with in-
creasing distance from the Sun, the outer coronal plasma particles supersonically 
escape into interstellar space [1]. Parker’s model predicted that the wind should 
transition to supersonic flow (Mach number passes through the unit) at about 4 
solar radii from the photosphere (surface). The acceleration of the wind is still 
not well understood and cannot be fully explained by Parker’s theory. The re-
sults of many cosmic experiments and measurements of solar wind parameters 
near the Earth cannot be explained by the Parker model and by other theories 
based on the isotropic MHD [2] [3]. Since the measured parameters of the solar 
wind are highly anisotropic, it is necessary to develop the theory of wind model-
ing within the framework of the anisotropic MHD theory. MHD waves and in-
stabilities in anisotropic plasma are considered, for example, in works [4] [5]. 
The theory of MHD outflow of anisotropic plasma from the Sun, taking into ac-
count the heat flux, has not been developed yet. A generalization of the Parker 
task in the simple case (radial stationary flow) to the case of anisotropic plasma 
is considered in the paper [6]. In this case, the MHD transport equations are re-
duced to a system of three nonlinear singular equations, which are considered in 
this paper. These equations are characterized as a non-autonomous nonlinear 
system of ordinary differential equations in which the coefficients degenerate 
and simultaneously have singularities. In this case, the MHD transport equations 
are reduced to a system of three nonlinear singular equations, which are consi-
dered in this paper. These equations are characterized as a non-autonomous non-
linear system of ordinary differential equations in which the coefficients dege-
nerate and simultaneously have singularities. The works (see [7] [8] [9] and 
therein) given definition of nonclassical model problems and their equations. 
Namely, noted that the equation of Keldysh (see [10]) is also fit to the class of 
non-classical equations. Often for setting well-posed boundary value problems 
of the equations of mixed type (for example, in cases of degenerating, singulari-
ty, elliptical-hyperbolic equations and others) can be used from theory of M. V. 
Keldysh. In Section 2, considered problem as well known, consists of establish-
ing boundary conditions corresponding to the critical point which associated with 
number Mach. In aerodynamically, hydro-gas dynamic problems it is important 
an application in the theory of M. V. Keldysh. In case of stationary, for some 
degenerating ordinary differential equations to applying this theory is useful. 
The work (see [11]) considered model equation of mixed type, which is coeffi-
cients of higher-order derivatives (with respect to x, t) have to Keldysh type de-
generating cases. In this work our aim consists of construct boundary conditions 
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for admissible x > 0, to investigate system of ordinary differential equations and 
after proving solvability of this problem, finding solutions. The details of me-
thods are given in the next sections. 

2. Problem Statement and Solvability of the Nonlinear,  
Non-Autonomy Systems of the Ordinary Differential  
Equations with Degenerated and Singular Coefficients 

Note that in the theory of ordinary differential Equations (also systems of equa-
tions) both linear and nonlinear systems of equations are quite well studied. Al-
though, non-autonomous and nonlinear systems of ordinary equations have a 
number of difficulties, also the application of various special methods by appro-
priate formulations of boundary conditions is also solved. However, the theory 
of ordinary differential equations both linear and non-linear systems of equa-
tions when the coefficients degenerate, then for the solutions of such systems of 
equations the theory of classical ODE is almost inapplicable and refers to un-
solved problems. Proceeding from these difficulties we will try to apply the theo-
ries of the so-called non-classical models and methods of non-classical equations 
to the system of equations considered here. 

2.1. Discussing the Solvability of Non-Classical Problem 

The considered system Equations (see [6]) being to the system of three nonli-
near, non-autonomy of the ordinary equations with degenerating and singularity 
are: 

( )
( )

( )
( )

( )
( ) ( )

1 2 33 3 3d d d3 0, 6 0, 6 0
d d d

f x f x f xX Y Zx x x X
x f x x f x x f x A x
+ = + = + =    (2.1) 

where, 1YA
X

= − , 6
5 2

9
4

CgB X C
x x

= − + + − , 2D Z xg= − , 62E C xg= − ,  

( )1 44
2 3

Bf A A
X

= − + , 1 3 2f AD E= + , 2 1 6f Af Df= − ,  

( ) 2
3 1 12f f D E fZ= − − . 

The functions X, Y, Z are dependent from the space variable of x and X(x), 
Y(x), Z(x) which are real positives functions, but g = 1 and the constants C5, C6 
are unknowns. The functions ( )5 6, , ; ; ,f f X Y Z x C C= ;  

( )1 1 5 6, , ; ; ,f f X Y Z x C C= ; ( )2 2 5 6, , ; ; ,f f X Y Z x C C= ;  
( )3 3 5 6, , ; ; ,f f X Y Z x C C=  are dependence from the X, Y, Z, C5, C6. However, 

the constants are C5, C6 unknown which must be determine by means of initial 
condition (in classical sense approaches). Additionally, in this system of (2.1) the 
coefficients f(x) = 0 and A(x) = 0 are including the cases of degenerating and 
singularity. Therefore, the boundary value problems cannot be determined di-
rectly as traditionally initial value problems for system equations of (2.1). It is 
impossible; but we need seek a new non-classical approaches model which al-
lowance establishes boundary value problems of the system Equations (2.1).  

Definition 2.1. Non-classical Boundary Value Problem of system (2.1). Non- 
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classical approaches consists of finding the constants C5, C6 are such that in the 
domain x > 0 for degenerating and singular system Equations (2.1) to establish 
influences the coefficients f(x) = 0 and A(x) = 0 such that the system becomes 
nonsingular systems of ODE and choosing these coefficients to find suitable so-
lution of unknown well posed boundary value problems which is corresponding 
for nonlinear, no autonomy ordinary system Equations (2.1), with the degene-
rating and singularity coefficients. Note that, for such non-classical boundary 
value problems the linearization of (2.1) and for it solvability the numerical me-
thod directly using classical approaches methods are not applicable. For this 
reason for any 0ε >  we can rewrite in the following form 

( ) ( )

( ) ( )

( ) ( ) ( )
( )

1
3

2
3

3
3

d
d 3
d
d 3

d
d 6

f xXf x
x x

f xYf x
x x

f xZf x A x
x x X x


= −


 = −



= −


                (2.2) 

( )( ) ( )

( )( ) ( )

( )( ) ( )( ) ( )
( )

1
3

2
3

3
3

d
d 3
d
d 3

d
d 6

f xXf x
x x

f xYf x
x x

f xZf x A x
x x X x

ε

ε

ε ε


+ = −


 + = −



+ + = −


            (2.3) 

We have been using the terms supersonic and subsonic to refer to the regions 
by the regularizing system equations 

( )( ) ( )

( )

( )

( )

( )

( )
( )

2
3

2
3

2
3

d
d

d
3d

d d ,
d d 6

d
d 6

Uf x F x
x

f xX
xx

f xU Y F x
x x x

Z f xA
x x X x

ε

ε

 + = −


              = =          +         

           (2.4) 

Accordance to the result changing type equation from the work [11] account 
into stationary case t = constant, if instead coefficient ( )( )2K x ε+  replacing 
the ( )( )f x ε+  and making some of suitable notation, from the equation [8] 
formally being to the form (2.4), and it is obviously we can carry out to proof of 
solvability equation in [11] that, the system Equation (2.4) solvable in the space 

2L . Proof of this proposition can be held identically, similarly way as it shown in 
the work [10] [11], in case of analogical to first order ordinary differential sys-
tem equations. This proposition is formally as theoretical aspects in order to ap-
ply. On the base of this theory we need find only practice results, i.e. numerically 
results must be illustration in view of graphical lines. By the standard transition 
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limit may be assert that the solution of regularizing system equations of (2.4) 
converges to the solution of system equations of (2.1) or (2.2), with suitable boun-
dary conditions ( ) ( ) ( )* * *, ,Z c c X c c Y c c= = =  (where c is the constant, will 
be founded from the fixed point and by the theory of fixed points these condi-
tions is so-called as free move conditions (or unknown boundary conditions) if 
the constants c chosen as variables. 

Using definition of fixed point and its properties on the critical point (which 
is number Mach is equal to 1, i.e. at shock point) we may determine as free initial 
conditions at the nearly of critical point *x c=  with aid equalities: ( )* 3B c = , 

( )* 2X c = . Hence, at the point *x c=  obtain that ( )* 2Y c = . In this case, taken 
main idea of non zero fixed point rule. 

Hence, 
( )

6
5 * 3*

9 12 3
4

C
C

c c
− ⋅ + + − = , ( )* * *

618 6 2Z c c C c− = − + , 

( )* *
6 9 3.5C Z c c= + . 

Thus, 
( )
( )

* *

5 3 **

9 3.5 17.5
Z c c

C
cc

+
= + + . ( )* *

6 9 3.5C Z c c= + . Where ( )*Z c  is  

the observation value at the point *x c= . Hence, by the observation value of 

( )*Z c  the constants are 5 6,C C : founded * **
5 6,C C C C= =  by means of known 

methods. Consequently, now theoriatically, acordance these constans value of 
* **

5 6,C C C C= =  and into account of these constants in the expression of coefi-
cints A(x), ( )5 6, , , ; ,f f X Y Z x C C= ; ( )1 1 5 6, , ; ; ,f f X Y Z x C C= ;  

( )2 2 5 6, , ; ; ,f f X Y Z x C C= ; ( )3 3 5 6, , ; ; ,f f X Y Z x C C= . System equations, in-
stead of this we obtain new system equations with non singular coeficients. 

Now, if in case of nonsingular system equations for (2.1) proved that the sys-
tem is the inteqrability, then we can find numerical or analytical solutions for 
nonsinular system equations of corrosponding systems (2.1). 

2.2. The Inteqrability of Nonlinear and Nonsingular System  
Equations (2.1) 

Now, we can rewrite the non-autonom system equations of (2.1) by account into 
from system (2.4) in the form  

( )
( )
( )
( )
( )
( )

1

1

2

2

3

3

, , ,d ,
d , , ,

, , ,d ,
d , , ,

, , ,d ,
d , , ,

F x X Y ZX
x G x X Y Z

F x X Y ZY
x G x X Y Z

F x X Y ZZ
x G x X Y Z


=


 =


 =


                   (2.5) 

where, the functions ( ), , ,iF x X Y Z , ( ), , ,iG x X Y Z , 1,2,3i = , dependence 
from the functions of X, Y, Z and from space variable x > 0, at the same time are 
analytical functions. From the theory of ODE and theories nonautonom ODE 
Prele-Singer and its modified extended procedure (Prele and Singer 1983; Duarte 
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et al. 2002, and Lakshmanan M. and so on…) considered in case of nonsingular 
and nondegeneraing ODE systems in formally using from the classical theory of 
ordinary differential equations. These theories is also fit to the theory ODE. In our 
cases system ODE and its seting well-posed boundary conditions unknown. It is 
obviosly that general solution of the system (2.5) may be expressed by means of two 
constants as it form of first inteqrals view presentatitive forms. Suppose that this 
solution may be expressed in common form of ( ), , ,I x X Y Z C= , where constant 
C must be selected in such form that, the total differential equtions there exists  

d d d d d 0x X Y ZI I x I X I Y I Z= + + + = ,              (2.6) 

In this case using from the theory of ordinary differential equations the exis-
tance theorem of total ordinary differential equations, we can transforming Eq-
uation (2.5) in the equavalent form 

( )
( )
( )
( )
( )
( )

1

1

2

2

3

3

, , ,
d d 0,

, , ,

, , ,
d d 0,

, , ,

, , ,
d d 0.

, , ,

F x X Y Z
x X

G x X Y Z

F x X Y Z
x Y

G x X Y Z

F x X Y Z
x Z

G x X Y Z


− =


 − =


 − =


                  (2.7) 

As known from the courses of differential equations needed to find inteqrat-
ing factors suitable for each equation of the system (2.7). Let’s denoting the in-
teqrating factors ( ), , ,R x X Y Z , ( ), , ,K x X Y Z , ( ), , ,M x X Y Z  respectively. 
Thus, multipling corresponding each of Equation (2.7) by ( ), , ,R x X Y Z , 

( ), , ,K x X Y Z , ( ), , ,M x X Y Z  respectively, we get 

31 2

1 2 3

d d 0, d d 0, d d 0,
FF FR x R X K x K Y M x M Z

G G G
− = − = − =      (2.8) 

Hence, account the equality of (2.7) we have  

( )1 2 3d d d d d 0I R K M x R X K Y M Zϕ ϕ ϕ= + + − − − =        (2.9) 

where, ( )
( )

, , ,
, 1, 2,3

, , ,
i

i
i

F x X Y Z
i

G x X Y Z
ϕ = =  or ( )

( )
( )

( )( )
1 1

1 3
1

, , ,
, , , 3

F x X Y Z f x
G x X Y Z f x x

ϕ
ε

= =
+

, 

( )
( )

( )
( )( )

2 2
2 3

2

, , ,
, , , 6

F x X Y Z f x
G x X Y Z f x x

ϕ
ε

= =
+

, 

( )
( )

( )
( )( ) ( )( )

3 3
3 3

3

, , ,
, , , 6

F x X Y Z f x
G x X Y Z f x A x x

ϕ
ε ε

= =
+ +

 are denoted. Comparsion the 

Equations (2.9). (2.7) with respect to , , ,x X Y ZI I I I , gives 

1 2 3 , , ,x X Y ZI R K M I R I K I Mϕ ϕ ϕ= + + = − = − = −        (2.10) 

Hence, in order there exists total differentiable from the equality of (2.7), 
needed to find the following main conditions for determine inteqrating factors 
(as usually for one equation ( ),M x X  from classical theory must be satisfy ne-
cessary and suficiently conditions for total differential  

( )d , d d 0x XI x X I x I X= + = ), but in our cases we would like take as ( ), , ,I x X Y Z , 
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therefore nedded three function and between its codition of connection):  
( ), , ,R x X Y Z , ( ), , ,K x X Y Z , ( ), , ,M x X Y Z  in the forms 

( )1 2 3 1 2 3x X Y Z X X XR R R R R K Mϕ ϕ ϕ ϕ ϕ ϕ+ + + = − + +      (2.11) 

( )2 3 1 2 3x X Y Z Y Y YK K K K R K Mϕ ϕ ϕ ϕ ϕ ϕ+ + + = − + +      (2.12) 

( )1 2 3 1 2 3x X Y Z Z Z ZM M M M R K Mϕ ϕ ϕ ϕ ϕ ϕ+ + + = − + +     (2.13) 

, , ,Y X Z X Y X Z YR K R M R K K M= = = =             (2.14) 

Other sides, by inteqrating the equalities (2.9) account into the equalites (2.11) 
-(2.14), we get the following expression of motion inteqral formula 

( )1 2 3 1 2 3
d d

d
I r r r M r r r z

Z
 = + + − + + +  ∫            (2.15) 

where, [ ]1 1 2 3 dr R K M xϕ ϕ ϕ= + +∫ , ( )1
2

d
d

d
r

r R X
X

 
= − + 

 
∫ ,  

( )1 2
3

d
d

d
r r

r K Y
Y
+ 

= − + 
 
∫ . 

Or 

( )
( )( )

( )
( )( )

( )
( )( ) ( )( )

1 2 3
1 3 3 3 d ,

3 6 6
f x f x f x

r R K M x
f x x f x x f x A x xε ε ε ε

 
= + + 

+ + + +  
∫  

( )
( )( )

( )
( )( )

( )
( )( ) ( )( )

1 2 3
2 3 3 3

d d d ,
d 3 6 6

f x f x f x
r R R K M x X

X f x x f x x f x A x xε ε ε ε

   
  = − + + + 

 + + + +     
∫ ∫  

( )
( )( )

( )
( )( )

( )
( )( ) ( )( )

( )
( )( )

( )
( )( )

( )
( )( ) ( )( )

1 2 3
3 3 3 3

1 2 3
3 3 3

d d
d 3 6 6

d d d d
d 3 6 6

f x f x f x
r K R K M x

Y f x x f x x f x A x x

f x f x f x
R R K M x X Y

X f x x f x x f x A x x

ε ε ε ε

ε ε ε ε

   
 = − + + + 

+ + + +    
   
  − + + + 

  + + + +      

∫ ∫

∫ ∫

 

Let the functions ( ), , ,S X Y Z x , ( ), , ,U X Y Z x  are such that the equality R 
= SM, K = UM be satisfied. Then using the operator  

1 2 3D
x X Y Z

ϕ ϕ ϕ∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂

, we get the following equalities 

( ) ( ) ( )1 2 3 1 2 3 ,Z Z Z X X XD S S S U S Uϕ ϕ ϕ ϕ ϕ ϕ = + + − + +        (2.16) 

( ) ( ) ( )1 2 3 1 2 3 ,Z Z Z Y Y YD U U S U S Uϕ ϕ ϕ ϕ ϕ ϕ = + + − + +        (2.17) 

( ) [ ]1 2 3 ,Z Z ZD M M S Uϕ ϕ ϕ= + +               (2.18) 

, ,X Z Z Y Z Z X Y Z ZM SM MS M UM MU U S SU US= + = + − = −    (2.19) 

Remark 21. Instead of ,R SM K UM= =  we can take ,R SK M UK= =  or 
,K SR M UR= =  then for , , ,x X Y ZI I I I  first integrals we get five possiblity 

classes catagoris: 
1) 0, 0, 0, 0x X Y ZI I I I= ≠ ≠ ≠ ; 
2) 0, 0, 0, 0Y X x ZI I I I= ≠ ≠ ≠ ; 
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3) 0, 0, 0, 0X Z x YI I I I= ≠ ≠ ≠ ; 
4) 0, 0, 0, 0x X Y ZI I I I≠ ≠ ≠ ≠ ; 
5) 0, 0, 0, 0x X Y ZI I I I≠ ≠ ≠ ≠ . 
In order to find the conditions of existances first inteqrals for example, in case 

of 0, 0, 0, 0x X Y ZI I I I= ≠ ≠ ≠ . In this case since 0xI =  then R = 0. Hence, 
there are the following possible conditions: 1) S = 0 and 0M ≠ , 2) M = 0 and 

0S ≠  are established. Thus, we have: 1) S = 0 and 0M ≠ , 2) M = 0 and 0S ≠ , 
hence, we find the function U in the form 3

2

, 0X
X

X

U U
ϕ
ϕ

= − = . Now we can find 
the function M from the following equations:  

( ) [ ]1 2 3Z Z ZD M M S Uϕ ϕ ϕ= + + , 3

2

X

X

U
ϕ
ϕ

= − , 0XU = ), 0S =  and 0M ≠ ,  

X Z ZM SM MS= + , Y Z ZM UM MU= + , X Y Z ZU S SU US− = − ,   0R SM= =  

and K UM= , 3

2

X

X

K M
ϕ
ϕ

= − , 0XM = , 3 3

2 2

0X X
Y Z

X Xz Z

M M M
ϕ ϕ
ϕ ϕ

 
= − + = 

 
,  

32

3 2

XX
Z

X Xz Z

M M
ϕϕ

ϕ ϕ
 

= − − 
 

 

From the equalities ,K UM R SM= =  we can find by the values of 
( ), , ,R x X Y Z , ( ), , ,K x X Y Z , the ( ), , ,M x X Y Z . Thus account into the inte-

grals 1 2 3, ,r r r  in the first motion inteqral ( ), , ,I I x X Y Z C= = , finally we get 
the following expression: ( )1 2 3 1 2 3

d d
d

I r r r M r r r z
Z

 = + + − + + +  ∫ . Hence, we 
can able to formulate the theorem of inteqrability, it means that the system non-
singular equations is solvability: 

Theorem 2.1 (inteqrabilty of (2.5)). Let the conditions Y XR K= , Z XR M= , 

Y XR K= , Z YK M=  are satisfied. Then, in order there existence the first 
integral of system (2.1) (or (2.3)), it is sufficiently must be satisfy the equality:  

( )
( )

3 2 2 2 3 2 2 3 2 2

2 3 2 3 3 3 2 3 3 2 0
X xX X Y XZ Z X X Y

x xX X Y XZ X y x Z

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

+ + − −

− + + − − =
. Thus, we obtain that the  

nonlinear and non autonom ordinary system Equations (2.5) (or (2.4)), which is 
corresponding to system equations of (2.1)-(2.3) without initial conditions is in-
tegrability. Now we can able to begin finding analitycal (or numerical) solution. 

Remark 3. Identically, similarly way the following orthers cases can be inves-
tigated from the conditions 

2) 0, 0, 0, 0Y X x ZI I I I= ≠ ≠ ≠ ;  
3) 0, 0, 0, 0X Z x YI I I I= ≠ ≠ ≠ ;  
4) 0, 0, 0, 0x X Y ZI I I I≠ ≠ ≠ ≠ ;  
5) 0, 0, 0, 0x X Y ZI I I I≠ ≠ ≠ ≠ . 
As it shown in the work [7] [8] [9] [10] [11], the theory of boundary value 

problems for degenerate equations it is a well-known fact that the well-posedness 
and the class of its correctness essentially depend on the coefficients. Great dif-
ficulties come into being in the investigation of systems of degenerating equa-
tions. Therefore, in spite of proved the integrality of system equations in for-
mally, let’s additionally, to attempt prove the solvability of system equations of 
(2.1) by means of system of regularizing equations of (2.3) (or (2.4)) in weighted 
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spaces. For this reason we must to choose suitable spaces which are corresponding 
to well-posed boundary conditions. Thus by the symbol CL we denote a class of 
continuously differentiable functions in the domain { } { }*0 0.86D x c= > >∩ , 
satisfying the initial conditions ( )* 2X c = , ( ) ( )* *5Y c X c= , ( )* 1Z c = , where 

* 1c =  which is also taken by Parker’s (where ( )*Z c  is observation value). 
Denoting by the space ( )1H D  in the Sobolev’s space (see [12]) with weighted 
spaces obtained for LC  class functions (i.e. ( ) ( ) ( ), , LX x Y x Z x C∈ ) which is  

closed by the norm: ( ) ( ) ( ) ( )
1

2
2 2d d

dH D
D

UU x f x U x x
x

ε
  = + +  

   
∫ . Since  

( ) 0f x ≠  for *x c c= ≠ -critical point then  

( ) ( ) ( ) ( ) { }{ }1 *
1 2, , \X x Y x Z x H D W D x c c∈ = =∩  and satisfy initial conditions. 

Definition 2.2. The function ( )U x  is said to be generalized solution, if 
( ) ( ) ( )1 2U x H D L D∈ ∩  be satisfied the equality  
( ) ( )( ) ( ) ( ) ( )( ) ( )2 2

, ,
L D L D

U x x F x xε ϕ ϕ= − , where ( ) ( )1
0x C Dϕ ∈  is set of test 

functions (i.e. supp ( ) ( )\x C D boundaryϕ ′∈ . 
Theorem 2.2. Let the 0λ <  is sufficiently large number, then for continuous 

function ( )F x  the inequality is holds true:  

( ) ( ) ( ) ( )1 2H D L D
U x m F xε ≤ .               (2.20) 

Proof. Indeed, multiplying the Equation (2.3), by ( )e x
xU xλ ′  (

de
d

x U
x

λ ) and 
after integrating by parts, account into initial conditions, in additionally, also 
using inequality of Cauchy-Bunyakovski, we get this priory estimate. Hence, in-
clude that the functions of family ( )U xε  are uniformly bounded, then in 
equality ( ) ( )( ) ( ) ( ) ( )( ) ( )2 2

, ,
L D L D

U x x F x xε ϕ ϕ= − , we may pass to limit in stan-
dard form transition procedure for weak solution in the integral equality (see [7] 
[8] [9]), when 0ε → . 

Definition 2.3. The functions ( ) ( ) ( )1
1 2U x H D W Dε ∈ ∩  is said to be a regular 

solution of considered problem (system equation and its boundary conditions), 
if it is generalized solution which is satisfy almost everywhere system equations 
of (2.1). Since the inequality (2.20) is hold true, then there exists trace of 

( ) ( ) { }1 * *
1 2 ,U x H D W x c c cε ∈ ≠∩ ∩ . Other side, the function ( )F x  is diffe-

rentiable, then for ( ) ( )n LU x C D∈  sequences functions the following is holds  

true: ( ) ( ) ( )
( )

( ) ( ) ( )1
2

d
lim lim 0

d
n

n H Dn n
L D

U x
f x F x U x U x

x
ε

→∞ →∞
+ − = − = . 

Hence, we may include that there exists regular solution and by the theory of 
strong solution it is identity with weak solution (see [7] [8] [9] [11] [13]). Thus, 
we can include that, the solution ( ) ( )1U x H D∈  is gluing solutions of  

( ) ( )U x U x− +=  at the point of critical which this point transition as supersonic 
lines. This theorem show that regularizing solutions of system Equations (2.3) 
(or (2.4)) almost identity with solutions of system equations of (2.1). Therefore, 
we may able to find (by strictly satisfying law of basic transition rule) solution of 
system (2.1) by analytical and numerical forms is held simultaneously. Now, on 
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the base of the fundamentals base of established ours theory we can seek solution 
of given problem in view of complex couple solution of analytically formulas and 
numerically cases. 

3. Analytical and Numerical Presentation of Solution of the  
System Equations (2.1) 

Since, ( ) ( )1 44
2 3

Bf x A A
X

= − + , ( ) 0f x =  is natural singularity coefficient, we 
must to use directly it, other sides, A(x) = 0 degenerating line (sonic line), ther-
fore from the fixed point and by the theory of free boundary conditions (see [7] 
[8] [9] [10] [11] and theirin) there exests x c∗=  point and chosing from 
( )A ε+  such that must be satisfy ( ) 0f c∗ = . Hence instead of 0ε >  choosing 
any number we may establish from the ( ) 0f c∗ =  no degenerating case, but at 
the same time establishing free boundary value conditions for functions ( )*X c , 

( )*Y c  using by observation value of ( )*Z c . Hence, we have  

( )
( )

*

*

4
2

3

B c

X c
=  or ( ) ( )* *2 3B c X c= . Hence, for comfortable chosen ( )* 3B c = ,  

( )* 2X c = , As it chosen by Parker’s [1] fixed point 1c∗ = , and therefore 

( ) ( )* 1 1Z c Z= = , consequently, we have ( )1 2X =  and from the A(x) = 0 ob-
tained Y(1) = 2 fixed boundary conditions is established. Now, we able to estab-
lish classical well-posed boundary value problem in natural law of theory diffe-
rential equations. This theory belongs to the so-called non-classical theory of 
ODU (or PDE), at the same time this model approaches satisfy definition of 
“Non-classical Definition of Boundary Value Problem”. Using by common fac-
tors between of ( ) ( ),B c X c∗ ∗ , i.e. ( ) ( )2 3B c X c∗ ∗=  we chose the k number 
and using ( ) ( )* 1 1Z c Z= = , ( )Z c C=  observation value at the point x c=  
the feture constructing solution X(x), Y(x), Z(x) will be analytical, because by 
this method we provide the continuty of these fuctions. Note that we obtain 
three analytical solutions and at the any points of domain of x > 0 admissable the 
continuty values of these X(x), Y(x), Z(x). Finally, account into above, the sys-
tem (2.1) which is after derivation to nonautonom system of ODE is being to 
nonsingular and nondegeneraiting ordinary system equations first order in the 
following form: 

( ) ( )
3 2 3 3 2 3

4 6d 5 1 d 7 2, ,
d d3 3

Z x Z xX Y
x xx x x x x x

− −
= + + = + +  

( )
( ) ( )2

3

d 1 7 5 5 3 ,
d 6 6 4 42
Z xZ x xZ x x
x x X x

 = − − − + +  
 

Substituting constants 5 67, 1,5C C= = , we have analytical solutions respectto 
X(x), Y(x), Z(x) in the following (which is the constant C1 is arbitrarily and al-
lowance to use boundary conditions for family of solutions):  

( ) 12

1 1 1 1
21 714

X x C
x x

 = − + − 
 

, ( ) ( ) 12

5 1 5 55
21 714

Y x X x C
x x

 = = − + − 
 

, 

( ) 3 3
7 14

Z x x= +   
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Remark 3.1. Starting from the formula ( ) ( )* *2 3B c X c=  for each point of 
domain [ ) ( )*1, -criticalc c∞ >∩  accounting into the numbers k N∈  as the 
common factor between of 3 and 2 for all points of admissable variables x, the 
boundary conditions can be established (sometimes these initial value condtions 
is so-called as moiving boundary conditions) for system equations of (2.1). In 
this case these moiving boundary conditions allowance to determine all solu-
tions for x > c-critical points which is the functions X, Y, Z representatives by 
analitical formulas having sketch graph as is it shown in Figure 1(a) and Figure 
1(b). 
 

 
(a) 

 
(b) 

Figure 1. (a) The graph of solutions family which included Parker’s solutions; (b) The 
graph of solutions family. 
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4. Conclusions 

Our derived Equations (2.1) are a generalization of the Parker problem to the 
case of anisotropic radial and stationary solar wind. These equations are new 
and have not been investigated by anyone. The main difficulty in solving these 
equations is related to the zeros of the functions f(x) and A(x) in the region of 
integration 1 ≤ x ≤ ∞. However, the equations contain two unknown arbitrary 
constants C5, C6 which make the singularities avoidable. One of the great diffi-
culties is the problem of finding these constants. After this it is necessary to set 
the initial boundary conditions and simultaneously it is necessary to restore the 
nonsingularity and nondegeneracy of the system of equations. After these hur-
dles difficulties only come non-autonomous and nonlinear system of equation, 
which also its turn is difficultly solvable. And so after established above men-
tioned steps of difficulties the following results are obtained:  

1) First of all no lost the singularity and degenerating cases we find value of 
the constant C5, C6; 

2) Constructed by nonclassical approches the initial conditions which include 
movable boundary conditions;  

3) Using nonclassical methods, with aid “ ε -regularization” and “fixed point”, 
priory estimations established theorems of solvability for given non-autonomous, 
nonlinear system of ordinary differential equations under consideration, when 
the coefficients degenerate, simultaneously having singularities; 

4) After constructed nonsingular system equations established well-posed boun-
dary value problem, founded the analytical solution; 

5) Using a especially numerical method obtained the classes solution which is 
applying so-called “Hybrid” (complex couple form of analytical-numerical me-
thod simultaneously) established in spaces ( *x c∩  (where, * 0.86c > ); 

6) All solutions, which is corresponding definition of domain as shown by 
Parker’s (we prove that must be * 0.86c > ); 

7) Using program, established sketch of graph of these solution families as shown 
in Figure 1(a) and Figure 1(b). 
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