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1. Introduction

Recently, Ahmad et al [1] presented a new fractional integral operator, which is
named fractional integrals with exponential kernels, as follows.
Definition 1.1. Let pe L ([a,b]) . The fractional integrals 1;3(/) and 1;‘240
oforder y€(0,1) are defined respectively by
1 px —H00)
I;}qO(x):; ,© “ e(r)dr, x2y,

and
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Note that

liml;}(p(x):.f;(p(r)dr and Liir}ljggp(x):.[:zgp(r)dr.

Hu—1

In [1], the authors obtained new versions of Hermite-Hadanard inequality
based on this fractional integral operators as follows.

Theorem 1.1. Let ¢: [71:72] — R be a non-negative convex mapping and
0<y,<y,<w. If pel ([;/1,;/2]) , then the following double inequalities
hold:

7+, 1-u u u M
(0( 2 j£2(l—e”)|:[7I+¢(72)+172(p(7/1)}£ > , (1.1)

1
where p:T'u(}/z -7)-

Taking u—1 ie p= 1—_/1(}/2 -7 ) — 0 in Theorem 1.1, we can recapture
U

classical Hermite-Hadamard inequality for a convex function ¢ on [71 , 72] :
+
go(—71+72jﬁ—1 _[lgo(z')dz'ﬁ—(p(yl) (0(72). (1.2)
2 =nt’ 2

This generalized fractional integral operators had attracted the attention of
many scholars. For example, Wu et al. [2] gave three fundamental integral iden-
tities via fractional integrals with exponential kernels to establish several Her-
mite-Hadamard-type inequalities. Zhou et al [3] derived some parameterized
fractional integrals with exponential kernels inequalities for convex mappings.
For more information associated with fractional integrals with exponential ker-
nels see reference in [4] [5].

The concept of m-convex mappings was introduced by Toader in [6]. It is de-
fined as follows.

Definition 1.2. The mapping ¢:[0,7/2] —R, y,>0 is named m-convex
mapping, where m € (0,1] , ifforall k,k, € [0,7/2] and 7€ [O,l] , we have

(p(rkl+m(1—r)k2)Sz’q)(kl)+m(l—r)¢)(k2). (1.3)

Due to the wide applications of m-convex mapping, many authors have estab-
lished various integral inequalities related to m-convex mappings. In [7], Dra-
gomir presented some properties and inequalities for m-convex mappings. In
[8], Jleli et al extended partial results presented in [7] via generalized fractional
integrals. In [9], Farid and Abbas gave some general fractional integral inequali-
ties for m-convex mappings associated with generalized Mittag-Leffer mapping.
For other works involving m-convex mappings, we refer an interseted reader to
[10] [11] [12].

These studies motivated us to establish some fractional integrals with expo-
nential kernels inequalities for m-convex mappings. We considered two forms of
m-convex combination to get certain midpoint type and trapezoid type inequali-

ties. We gave new bounds for these inequalities and laid a foundation for their
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application in numerical integration. Some results of this article would provide

generalizations of those given in earlier works.

2. Main Results

In this part, we mainly establish some fractional integral inequalities based on
the properties of m-convex functions.

Theorem 2.1. Let ¢:[0,00) >R be a m-convex function with m e (0,1]
and 0<y, <my,.If pel [71.my,], then the following inequality exists:

L I/i ) 1#7 : < , , (2.1)
m7/2_71[ n (m}/ )+ my; (7/ ):| )+m¢(7 )]

where & :l_—'u(my2 7).
u

Proof By means of m-convexity of ¢, one has
o(zn+m(1-2)7,)<zp(r)+m(1-7)0(r,)
and
o((1=2)y, +mzy, ) < (1=7)o(3,)+ mro(7,)-
Adding the above inequalities, we deduce
oz +m(1=7)y, )+ o((1-7) 7, +mzy, ) < 0(3,) + mo (). (2.2)

We can obtain the desired inequality by multiplying (2.2) with ¢ ” and then

integrating over [0,1] with respect to dr . Since
jle’& [ Tj/l +m(1—z’)7/2)+¢)((1—r)7/1 +mty, )]dr

—Iegr oy +m(1-1)y, d‘r+_[(0 1 T);/]+mrj/2)d

"

my
1 mys By ) T2

z—.[ e X m”"‘go(x)dx
my, =y, "
1-p XN
1 mys 77(171}/277[)”172_”
+— e “o(x)dx
my, —n L ( )
_ H
a my, =7 |:I:+ (m72)+1’575 (7] ):|
and
: 1-¢”
L Lo(n)+mo(r)Jar =—=—[o () +mo(7)].
This ends the proof.

Corollary 2.1. If we consider m=1 in Theorem 2.1, then we have right part
of inequality (8) in[1].

To obtain trapezoid type inequality related to fractional integrals with expo-
nential kernels, we need the following lemma.

Lemma 2.1. Assuming (p:[j/l,myz]—HR is a differentiable mapping with
0<y,<my,<o and 0<m<1.If ¢'el ([yl,myz]) , then the following iden-
tity holds:
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QUrrs0.0)= 3 g Lo e omli—e) )

_J'e =) o' (77, +m(1-7)y,)dr ]

(2.3)

where é'=1_—'u(m;/2—;/1) and
u
+o(m 1- ,
Q(yl,yz,é',f);:(p(?/l) p(my,)  1-pu |:];:+¢(m7/2)+1:16(p(71):|. (2.4)

2 2(1-¢7)
Proof. Integrating the following formula by parts, we have
Je“ (o7, +m(1=7)y,)dr - Ie 1ng)(17/1+m(l—r)7/2)dr

= p— IO e'&d((p(ryl +m(1-7)y, ))

lmy .[o] e—a(l—r)d((o(fyl +m(1-7)7, ))
2

- _1my2 [e,ﬁr o(z7,+m(1-1)7, )|L —I;(p(ryl +m(1-7)7, )d(e"” )}
1

Y1 —my,

—.[ ry1+m1 ryz)d( 5“’”)]
(e Yo o) oL ol -1
21 1 (2.5)
_5,[0 efé(lff)¢(z'yl +m(1—1)72)d2'}
1

_ (l—e"s)(gz)(Vl)ﬂLfﬂ(m?’z))_(l y)[l” @(my, )+1,:’,2-¢(71)J :
my,

s

[l smtosin,

my,—n

Theorem 2.2. Let ¢ be defined as in Lemma 2.1. If ¢' is m-convex on

Multiplying both sides of (2.5) by , we have the conclusion (2.3).

The proof is completed.

[ Vs m;/z] for some fixed m e [0, 1] , then the following inequality for fractional

integrals with exponential kernels holds:
|Q(7/1,7/2,5,r)| }/25 4! tanh[ j“q) 12 |+m|go 7, H (2.6)

Proof. Applying Lemma 2.1 and convexity of |(p’| , we obtain

|Q(7|372>537)|

< my, =7 _J'
2(1-e )L

<M Th _J'l
2(1-¢?)L>

< my, —n J'Ol

2(1-¢)L

-7 1 -5(1-7)

o' (o7, +m(1-7)y,) e

dr|

o' (o +m(1-1)7,)

~or _ g 001-7) 2.7)

go’(ryl +m(1-7)y, )|dr}

(&

e—&r _ e—ﬁ(]—r)

(Tgp'(yl)+m(l—r)¢7'()/2))dr]
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By calculation, we have

1 —5(1-
Iot‘e_§’ —e )

¢'(rn)dr=—"———0'(n) (2.8)
and

1-2¢ 2 +¢”°

Jym(i=o)fe® e 5

go'(;/z). (2.9)

o' (72)de =m
Utilizing inequality (2.8) and inequality (2.9) in inequality (2.7), we have

|Q(;/1,7/2,5,r)| < %tanh(gjﬂ(p’(y, )| +m|(p'(;/2 )|:|

The proof is completed.

Corollary 2.2. If we consider m=1 in Theorem 2.2, then we can deduce
Theorem 3 in [1].

Theorem 2.3. Let ¢:[0,0) >R be a m-convex function with me (0,1]
and 0<y, <y, . If pel [71,7,], then the following inequality exists.

[l;’.w(n)ﬂ’}rﬂ(n )]

2 Ve

Ya—n

(2.10)
- e*p_ep_"_l e’P_,’_ -1
=)o)
1—
where p =_'u(72 -7).

Proof. By means of m-convexity of ¢, we deduce
(o, +(1—r))/2)Srgo(y/l)+m(1—r)go(;—2j

and
oo+ (1-1)7,)< f¢(72)+m(1-1)¢(%j.

Multiplying above-mentioned inequalities with e™”* and then integrating

over [0,1] with respect to dz , we get

E e o(ry,+(1-7)y,)dr

1-u
—-E(yy-x
”(2 )

<[l {w(%)m(l_f)q{%ﬂdf (2.11)

and
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1 J.yze%(x-ﬂ)
Vo—nh Vo=n "

<[ler {np(;fz)—i-m(l—r)(p(%ﬂdr

—pe” —e’ +1 e’ +p-1
:pTg,(mmp_zpq{ﬁ)

(2.12)

By adding (2.11) and (2.12) together, we have completed the proof.

Corollary 2.3. If we consider u—1 ie. p=—'u()/2 -7)—0 in Theo-
u

rem 2.3, observe that

—pe’ —e’ +1

and
P io—
fim &Pl 1
0 p 2

then we have

: [P o(z)dr<[o(n)+o(r, )]+%{¢(%]+¢(72 ﬂ (2.13)

72—N m

Theorem 2.4. Under the assumptions of Theorem 2.3, if we take
0= IL}/ZT_}/I , then the resulting expression holds:
—H

H 1”¢ 7/1+72 +1”§0 71+}/2
H=nl 2 » 2

(2.14)
—20e -’ +0+1 e’ +0-1 ¥, ¥
< + tm———>/ 0| =L |+o| ||
7 Lo(n)+o(r)] v KA A
Proof.Since ¢ is m-convex, we have
1+7 -7 I+7 1-7 (7,
+ < +m—-uq| = 2.15
<p( ThT nj S o(n)rm— (ﬂ[mj (2.15)
and
1+7 -7 1+7 1-7 (»
+ < +m—-e| —|. 2.16
co( AR nj 5 0(r)rm— w(m) (2.16)

Adding inequality (2.15) and inequality (2.16) together and then multiplying
by e, we get

_or 1+7 1-7 1+7 -7
€| 772 +Tﬂ’1 +o TVHFT%

cor (eprsotremts o 1) 2]
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Integrating on both sides of inequality (2.17) respect to ¢ over [0,1], we
have completed the proof. Since

1 g, I+7 -7 1+7 1-7 d
[ o — Tt Rl Snt ) |de
e (147 -7 U g (147 1-7
= e ¢(772+T%jdr+foe ¢(T7l+772 dr

2 ntry m#non(ntn)2x

_ J‘ 2 g X 2 nmn (o(x)dx

_lepyy-n 2x-(n+n)

+ 27].7722%6 4 2 nn (p(x)dx

_ 2u {,ﬁqo(yﬁn}[ﬂ_w(yﬁnﬂ
o=nlL” 2 2 2
1 o 147 14
.[oe [ P |:¢(71)+§0 72 ]+m 5 |:¢(rrll)+(p(m]}JdT

—20¢’ -’ +6+1 e’ +0-1 y
= Y (¢(71)+¢(72))+’”T{¢[n;j w(mn.

We now use the following two lemmas, which are presented in [13], to obtain

and

some mid-point type and trapezoid type inequalities.
Lemma 2.2. Assuming ¢: [ Vi>Vs ] — R s a differentiable mapping, such that
pel ([;/1, Vs ]) with 0<y, <y, <o, then the following identity holds.

1- ’ :
_2(1_—2‘_0){IW¢(%) Lol )}q’[ 27J

EEal R O L
_J'[*"T_J '—7/1+ 7, |drt.
2 2

Lemma 2.3. Assuming ¢: [71,;/2] — R is a positive convex mapping, such

that pel ([ V1>V ]) with 0<y, <y, <o, then the following identity exists:

e(rn+r) 1-u Iﬁ,(o[%wzjﬂw(n nj
2 2(1—6_6) 72 2 7 2

- I _p; J[(1-7 I+7
=N 7:1 {jo[eg—l]w[T%JrT?/zde (2.19)

(e (e o

Theorem 2.5. Under the assumptions of lemma 2.2, if |go'| is m-convex on

[7.7,] then the resulting expression holds:
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o m

Proof. Applying Lemma 2.2 and the convexity of |(p'| , one has

1—,u “tr
_2(1__69)[1;;”(/;(71) £ wz)] o132
Vo=V | Yo ' r 2-1y
S4 12_6719 {Ue —1|‘¢) 57/1+m 5 ;2)

e 1|‘ +m__j dr}

] 2
< () 9—1|( e

+[ile - [%Iw'(% J+m> (p'(%j
where we use the fact that

or R |
[l ar -

(2.20)
Sﬁ( —1+«9){|¢7 ;/1 |+m

dr

and

_ a0 0 -0 _
J-12 T|e“gr—l|d7: Oe " —¢ +1+e 1+3
° 2 26° 0

After suitable arrangements, we obtain
1- H " " Nt7s
_mllwq’(y Vol o) | ro| T
2 2
]
m

Theorem 2.6. Under the assumptions of Lemma 2.3, if |(p'| is m-convex on

S%(e-g_ne)hﬂ(m%m

This ends the proof.

V1,7, |> then the resulting expression holds.

1572 g
|¢(y1+72)_ 1-u Iﬁ,q)(nwzj”ﬂ(p(% nj
‘ 2 2(1 —ef ) ) 2 n 2

]

Proof. Applying Lemma 2.3 and the convexity of |(p’| , one has

(2.21)
SJ@—:@)( _1+9){|¢ ()<
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il el )
i MGt
Lt en5e o]

e Skt
+f|79’ 1|[ '(n)) +m—‘ j)dr},

Where we use the faCt that
1 T r 1 € - 1 _‘;e —€ + 1
J. ’ 1|

0 0’

dr

/\

Jos

and

-6 1 _p.-b _ b
I11+r 'Hf—l|dr=§+e - 1 —6e 2926 +1'

After suitable arrangements, we obtain

|<0(71+72)_ 1-u IW(%”Z)”‘:(”(%”ZJ
‘ 2 2(1_6*9) 7 2 n 2

(2]

S467(21—:}e/1—0»( —1+9)|:|§0 ]/1 |+m

This ends the proof.

3. Conclusion

In this article, taking different exponential kernels parameters, we established
three fractional integrals inequalities for m-convex mappings. Furthermore, we
constructed a new lemma to obtain Dragomir-Agarwal inequality for m-convex
mappings. We emphasized that certain results proved in this article generalize
and extend parts of the results provided by Ahmad et a/ in [1]. Finally, we gave

mid-point type and trapezoid type inequalities for m-convex mappings.
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