
Journal of Applied Mathematics and Physics, 2021, 9, 1108-1120 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2021.95077  May 31, 2021 1108 Journal of Applied Mathematics and Physics 
 

 
 
 

Special Values for the Riemann Zeta Function 

John H. Heinbockel 

Old Dominion University, Norfolk, Virginia, USA 

 
 
 

Abstract 
The purpose for this research was to investigate the Riemann zeta function at 
odd integer values, because there was no simple representation for these re-
sults. The research resulted in the closed form expression  
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for representing the zeta function at the odd integer values 2 1n +  for n a 
positive integer. The above representation shows the zeta function at odd 
positive integers can be represented in terms of the Euler numbers 2nE  and 

the polygamma functions ( ) ( )2 3 4nψ . This is a new result for this study area. 
For completeness, this paper presents a review of selected properties of the 
Riemann zeta function together with how these properties are derived. This 
paper will summarize how to evaluate zeta (n) for all integers n different from 
1. Also as a result of this research, one can obtain a closed form expression for 
the Dirichlet beta series evaluated at positive even integers. The results pre-
sented enable one to construct closed form expressions for the Dirichlet eta, 
lambda and beta series evaluated at odd and even integers. Closed form ex-
pressions for Apéry’s constant zeta (3) and Catalan’s constant beta (2) are al-
so presented. 
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1. Introduction 

If you do not know about the Riemann zeta function, then do an internet search 
to observe the extensive research that has been done investigating various prop-
erties of this function. A more detailed introduction to the Riemann zeta func-
tion can be found in the references [1] [2]. One way of defining this function is 
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to express it as an infinite series having the form 

( )
1

1 1 1 1 , 1
1 2 3n nσ σ σ σζ σ σ

∞

=

= = + + + >∑                (1) 

where σ  is a real number greater than 1 in order for the infinite series to con-
verge. Observing that for 1σ = , the series becomes the harmonic series which 
slowly diverges. The zeta function was introduced by Leonhard Euler (1707-1783) 
who considered ( )ζ σ  to be a function of a real variable. 

Another form for representing the zeta function is the integral representation 
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where ( )σΓ  is the gamma function. 
Bernhard Riemann (1826-1866) studied the zeta function and changed the 

independent real variable σ  to the complex variable s itσ= + . This notation 
is still used in current studies of the zeta function. By doing this, Riemann made 
( )sζ  a function of a complex variable. Riemann discovered that the zeta func-

tion satisfied the functional equation 

( ) ( )
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where ( )sΓ  is the gamma function. Several proofs of the above result can be 
found in the Titchmarsh reference [3]. Various forms for the functional equa-
tion are derived later in this paper. The equation allowed the zeta function to be 
defined for values ( ) 1Re σ < . The point 1s =  is a singular point. Using prop-
erties of the gamma function, the functional equation can be expressed in the al-
ternative form 

( ) ( ) ( ) ( ) ( ) ( )12 2 sin 2 1 1 , 1ss s s s Re sζ ζ−= Γ −π − <π         (4) 

derived later in this paper. The above results can be used to extend the definition 
of the zeta function to the whole of the complex plane. 

Euler also showed that the zeta function can also be expressed using prime 
numbers 

( ) ( )
1

11 , 1s
p

s Re s
p

ζ
−

 
= − > 

 
∏                  (5) 

where the product runs through all primes 2,3,5,7,p =  . The equation (5) is 
known as the Euler product formula. 

The Euler-Riemann function ( )sζ  is an important function in number 
theory where it is related to the distribution of prime numbers. It also can be 
found in such diverse study areas as probability and statistics, physics, Diophan-
tine equations, modular forms and in many tables of integrals. The Eu-
ler-Riemann zeta function evaluated at special integer values for s occurs quite 
frequently in tables of integrals and in many areas of science and engineering. 
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2. Bernoulli and Euler Numbers 

In later sections we need knowledge of the Bernoulli numbers nB  and Euler 
numbers nE . Representation of these numbers can be obtained from reference 
[4] (24.2), where one finds the generating functions 
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Note that the first few values are 
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Note that for ,m n  positive integers with 1n ≥ , 2 1 0nB + =  and for 0m ≥ , 

2 1 0mE + = . 

3. Calculation of ( )nζ 2  for n 1,2,3,=   

Leonhard Euler discovered values for the zeta function at ( ) ( ) ( )2 , 4 , 6 ,ζ ζ ζ   
In general for s an even integer, say 2s n= , for 1,2,3,n =  , the zeta function 
( )2nζ , evaluated at positive even integers takes on the values given by 
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where nB  are the Bernoulli numbers. These results were discovered by Leon-
hard Euler (1707-1783) sometime around 1724 and are well known. Observe 
that ( )2nζ  is proportional to 2nπ . 

The above results can be derived from the following observations. The func-
tion ( ) ( )cotg x x x=  can be expressed in different forms. For example, 
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Now compare the last term of the above equation with the previous equation 

(6) involving the Bernoulli numbers, to obtain 
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One can examine the zeros of the denominator in ( ) ( )
( )

cos
sin

x
g x x

x
=  and ex-

press ( )g x  in the alternative form 
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The last term of the above equation can be expanded in a series to obtain 

( )
22

2 2
1 0

1 2
j

n j

x xg x
nn

∞ ∞

= =

 = − 
 ππ 


∑ ∑

 
One can interchange the order of summation and write 
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Now by comparing the coefficients of powers nx  in the equations (9) and (8) 
one obtains the well known result 
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as previously given in equation (7). A similar derivation can be found in the ref-
erence [5]. 

4. The Zeta Function ( )k kζ 2 1 , 1,2,3,+ =   

Note that the reference [2] points out that there is no known formula for the zeta 
function evaluated at odd positive integers greater than or equal to three. This 
paper will provide such a formula. 

It will be demonstrated that for odd positive integers s, say 2 1s n= + , for 
1,2,3,n =   that 
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where the ellipsis   denotes the decimal representations are unending. In 
general, it will be demonstrated 
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where nE  are the Euler numbers and ( ) ( )n zψ  are the polygamma functions. 
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Observe the ( )2 1nζ +  is related to 2 1n+π . Apéry’s constant is 
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5. Polygamma Functions 

The digamma function ( )sψ  is defined 
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                   (11) 

where ( )sΓ  is the gamma function. 
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The gamma function satisfies the functional equation ( ) ( )1x x xΓ + = Γ  so 
one can write 
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and consequently 
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Take logarithms on both sides of equation (14) and then differentiate to show 
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Differentiate again and show 
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From the reference [2] or reference [4] (5.15), one can show that in the limit 
as n increases without bound the derivative term ( )nψ ′  behaves like 1/n and 
approaches zero. By repeated differentiation of equation (15) one can obtain the 
polygamma functions ( ) ( )n xψ  defined by 
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for 1,2,3,n =  . 

6. Additional Functions 

Related to the study of the zeta function are the Dirichlet1 eta, lambda and beta 

 

 

1Peter Gustav Lejeune Dirichlet (1805-1859). 
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series defined 

( ) ( )

( ) ( )

( ) ( ) ( )

1

1

0

0

1 1 1 1 1 , 0,
1 2 3 4
1 1 1 1 2 1 , 1
1 3 5 7
1 1 1 1 1 2 1 , 0
1 3 5 7

k s
s s s s

k

s
s s s s

k

k s
s s s s

k

s k s

s k s

s k s

η

λ

β

∞
− −

=

∞
−

=

∞
−

=

= − + − + = − >

= + + + + = + >

= − + − + = − + >

∑

∑

∑







 

The first two Dirichlet series are related to the zeta function by the identities 
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          (17) 

Make note of the fact that knowing the equations (7) and (10) one can con-
struct closed form expressions for the Dirichlet eta and lambda functions eva-
luated at odd and even integers greater than one. 

7. Preliminary Observations 

Define the function 
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where s is a positive integer greater than 1. One can then verify that 

( ) ( ) ( ) ( ) ( )1 2 ss r s s sβ λ ζ−+ = = −                (19) 

We examine the special cases 

( ) ( ) ( ) ( )( ) ( )2 12 1 2 1 2 1 1 2 2 1kk r k k kβ λ ζ− ++ + + = + = − +        (20) 

from which ( )2 1kζ +  can be obtained and 

( ) ( ) ( ) ( )( ) ( )22 2 2 1 2 2kk r k k kβ λ ζ−+ = = −             (21) 

from which an expression for ( )2kβ , k an integer, can be obtained. From these 
two equations one can develop closed form expressions for ( )2 1kζ +  and 
( )2kβ . 

8. Calculation of ( )r k2 1+  and ( )r k2  

Observe that by using equation (16) with 2n k= , and again with 2 1n k= − , one 
can obtain the series representations 
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These results will be used shortly. 

https://doi.org/10.4236/jamp.2021.95077


J. H. Heinbockel 
 

 

DOI: 10.4236/jamp.2021.95077 1114 Journal of Applied Mathematics and Physics 
 

9. Calculation of ( )kβ 2 1+  and ( )kβ 2  

We begin by examining the trigonometric function ( ) ( ) ( )sec tanf x x x= +  

which can be expressed in many different forms. One form is ( ) ( )
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where one can examine the zeros of the denominator and write 
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where ,n na b  are constants which can be determined from the limits 
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which can now be expanded into the series 
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Another form for ( )f x  is 
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where the coefficients nK  are known as the Euler zigzag numbers. Still another 
form for ( )f x  is 
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with nE  and nB  denoting the Euler and Bernoulli numbers. 
Comparing like powers of x from equations (23) and (24) one can establish 

the relation 
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where the right-hand side of the equation is recognized as the β  series or λ  
series, depending upon the value of n. Replace n by 2n in equation (26) to obtain 
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Comparing like powers of x using the equations (24) and (25) one can show 
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which expresses the zigzag numbers in terms of the Euler and Bernoulli num-
bers. Therefore, the equation (27) can be expressed in the alternative form 
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a result also found in references [5] [6]. 
In equation (26) let 2 1n m= −  and show 
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and consequently the equation (21) can be written 
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giving a closed form expression for ( )2mβ  where 1,2,3,m =  . Note Cata-
lan’s constant is given by 
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10. Calculation of ( )kζ 2 1+  

Use the results from equations (29), (20) and (22) one can demonstrate the equation 

( ) ( ) ( ) ( )( ) ( )2 12 1 2 1 2 1 1 2 2 1kk r k k kβ λ ζ− ++ + + = + = − +
 

can be expressed in the form 
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for 1,2,3,k =  . Solving for ( )2 1kζ +  one obtains the closed form expression 
given by equation (10) for the zeta function evaluated at odd positive integers 
greater than or equal to three. 

11. Riemann Zeta Functional Equation 

Several derivations of the Riemann zeta functional equation can be found in the ref-
erence [3]. One derivation is as follows. Using the definition of the gamma function 
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The first integral on the right-hand side can be written in a different form as 
follows. 

( )1 12 1 2 1
0 0

1 12 1 2 3 2 2 1
0 0

1 1 1 1d d
22

1 1 1 1d d
2 2

s s

s s s

x x x x x
xx x

x x x x x
xx

φ θ

φ

− −

− − −

  = + −  
  
   = + −   
   

∫ ∫

∫ ∫
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which simplifies to 

( ) ( )
1 12 1 2 3 2
0 0

1 1d d
1

s sx x x x x
x s s

φ φ− −  = +  − ∫ ∫
 

This integral is further simplified by making the substitution 
1x
u

=  to obtain 

( ) ( ) ( )
1 2 1 2 1 2
0 1

1d d
1

s sx x x u u u
s s

φ φ
∞− − −= +

−∫ ∫
 

This last integral allows one to express the equation (32) in the form 

( ) ( )( ) ( ) ( )
1 22 2 1

1

1d
2 1

ss ss s x x x x
s s

ζ φ
∞ − +− − Γ = + +

 
π  −∫        (35) 

Observe that the right-hand side of equation (35) remains unchanged when s 
is replaced by 1 s− . This implies 

( ) ( )
1

22 1 1
2 2

s
ss ss sζ ζ

− −  −  −   Γ − = Γ   
   

π π              (36) 

which is the Riemann zeta functional equation. Multiplication of equation on 

both sides by 1
2

s + Γ 
 

 and using the Euler reflection formula 

( ) ( ) ( )
1

sin
x x

x
Γ Γ − =

π
π  

and the Legendre duplication formula 

( ) ( )1 21 2 2
2

xx x x− Γ Γ + = Γ 
 

π
 

the functional equation can be expressed in the alternative form 

( ) ( ) ( )
1

2 12 1 2
1sin

2

s
s ss s s

s
ζ ζ

− −  − −  − = Γ
 +  

   

π



π



π
π

π
 

which simplifies to 

( ) ( ) ( )11 2 cos , 0
2

s s ss s s Resζ ζ− −  − = Γ > 


π
π


          (37) 

Replacing s by 1 s−  the Riemann zeta functional equation can also be ex-
pressed in the form 

( ) ( ) ( )1

2
2 sin 1 1 , 1s s ss s s Resζ ζ−  = Γ − − < 

 

π
π           (38) 

12. Zeta Function for 0 and Negative Integers 

The Riemann zeta functional equation is used to demonstrate 

( )2 0, 1,2,3,n nζ − = =                     (39) 

since ( )sin 0nπ =  for all values of the integer n. These values for the zeta func-
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tion are known as the trivial zeros. The nontrivial zeros lie in the complex plane. 
Also the Riemann zeta functional equation gives 

( ) ( ) ( )2 1 22 1 2 2 2n nn n nζ ζ− + − Γπ− + =  
Using the results from equation (7), this simplifies to 

( ) 22 1
2

nB
n

n
ζ

−
− + =                       (40) 

where nB  are the Bernoulli numbers. 
Using the fact that 0nB =  for odd integers greater than one the equations 

(39) and (40) can be combined into the form 

( ) ( ) 11
1

n nB
n

n
ζ +− = −

+
                     (41) 

for n a positive integer or zero. 
This last equation also gives the integer values 

( ) ( )1 10 , 1
2 12

ζ ζ= − − = −                    (42) 

Recall the value ( )1ζ  does not exist as the series is the harmonic series 
which diverges for 1σ = . These values added to the values presented earlier will 
give the value of the zeta function at integer values, different from 1, along the 
real line. 

For additional representations involving the zeta function in various forms 
and evaluated at other values the reader is referred to the references [2] [3] [6] 
[7] [8]. 

13. Zeros of the Zeta Function 

The Euler product formula is used to demonstrate ( ) 0sζ ≠  whenever 
( ) 1Re s > . The Dirichlet eta function ( )sη  is used to study the zeros of the 

zeta function for ( ) 0Re s > , 1s ≠ , since it is related to the zeta function 

( ) ( ) ( ) ( ) ( )
1

1

1

1
1 2 , 0, 1

n
s

s
n

s s Re s s
n

η ζ
+∞

−

=

−
= = − > ≠∑         (43) 

The eta function is a converging alternating series for ( ) 0, 1Re s s> ≠  and is 
sometimes referred to as the alternating zeta function. The equation (43) shows 
( ) 0sη =  whenever ( ) 0sζ = . The factor ( 11 2 s−− ) is zero at the points 

21
ln 2
i ns π

= + , for all nonzero integer values for n. These are additional zeros of 

the eta function. 
Writing ( ) ( ) ( ) ( ), ,s it u t iv tη η σ σ σ= + = +  where for 0 1σ< <  one can 

show 

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1

1 1
, cos ln , , sin ln

n n

n n
u t t n v t t n

n nσ σσ σ
− −∞ ∞

= =

− −
= = −∑ ∑     (44) 

and verify that ,u v v u
t tσ σ

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂
 so the Cauchy-Riemann equations are  
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satisfied. This show ( )sη  is an holomorphic function which satisfies  
( ) ( )s sη η= . This implies that if ( ) 0sη =  for some value of s, then its conju-

gate s  satisfies ( ) 0sη = . This demonstrates that the zeros of the zeta function 
are symmetric about the σ -axis. The equation ( ) 0sη =  is satisfied if both the 
real part u and imaginary part v of η  are zero simultaneously. The condition 

0u =  and 0v =  simultaneously is illustrated in Figure 1 by plotting 
[ ] [ ]2 2, ,u t v tσ σ+  vs t in the special case where 1 2σ = . The special case 

1 2σ =  was selected for Figure 1 because of the Riemann hypothesis which is a 
conjecture that the nontrivial zeros of the zeta function have a real part equal to 
one-half. The values 1 2, ,t t   are the values of t where 0u =  and 0v =  si-
multaneously for 1 2σ = . Here 1 2σ =  is called the critical line and the re-
gion 0 1σ< <  is called the critical strip. To see the first one hundred imaginary 
parts of the complex zeros one can visit the web site  
https://wow.Imfdb.org/zeros/zeta/. A huge number of these complex zeros have 
been calculated and all lie on the critical line where 1 2σ = . Currently there is 
no proof that all of the nontrivial zeros of the zeta function must lie on the criti-
cal line. 

 

 

Figure 1. Plot of [ ] [ ]2 2, ,u t v tσ σ+  vs t, for 0 61t≤ < , with 1 2σ = . 

14. Conclusion 

A closed form expression for the Riemann zeta function evaluated at odd posi-
tive integers greater than three has been presented having the form 

( ) ( ) ( ) ( )
( )( )

22 1
2

2 1 2 1

4 2 3 4
2 1 , 1,2,3,

2 2 1 2 !

n nn
n

n n

E
n n

n
ψ

ζ
+

+ +

π− −
+ = =

−


 
where 2nE  are the Euler numbers and ( ) ( )2 3 4nψ  are the polygamma func-
tions. It has been demonstrated that knowing closed form expressions for 
( )2nζ  and ( )2 1nζ +  for 1,2,3,n =   one can construct closed form ex-

pressions for the Dirichlet eta, lambda and beta series at the even and odd integ-
ers different from unity. Closed form representations of the Apéry’s constant  

( )
( ) ( )23

24 2 3 4
3 1.20205690316

112
E ψ

ζ
−

=
π−

=   and the Catalan’s constant
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( ) ( ) ( ) ( )2 1
23 2 2 3 4

2 0.915965559
16 16

B ψ
β = − =

π
  are obtained. 

15. The Riemann Hypothesis 

The Riemann hypothesis is a conjecture that all nontrivial zeros of the zeta function 
have a real part equal to one-half. If this is true, all nontrivial zeros are complex  

numbers of the form 
1
2

it+ , called the critical line. Whether this is true or not is 

still an open question. 
The Clay Mathematics Institute in Petersborough, New Hampshire is offering 

a one million dollar prize to anyone who can prove this conjecture and show 
how to calculate all the zeros of the zeta function. For additional information 
and conditions to be met in order to win the prize, the reader can consult refer-
ence [2] under the search name Riemann zeta function prize. 
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