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Abstract 
Point cloud based place recognition plays an important role in mobile robot-
ics. In this paper, we propose a weighted aggregation method from structure 
information adaptively for point cloud place recognition. Firstly, to preserve 
the prior distributions and local geometric structures, we fuse learned hidden 
features with handcrafted features in the beginning. Secondly, we further ex-
tract and aggregate adaptively weighted features concerning density and rela-
tive spatial information from these fused features, named Weighted Aggrega-
tion with Density Estimation (WADE) module. Then, we conduct the WADE 
block iteratively to group the latent manifold structures. Finally, comparison 
results on two public datasets Oxford Robotcar and KITTI show that the 
proposed approach exceeds the comparison approaches on recall rate ave-
ragely 7% - 8%. 
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1. Introduction 

Large-scale place recognition plays a significant role in robotics and automatic 
driving, since it usually enhances localization and mapping optimization [1]-[6]. 
Vision data based large-scale place recognition has been investigated, and some 
successful solutions are presented in several surveys [7] [8] [9]. However, they 
are sensitive to season and illumination variations. Meanwhile, with the help of 
spatial-aware feature information, 3D points based methods are relatively robust 
to these changes [10] [11] [12] [13] [14]. In Figure 1, an outdoor scene shows 
that 3D point cloud could better describe the different spatial distributions of  
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Figure 1. Different point distributions in an outdoor scene. Three enlarged dashed circles 
are an advertising board, the rear of one car, and afforestation, respectively.  

 
different local regions. As a consequence, place recognition from point cloud data is 
becoming an increasingly attractive research topic. The main challenge of point 
cloud recognition lies in how to extract effective features and generate a discrimina-
tive representation. Various feature extraction strategies based on handcrafted or 
deep learning methods for 3D point clouds emerge gradually [15] [16]. 

Traditionally, some 3D recognition methods pay attention to handcrafted lo-
cal feature extraction, including normal orientation, curvature and distribution 
histogram [17] [18] [19] [20] [21]. Specifically, [19] [20] generate histograms 
based on geometric attribution to obtain local information. These methods, 
however, often consume much time and more computational resources. By con-
trast, some works [18] [21] try to improve the efficiency of local feature extrac-
tion methods. They can extract local point cloud features with lower computa-
tion cost. However, they do not perform well at sparse space locations. Moreo-
ver, these approaches only concentrate on some local views, but not from a glob-
al perspective. 

Therefore, methods for extracting global descriptors are proposed gradually 
[22] [23] [24] [25] [26]. Ensemble of Shape Functions (ESF) [22], Normal 
Aligned Radial Feature (NARF) [23] and Viewpoint Feature Histogram (VFH) 
[24] are able to filter out some local locations with sparse distribution of point 
cloud. The conception of projecting 3D point cloud to 2D image is utilized [5] 
[27] [28]. He et al. propose a global descriptor, Multiple 2D Planes (M2DP) [28], 
for place recognition and loop detection. It projects the 3D point cloud into 
multiple 2D planes and generates a descriptor vector for place representation. 
Following the M2DP, Kim et al. propose Scan-Context [5] to handle place rec-
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ognition on the basis of 3D point database. Scan-Context separates the whole 
point cloud into many bins by radius and azimuth, and defines the maximum 
height of points in each bin as the feature value. In general, these traditional 
works, based on prior knowledge, obtain the handcrafted spatial feature of 3D 
data and have made contributions on many tasks. However, some latent features 
may be neglected due to the disadvantage of these handcrafted methods. 

Fortunately, deep learning based methods have powerful feature extraction 
capability relying on numerous data fittings. They have received high attention 
and have been widely utilized to extracting high-dimension features from or-
der-less point clouds [29]-[38]. Generally speaking, there are three ways of fea-
ture extraction for point cloud. Firstly, some works [29] [30] [31] [32] [33] 
represent the input point cloud as regular 3D gridding or voxel, but this opera-
tion may cause complex pre-process and high computational cost [12]. Secondly, 
motivated by CNN in 2D images, some works [34] [35] consider projecting 3D 
points into 2D images and using multi-view to analyze point clouds roundly. 
Finally, PointNet [36] and PointNet++ [37] make it possible to input raw point 
cloud into a network directly, but they are designed to handle small object classi-
fication and indoor scene segmentation. PointNet extracts point-wise learning 
features, while PointNet++ enriches them by grouping neighbor points for local 
information. However, it does not consider features in global perspective. 

Furthermore, PointNetVLAD [10] uses the NetVLAD [39] block to generate 
global descriptors. Recently, various modifications of PointNetVLAD emerge 
[11] [12]. Specifically, PCAN [11] introduces an attention mechanism into the 
NetVLAD block. However, these methods may ignore the prior information of 
input data. LPD-Net [12] considers using traditional features to enrich input 
data, and adds a graph-based neighborhood aggregation module to improve the 
feature extraction of the network. However, it does not consider the structure 
information such as density and normal in local regions. 

Overall, the existing methods have two main disadvantages: not considering 
both prior structure and latent manifold structure from data manifold. There-
fore, in this paper we propose a traditional feature fusion module for prior 
structure extraction and a Weighted Aggregation with Density Estimation (WADE) 
module for iteratively extracting latent structure, respectively. Our contributions 
include the following three aspects:  
• We fuse point coordinates with handcrafted features and neural network 

learned features to enrich the input information of deep network.  
• We provide an iterative WADE module for local structure encoding. Specifi-

cally, the WADE introduces a weighted density into local points relative rela-
tionships.  

• We conduct experiments on two benchmark datasets Oxford Robotcar [40] 
and KITTI [41] to demonstrate the superiority of WADE-Net over other 
state-of-the-art methods. Our approach exceeds most of the comparison 
methods on the recall rate at least 10% at TOP 1.  

The rest of this paper is organised as follows. In Section 2, we introduce two 
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mostly related methods, and the proposed method is based on their framework. 
In Section 3, our WADE-Net approach is explained in detail. In Section 4, we 
report the comparison results and some ablation experiments. In Section 5, we 
draw the conclusions. 

2. Related Works  

Traditional feature based methods. Usually, handcrafted traditional feature 
extraction is designed according to prior knowledge of human beings. There are 
several works for traditional point cloud feature extraction. Spin image (SI) [27] 
projects 3D points within a cylinder onto a 2D spin image. The 3D shape context 
[17], Point Feature Histogram (PFH) [20] and Signature Histogram of OrienTa-
tion (SHOT) [19] leverage geometric attribution to obtain local features. Fast 
Point Feature Histogram (FPFH) [21] and 3D Scale-Invariant Feature Trans-
form (SIFT) [18] are proposed to extract local point cloud features with lower 
computation cost. Subsequently, Ensemble of Shape Functions (ESF) [22], Nor-
mal Aligned Radial Feature (NARF) [23] and Viewpoint Feature Histogram 
(VFH) [24] are proposed to generate a global descriptor for point cloud repre-
sentation. Multiple 2D Planes (M2DP) [28] projects the 3D point cloud into 
multiple 2D planes and finally generates a descriptor vector. Kim et al. propose 
Scan-Context [5] to separate the whole point cloud into many bins by radius and 
azimuth, and a global feature map is obtained. Yan et al. [42] propose a sparse 
semantic map building method and utilize the semantic map to generate special 
texture features for scene recognition. LiDAR-Iris [25] generates a global de-
scriptor based on a binary signature image obtained from the point cloud. 
DELIGHT [26] leverages LiDAR intensity information and encodes the infor-
mation into a representative descriptor. In conclusion, the traditional feature 
based methods make many contributions to point cloud recognition, but few 
works fuse them into a learning framework. 

Learning feature based methods. Several deep learning based point cloud 
feature extraction methods have been proposed in recent years. 3D ShapeNets 
[29], Vote3Deep [30], VoxelNet [31], 3D Generative Adversarial Network (3D- 
GAN) [32], and Volumetric CNN [33] transform point cloud inputs into regular 
3D gridding or voxel representations, which may cause complex pre-processing 
operations and high computational cost [12]. Multi-View based Convolutional 
Neural Network (MVCNN) [34] and Group-View CNN (GVCNN) [35] project 
3D points into 2D images and use multi-view to analyze point cloud roundly. 

PointNet [36] and PointNet++ [37] have the ability to extract point-wise fea-
tures from a raw point cloud. Inspired by them, networks such as PointCNN 
[43], Frustum Pointnet [44], SO-Net [45] and Splatnet [46] are proposed for 
point cloud feature extraction. 

Furthermore, PointNetVLAD [10] proposes a new point cloud place recogni-
tion method via a global descriptor module. Recently, LPD-Net [12] and PCAN 
[11] improve PointNetVLAD to recognize places efficiently. However, PCAN 
may ignore the prior information of input data and it leads to high cost in the 
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proposed attention module. SeqLPD [4] and LPD-AE [47] utilize LPD-Net as a 
place recognition module to implement environment construction. Moreover, 
[15] projects input point cloud into cylindrical coordinates and converts 3D 
point cloud to 2D image for place recognition. MinkLoc3D [48] uses a 3D fea-
ture pyramid network [49] to extract local features, and then it introduces Ge-
neralized-Mean (GeM) [50] pooling for global descriptor generation. Locus [51] 
considers fusing the segmentation, topological and temporal information for 
point cloud representation. In this paper, we try to enhance the important struc-
ture information, including density and spatial relationship. 

3. Methodology  

For fusing and aggregating meaningful structure and features from point cloud, 
our network framework is composed of three modules: the prior feature fusion 
  (green-dashed block), the iterative WADE   (yellow-dashed block), and 
the global descriptor generation module   (red-dashed block), as shown in 
Figure 2. The network maps the input raw point cloud { }3

1
|

N

n n n
P p p

=
= ∈  

into a high-dimension feature space for place representation. For a certain place 
P∈ , a descriptor ( )P ∈   is generated by  

( )
( ) ( )( )( )
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3.1. Traditional Feature Fusion Module  

In this part, we fuse the point coordinates with handcrafted features and the 
learned features for prior information enhancement (green-dashed block in 
Figure 2). 

The extracted handcrafted features including range value, density feature and 
normal description are shown in Figure 3. 
- Range value 2 2 2

A A A AR x y z= + +  has the capability to record the relative 
distance between the target point ( ), ,A A AA x y z=  and the original of coor-
dinates. 

- Density value can indicate some local distribution information of each point, 

and can be formulated by 
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Figure 2. Network architecture of the proposed method.  
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Figure 3. Traditional handcrafted feature extraction. It is composed of range, density 
and normal vector.  

 
set of neighbor points of the target point, and 

iBd  is the Euclidean distance 
between neighborhood iB  and the target point B (the red point). The near-
er neighbor points are, the larger density value is. 

- Normal vector CN  is depicted in Figure 3(c), which can be approximated 

via ( )1jC j jC CC CC +∈
= ×∑N

 


, where × is the cross product of vector, and 

jC  is the neighboring point. 

We concatenate these three handcrafted features to get the local prior features 
with size 5N ×  in module  , which is different from the local feature extrac-
tion block of LPD-Net [12]. The cross contrast experiments of the two 
handcrafted features are shown in Section 4. 

Simultaneously, we use a two-layer MultiLayer Perceptron (MLP) [52] to ex-
tract learned point-wise features. After concatenating the point coordinate with 
traditional features and the learned features, we get the high dimension features 

{ } 1

N
i i

P p
=

′ ′= . This feature fusion block makes good use of both latent and struc-
ture features. However, due to the non-uniform distribution in a point cloud, the 
significance of the local structure of different points may be different. We need 
some adaptive sampling and weighting during feature integration. 

3.2. WADE Module  

In the iterative WADE module  , we further consider the weighted density 
distribution adaptively for feature extraction and aggregation. Figure 4, the fol-
lowing Sampling and Grouping (SG) operation and Feature Encoding steps de-
scribe the one WADE module.  

1) Sampling and Grouping (SG) Operation. Assuming that the inputs of the 
WADE module are a point cloud inP  with size 3inN ×  and its corresponding 
features inF  with size in inN C× . Notice that the input features of the first 
WADE module is P′ . 

By utilizing Farthest Point Sampling (FPS) [53] we get a sampling subset 

{ }1 2, , , S
S in

N
P p p p P= ⊂  with size 3SN × , as shown in Figure 5. 

Then, for each sampled point S
sp P∈ , the ball query is used to find its K  

neighbor points { }1 2, , , K
s s sp p p  from the input point set inP . For observing 

their relative spatial locations and local geometric patterns, the x-y-z coordinates 

and features of all neighbouring points are grouped as { }1 2, , ,G K
s s s sp p p p=    
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Figure 4. Flow chart of one WADE module. SN  means the number of sampled points. 
K  represents the neighbor number for grouping. inC  and outC  are dimensions of in-
put and output features. 

 

 

Figure 5. Schematic diagram of Sampling and Grouping (SG). SP  is the sampled points 
set, and GP  is the grouped 3D point set. 

 
and { }1 2, , ,G K

s s s sf f f f=   respectively. { }1,2, ,G K=   is the index set of 

neighbourhood point. So, the outputs of SG operation include the grouped 3D 

point set { }
1

SNG G
s s

P p
=

=  with size 3SN K× ×  and its corresponding grouped 

features { }
1

SNG G
s s

F f
=

=  with size S inN K C× × . 

2) Feature Encoding. 
To aggregate the feature concerning density and relative spatial information, 

the grouped point set GP  and its corresponding grouped features GF  are put 
into the following three branches: D-branch, W-Branch and feature aggregation, 
as shown in Figure 4.  

D-Branch. This branch is about the generation of density factor, since it can 
represent the important structure of distribution and is proportional to the sig-
nificance of the sampled point. In Figure 6, for each sampled point S

sp P∈ , 
the Gaussian kernel function is used to calculate the density from the raw point 
cloud P, which is formulated by  

( )
( ) ( )

( )2

23

1 exp ,
22 k

s s

k
s s

s
p ps

p p
d p

hp h ∈

 − = − ⋅ ⋅ π  
 

∑


        (2) 
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Figure 6. Detailed description of D-Branch and W-Branch. 
 
where h is the bandwidth of the kernel function, and ( )k

s sp p P∈ ⊂ . Then 

we normalize the estimated density by ( ) ( ) ( ){ }
1

: max
Kk

s s s k
d p d p d p

=
= . 

After the MLP encoding, we choose sigmoid as the nonlinear activation func-
tion of last layer to compute the density value ( )G

sD p  for each grouped point 
G
sp . The reason for choosing sigmoid is that the generated density factor should 

be close to the binary choice mechanism. Moreover, the reason to use the nonli-
near transform is for deciding adaptively whether to use the density value. Ma-
thematically, The ( )G

sD p  is formulated as  

( ) ( ) ( )( )( )1 ,G K
s s sD p Sigmoid MLP d p d p= ⊕ ⊕

 

where ⊕  is the concatenation operation. So, we obtain the density factor 

( )GD P  with the size 1SN K× ×  for the grouped 3D point set GP . 
W-Branch. Considering that the relative spatial relationships can reflect con-

tributions of one point to the surroundings structure, we learn a position rela-
tion of grouped points. In Figure 6, for every grouped points G

sp , we transform 
neighbor grouped K  points { }1 2, , , K

s s sp p p  into the local coordinate system 
of sp , to get relative local coordinates { }1 2, , , K

s s s s s sp p p p p p− − − . Moreo-
ver, weights ( )G

sW p  are generated by MLP with Relu activation, which is the 
same as other MLPs of the proposed network. The reason for choosing Relu is 
that it helps stabilize the output of network, and it screens parameters of the 
network. Mathematically, for the K  neighbor points { }1 , , K

s sp p , we com-
pute the ( )G

sW p  as  

( ) ( )( )1 ,G K
s s s s sW p Relu MLP p p p p= − ⊕ ⊕ −  

where ⊕  is the concatenation operation. Finally, we can obtain the relative 
spatial factor ( ) ( )G G

s sW P W p= ⊕  with size 32SN K× × , where s⊕  is the 
concatenation operation for all 1, , ss N=  . 

Feature Aggregation. We propose a weighted density based feature aggre-
gation in this block, as shown in the black dashed box of Figure 4. Before fea-
ture aggregation, a weighted density ratio ( )GR P  is acquired by integrating 
the density factor ( )GD P  and spatial relation factor ( )GW P  via point-wise 
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product  

( ) ( ) ( ) ,G G GR P D P W P=                     (3) 

where   is the point-wise product in each group, and the size of ( )GR P  is 
32SN K× × . The details are depicted in Figure 6. 

In the beginning of feature encoding, the grouped feature points GF  is fed 
into the shared MLP to obtain the point-wise feature extraction ( )GMLP F  
with size S inN K C× × , as shown in Figure 4. 

Then, we conduct the feature aggregation via a matrix multiplication between 
the weighted density ratio ( )GR P  and features GF  as follows  

( ) ( ) ,G G GF R P MLP F= ⊗                     (4) 

where ⊗  is matrix multiplication. Furthermore, the output of feature encoding 

( )GMLP F  is generated by one MLP with outC  output channels. 

To get an efficient structure constrained local feature aggregation, we conduct 
the aforementioned WADE module iteratively. Finally, we obtain the output 

from the iterative WADE module { }1 1
, , |

MD
M i i

f f f
=

= ∈ F  with size  

M D× . 

3.3. Global Descriptor and Metric Learning  

Applying NetVLAD block [39], we aggregate the local features into a discrimin-
ative global descriptor for each point cloud. The NetVLAD block will learn cK  

cluster centers { }1 1
, , , | cKD

j j j=
∈c c c    and get their correlations  

{ }, , 1, ,j j cb j K=w   to feature points { }, 1, ,i i M=f   by softmax operation. 
The representation of each cluster center jc  can be expressed as the following 
feature vector  

( ) ( )
T

T
=1

e , 1, ,
e

j i j

j i j

bM

j i j cbi
j

j K
+

+
= − =∑

∑

w f

w f
V f c F             (5) 

where { }jw  and { }jb  are learned weights and biases that determine the con-
tribution of the correlation between feature points and each cluster center jc . 

Then we do intra-normalization of each vector jV  firstly, and concatenate 
them, followed by 2L  normalization to get the global feature vector globalV  
with size cK D× . At last, a fully connected layer is utilized to reduce the dimen-
sion of global descriptor to 512, and then 2L  normalization guarantees that the 
learned global descriptor x  is unit length. 

The learned global descriptor x  represents one point cloud in the descriptor 
space. For recognition assignment, the similarity or dissimilarity of two point 
clouds should be considered, and the metric constraint is chosen. The metric 
constraint can balance the similarity between intra-class and inter-class via trip-
let constraint. The process and purpose of metric constraint can be explained in 
Figure 7. Each mark means the global descriptor of a specific place. Blue disks  
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Figure 7. A simple example showing the goal of metric constraint of the 
whole framework. Each mark means the global descriptor of a specific place. 
The blue disc shape belong to one place, and the green square and yellow 
triangle respectively represent another place. 

 
are similar descriptors, and the green square and yellow triangle are both dissi-
milar with blue disks. Intuitively, a proper metric constraint should make blue 
disks closer and maintain a margin between blue disk and other categories. 
Therefore, a more discriminative metric constraint pushes similar descriptors 
closer, and away from dissimilar ones. 

Generally, a set of triplet tuples from the training dataset is obtained with su-
pervised position information (GPS). We introduce a traditional triplet con-
straint [54] [55] in an intuitive way, denoted:  

( ){ }, , : ,i j k ij ikδ δ= ≤x x x                   (6) 

where ix  is similar to jx , and dissimilar to kx . ijδ  denotes the distance 
between similar samples ix  and jx , and ikδ  denotes the distance between 
dissimilar samples ix  and kx . It means that the distance of samples representing 
different places should be as large as possible, while as small as possible in the 
same place. Traditionally, hinge loss function [56] mainly be used for the triplet 
constraint  

min ,H ij ikα δ δ
+

 = + − ∑


                   (7) 

where [ ]+⋅  is the hinge loss, which means [ ]m m
+
=  if 0m ≥  and [ ] 0m

+
=  

otherwise. α  is the margin value to clear the edge between similar ones and 
dissimilar ones. 

Moreover, due to the complexity of outdoor environment, we introduce Lazy 
Triplet Loss [10] to augment the relation of similarity and dissimilarity. Mathe-
matically, the Lazy Triplet constraint is calculated as  

( ) ( )min max min ,Lazy pos negα δ δ
+

 = + −              (8) 

where max posδ  means the maximum in posδ , min negδ  means the minimum 
in negδ , posδ  is the Euclidean distance between descriptor of query (current 
descriptor) and that of similar place, and negδ  means the distance between cur-
rent and dissimilar one. This loss can learn a more discriminative and robust 
mapping in order to optimize parameters in the network. 
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4. Experiments  

In this section, we evaluate the proposed approach with some traditional and 
deep learning based methods as follows: VFH [24], ESF [22], Scan-Context (SC) 
[5], M2DP [28], PNMAX, PNSTD [36], PNVLAD [10], PCAN [11] and 
LPD-Net [12]. The computer is equipped with an NVIDIA GTX 1080Ti GPU 
with 11GB memory, Xeon(R) CPU E5-2650-v4, 64 RAM. The code is imple-
mented with Ubuntu 16.04 operating system with TensorFlow. For the super 
parameters of our network, we set batch size = 2, 2posn = , 18negn = , margin 

0.5α =  and maximum iteration = 15, which follow the comparison methods. 
The cluster center numbers of VLAD, Kc is set to 32, and the dimension of the 
output global descriptor D is set to 512. All the comparison experiments is tested 
in the same machine, and the input point cloud number is set to 1024 uniformly, 
so the fairness is guaranteed. 

4.1. Benchmark Datasets  

The comparison experiment conducts on two public outdoor large-scale datasets 
Oxford Robotcar dataset [40] and KITTI dataset [41]. The processing of these 
two datasets is described as follows and showed in Figure 8. 

Oxford Robotcar dataset [40]: It includes 21,711 3D point cloud submaps 
made up of point clouds within the car’s 20 m (meters) trajectory for training, 
and 3030 submaps for testing. The data were collected in different seasons, times 
and weathers. For evaluation details, each submap is tagged with a Universal 
Transverse Mercartor (UTM) coordinate. Point clouds are defined as positive 
pairs if they are at most 10 m apart and negative pairs if they are at least 50 m 
apart. In the evaluation process, the retrieved point cloud is regarded as a correct 
match if the distance is within 25 m between the retrieved point cloud and the 
query point cloud. 

KITTI dataset [41]: It captures real-world traffic situations and ranges from 
freeways over rural areas to urban scenes with many static and dynamic objects. 
We choose 11 scenes named KITTI 00 to KITTI 10 for training and testing, since 
they supply accurate odometry ground truth information. For each scene, we 
utilize the reduplicative frames of places that are passed more than twice as test-
ing samples, and other frames as training. Limitation of positive pairs and nega-
tive pairs are set to 5 m and 50 m respectively. On evaluation stage, the relative 
distance of correct match is 5 m and we choose 4 scenarios primarily used by 
researchers for evaluation. The ground points are removed using the method in 
[57]. 

4.2. Evaluation Results  

The evaluation results are given in Figure 9 and Table 1. TOP 1 (@1) represents 
that the similar place of current frame is recognized the first time among candi-
date places. TOP 1% (@1%) means that the correct area is retrieved within 1% 
frame number of current scene. 
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Figure 9 shows that the proposed approach performs better than other net-
works in different datasets. The evaluation curve generated by our approach is, 
on the whole, numerically higher than these comparison ones. In KITTI 06 an 07, 
the advantage of the proposed method cannot be reflected fully because of sim-
plicity of this scene. 
 

 

Figure 8. Datasets visualization and pre-processing. 
 

 

Figure 9. Comparison of the recall rate for different methods. (a) Oxford dataset. (b)-(f) different scenes in KITTI dataset.  
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Table 1. Comparison of retrieval recall rate (%) at TOP 1(@1) and TOP1% (@1%) among different networks. 

 
Recall Rate @1/@1% 

Oxford KITTI 00 KITTI 02 KITTI 05 KITTI 06 KITTI 07 

VFH [24] 6.79/16.19 1.33/1.33 0.0/0.0 0.0/0.0 1.89/1.89 95.00/95.00 

ESF [22] 0.40/41.86 0.0/16.33 79.10/8.21 0.97/14.56 0.38/8.30 10.00/25.00 

Scan-Context [5] 1.45/6.21 0.40/15.01 0.0/5.22 0.0/15.05 0.38/21.89 15.00/85.00 

M2DP [28] 21.21/32.56 0.66/16.20 0.75/7.46 0.73/12.14 1.51/20.00 5.00/25.00 

PNMAX [36] 53.28/74.27 88.98/97.34 57.46/88.81 72.82/90.53 87.17/98.49 85.00/100.0 

PNSTD [36] 46.24/68.39 79.95/98.27 53.73/85.82 66.02/89.81 73.58/96.23 90.00/100.0 

PNVLAD [10] 56.69/76.47 78.20/96.40 44.80/84.30 60.70/78.20 83.80/93.60 90.00/95.00 

PCAN [11] 66.26/81.30 75.30/95.09 52.24/88.06 50.24/85.68 63.77/93.58 85.00/100.0 

LPD-Net [12] 76.62/89.45 94.16/99.07 62.69/91.04 81.07/89.32 93.58/99.62 90.00/100.00 

Ours 82.22/92.66 99.07/99.60 87.31/97.76 95.39/98.30 97.36/100.0 100.00/100.00 

 
Table 1 shows that our approach exceeds most of the comparison ones on the 

recall rate at least 10% at TOP 1 and TOP 1% on Oxford dataset. Compared with 
LPD-Net, we have almost 2% - 3% increase in retrieval results at both TOP 1 and 
TOP 1%. At the comparison experiment in KITTI dataset, our network performs 
much better than the best of the other comparison methods at TOP 1, which 
means that it is more possible to recognize the passing place all at once. What is 
more, at TOP 1%, our network has at least 1% - 2% increase to the best of others. 
Considering that the TOP 1% candidates number has relation with the frame 
number of the outdoor scene, there may be little difference in results at TOP 1%. 

Additionally, Table 1 shows that the first two traditional methods, VFH and 
ESF, cannot perform as well as other learning based approaches. Empirically, 
traditional methods rely on prior knowledge and they may have little ability to 
view surroundings roundly, especially in outdoor environment. For traditional 
place loop detection algorithms, e.g., Scan-Context and M2DP, they do not per-
form well as some other methods. Analytically speaking, the point number of 
each point cloud affects the performance of these two methods. 

4.3. Analysis and Discussion 

Iteration number of WADE module. The proposed WADE module is con-
sidered as a feature extraction layer, and the proposed WADE-Net iterates it for 
obtaining multi-scale features. On account of point cloud number difference, 
parameters of WADE module have different settings in each iteration. 

Table 2 shows the settings in the iterative WADE modules. Parameter N de-
notes the output point number of each iteration in WADE module, r and h de-
note the radius of ball query in grouping operation of SG operation and the 
bandwidth of Gaussian kernel function in Equation (2), respectively, and K is 
the number of neighbor points of   in Equation (2). As Table 2 shows, r, h 
and Cout increase gradually with the point number decreases during each itera-
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tion. It is natural that the query ball radius r should enlarge as the sampled 
number decrease. The change of h aims to keep balance in terms of the range of 
density kernel. The Cout is related to features from different scales as N decreases. 

Moreover, Table 3 illustrates that the WADE-Net can perform the best when 
the iteration number is set to 3. Obviously, as the iteration number increase, the 
evaluation recall rates will decrease. 

Ablation results of different modules. The effectiveness of different modules 
used in our network, i.e., 3D point coordinates, traditional features (TF) and 
iterative WADE module, is described in Table 4. As we can see from rows 1 - 2, 
PNVLAD + WADE performs much better than the baseline method, having av-
erage 9% recall rate increase for most of the data. The rest of rows reflects that 
taking traditional local feature and point coordinates into consideration is rea-
sonable. 

Ablation results of different handcrafted features. Table 5 shows the effec-
tiveness of handcrafted feature extraction strategies used in LPD-Net and the 
proposed method. If the traditional features is replaced by those in LPD-Net, the 
recognition results are worse than ours.  

 
Table 2. Parameters of iterative WADE module in the proposed network. 

Iteration 1 N = 1024, r = 1.0, h = 0.1, K = 32, Cin = 32, Cout = 64 

Iteration 2 N = 512, r = 2.0, h = 0.2, K = 32, Cin = 64, Cout = 128 

Iteration 3 N = 256, r = 4.0, h = 0.4, K = 32, Cin = 128, Cout = 256 

Iteration 4 N = 128, r = 8.0, h = 0.8, K = 32, Cin = 256, Cout = 512 

 
Table 3. The comparison results of the iteration number about WADE module. 

Iterations (Iter) Recall Rate @1/@1% 

Iter1 Iter2 Iter3 Iter4 Oxford KITTI 00 KITTI 02 KITTI 05 KITTI 06 KITTI 07 

√ √   81.37/92.35 98.54/99.60 83.58/96.27 94.17/98.79 97.36/100.0 100.0/100.0 

√ √ √  82.22/92.66 99.07/99.60 87.31/97.76 95.39/98.30 99.25/100.0 100.0/100.0 

√ √ √ √ 81.02/91.69 96.41/99.47 79.10/92.54 88.83/97.09 92.83/100.0 100.0/100.0 

 
Table 4. Ablation results of different modules by retrieval recall rate (%). 

Modules Recall Rate @1/@1% 

PNVLAD WADE 3D Traditional Features Oxford KITTI 00 KITTI 02 KITTI 05 KITTI 06 

√    56.69/76.47 78.20/96.40 44.80/84.30 60.70/78.20 83.8/93.60 

√ √   73.76/87.49 93.76/98.80 67.91/92.54 85.92/96.12 88.68/100.0 

√ √ √  77.44/89.39 95.62/99.07 79.10/92.54 88.83/97.09 92.83/100.0 

√ √  √ 74.92/88.18 95.88/99.47 71.64/92.54 89.08/97.82 92.45/100.0 

√ √ √ √ 81.02/91.69 96.41/99.47 79.10/93.82 89.32/98.79 92.83/100.0 
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Table 5. Comparison on the effectiveness of handcrafted traditional features (TF) extraction part between LPD-net and our me-
thod. 

 
Recall Rate @1% 

Oxford KITTI 00 KITTI 02 KITTI 05 KITTI 06 KITTI 07 

LPD-Net 89.45 99.07 91.04 89.32 99.62 95.00 

LPD-Net + our TF 89.94 99.34 91.79 91.26 100.0 100.0 

Ours + TF of LPD-Net 90.00 99.07 93.28 97.09 100.0 100.0 

Ours 91.69 99.47 93.28 98.79 100.0 100.0 

 
Ablation studies about hyper-parameters. 
Table 6 shows the ablation experiments for the hyper-parameters Kc and D. 

The table illustrates that if the Kc is set 32, and D is set to 512, the WADE-Net 
performs better. 

Moreover, Equation (8) represents the constraint condition to discriminate 
the relationship of descriptors in positive pairs and negative pairs. In order to 
balance the distances of positive pairs and negative pairs, α  is put forward and 
its ablation experiment results are depicted in Figure 10. It shows that it is able 
to get a moderately better result as 0.5α = . In this paper, a strict mechanism is 
considered to focus on the most dissimilar positive sample and the most similar 
sample, so the margin value should be intuitively decreased. The ablation expe-
riment testifies this idea. 

Time and resources consumption. In Table 7, we list the average inference 
time and computational resources among the deep learning based methods. The 
process of inference time represents that the input point cloud in inputted into 
the network and a global descriptor is generated. Parameters in Table 7 means 
the learned parameters w and b in network framework. GFLOPs means 1 billion 
floating-point numbers. The smaller the result value is, the more efficient the 
approach is. 

From Table 7, we can analysis that the parameters and GFLOPs of WADE- 
Net are smaller than the others. However, it does not perform well at the infe-
rence time because the TF and feature fusion module is conducted online and is 
based CPU. 

4.4. Visualization Results 

Figure 11 shows the sampled points of each iteration stage, and the first iterative 
stage (stage 1) has the same point number with the input point cloud. It illu-
strates that the sampling algorithm can keep the scene structure, and the main-
tained points can be considered significant or presenting local relation informa-
tion. 

Figure 12 gives the low dimension manifold visualization of place descriptors 
in the road trajectory from KITTI dataset. Each point of the sub-figure describes 
the global descriptor, and different colors represent different places. Figure 12 
illustrates that the proposed method can generate more discriminative descrip-
tor and retains similar topology structure of the road trajectory. 
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Table 6. Experiment recall results about cluster center number (Kc) and output dimen-
sion of global descriptor (D) in Feature Aggregation Module. 

 Recall rate @1 Recall rate @1% 

D = 256 

Kc = 32 79.58 91.14 

Kc = 48 78.70 91.32 

Kc = 64 79.91 91.29 

D = 512 

Kc = 32 82.22 92.66 

Kc = 48 79.02 90.86 

Kc = 64 79.85 91.33 

 
Table 7. The comparison results of inference time (ms) and computational resources. In 
the comparison methods, the deep learning based approaches are chosen. 

 
Recall Rate @1/@1% 

time (ms) Parameters GFLOPs 

PNMAX 10.26 3.052M 5.291 

PNSTD 10.97 3.306M 5.291 

PNVLAD 11.44 10.584M 6.431 

PCAN 31.73 11.034M 7.545 

LPD-Net 20.29 10.604M 6.859 

Ours 23.10 2.009M 2.453 

 

 

Figure 10. The ablation experiment results in Oxford dataset for the 
margin value α  of loss function.  

 

 

Figure 11. Visualization of the extracted sampled points of each iteration in WADE module in one scene. (a) 
is for one scene in Oxford Dataset. The shown scene id is 2014-11-14-16-34-33 (b) is for one scene in KITTI 
Dataset. The frame id of shown scene is KITTI-02-900. 
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Figure 12. t-SNE visualization of descriptors generated by deep learning methods for KITTI dataset. Every color point in each 
subfigure represents the global descriptor of one frame. Row 1-4 means that visualization of different methods is conducted on 
KITTI 00, 02, 05, 06 respectively. Column 1 is the trajectory of each scene, which is colored by the accurate position of frames. 
Columns 2-7 represent different approaches including ours.  
 

 

Figure 13. Retrieved trajectory map of comparison methods on Oxford dataset. Each 
point of the retrieved trajectory is colored. The darker the color is, the better the recogni-
tion result is.  

 
Figure 13 depicts the retrieved trajectory map of comparison approaches 

mentioned in Figure 12 in Oxford data. Each trajectory point in test region is 
colored and the brightness of the color corresponds to TOP N candidates num-
ber of correct place. For each colored point, the darker the color is, the better the 
recognition result is. This visualization illustrates that our approach gets a more 
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accurate result than most of other comparison methods. When compared with 
LPD-Net, we mark out one local region in LPD-Net and ours. The enlarged re-
gions from Figure 13 show that our approach outperforms LPD-Net. 

5. Conclusion  

In this paper, we have proposed new point cloud representation framework via 
an iterative weighted density aggregation method. It enhances the input prior 
information for traditional feature fusion module. Then the network extracts the 
important structure information, including density and spacial relationship, via 
iterative WADE module. At last, we compare our approach with some off-the- 
shelf methods on two public datasets with different kinds of outdoor scenes. Ex-
periments and visualization results show that our network has competitiveness 
and performs better than the others.  
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