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Abstract 
The assumption of stationarity is too restrictive especially for long time series. 
This paper studies the change point problem through a change point estima-
tor based on the φ -divergence which provides a rich set of distance like 
measures between pairs of distributions. The change point problem is consi-
dered in the following sub-fields: the problem of divergence estimation, test-
ing for the homogeneity between two samples as well as estimating the time 
of change. The asymptotic distribution of the change point estimator is esti-
mated by the limiting distribution of a stochastic process within given bounds 
through asymptotic theory surrounding the likelihood theory. The distribu-
tion is found to converge to that of a standardized Brownian bridge process. 
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1. Introduction 

Many real world data are made up of consecutive regimes that are separated by 
abrupt changes [1]. Statistical research works have shown that with time, the 
underlying data generating processes undergo occasional sudden changes [2]. As 
a result the assumption of stationarity is often too strong and more often vi-
olated. Stationarity in the strict sense, implies time-invariance of the distribution 
underlying the process. The overall behavior of observations can change over 
time due to internal systemic changes in distribution dynamics or due to exter-
nal factors. Modeling time series processes using stationary methods to capture 
their time-evolving dependence aspects will most likely result in a crude ap-
proximation as abrupt changes fail to be accounted for [3]. Reviewed literature 
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reveals that the use of one model may not be appropriate to model a non-statio- 
nary series and as such various parametric and non-parametric change-point es-
timation methods have been proposed [4] [5] [6] [7] [8]. However, they are li-
mited in different ways and their suitability depend on the underlying assump-
tions. A point of interest in all aspects of life would be to detect and estimate this 
changes as their implication is crucial. A time series data containing change 
points is assumed to be piece-wise stationary implying that some characteristics 
of the process change abruptly at unknown points in time. Parametric tests for 
change point are mainly based on the likelihood ratio statistics and estimation 
based on the maximum likelihood method whose general results can be found in 
[4]. In its simplest form, change-point detection is the name given to the prob-
lem of estimating the point at which the statistical properties of a sequence of 
observations change [9]. Changing point problems can be classified as off-line 
which deals with only a fixed sample or on-line which considers new informa-
tion as it observed. Off-line change point problems deal with fixed sample sizes 
which are first observed and then detection and estimation of change points are 
done. [10] introduced the change point problem within the off-line setting. Since 
this pioneering work, methodologies used for change point detection have been 
widely researched on with methods extending to techniques for higher order 
moments within time series data. Change point analysis methods are applicable 
in a wide range of fields including but not limited to climate (climate change), 
quality management, medicine, finance, and genetics. 

For a given set of data 1, , nx x  a change point is said to occur when there 
exists a time 1, , 1nτ ∈ −

 such that the statistical properties of 1, ,x xτ  and 

( )1 , , nx xτ +   are different. If τ  is known then the two samples only need to be 
compared. However, if τ  is unknown then it has to be analyzed through 
change point analysis that entails both detection and estimation of the change 
point/change time. The null hypothesis of no change against the alternative that 
there exists a time when the distribution characteristics of the series changed is 
then tested. Considering a change in model parameters the problem would be 
stated as  

( )0 1 2 0

1 1 1

: unknown versus
:

n

n

H
H τ τ

θ θ θ θ
θ θ θ θ+

= = = =

= = ≠ = =



 

            (1) 

where τ  is unknown and needs to be estimated. 
If nτ <  then the process distribution has changed and τ  is referred to as 

the change point. Assume that there exists ( )0,1λ ∈  such that τ  satisfies  

nτ λ=                             (2) 

i.e. λ  is a fraction that divides the data process at the change point and n is the 
number of observations in a given data set. Then hypothesis 1 can be restated as  

( )
( )

0

1

: , 1

: , 0 1

H n

H n

τ λ

τ λ

= =

< < <
                     (3) 

At a given level of significance, if the null hypothesis is rejected, then the 
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process X is said to be locally piecewise-stationary and can be approximated by a 
sequence of stationary processes that may share certain features such as the gen-
eral functional form of the distribution. With the assumption that change time is 
unknown, [4] gives eight limiting conditions that yields the null distribution of 
the likelihood ratio test statistic as the supremum of a standardized Brownian 
bridge. [11] applied these results within a non-parametric framework and ob-
tained similar results. [12] apply the likelihood ratio test within a parametric 
framework on assumption that data are drawn from extreme value distributions. 
Through assumption of the Von Misses condition, their test statistic weakly 
converges in distribution to the supremum of a squared standardized Brownian 
bridge. 

The rest of this paper is organized as follows: Section 2 gives an overview of 
the change point estimator based on a the φ -divergence. Section 3 provides key 
results for the limit distribution of the divergence based change point estimator, 
Section 4 gives some simulation results and finally Section 5 gives the conclu-
sion. 

2. Single Change Point Detection and Estimation 

The change point problem is addressed by using a ‘distance’ function between 
distributions. Given a distance function, a test statistic is constructed to guaran-
tee a distance (≥0) between any two distributions based on a sample size n. Con-
sider a given parametric model :fθ θ ∈Θ  where Θ  is the parameter space de-
fined on a data set of size n. Let 1, , nX X  be random variables and have proba-
bility densities ( ) ( )1; , , ; nf x f xθ θ  with respect to σ-finite measure µ  with 
( );F x θ  generating distinct measures if θ ∈Θ  
Definition 2.1 (ϕ-divergence). Let 

1
Fθ  and 

2
Fθ  be two probability distri-

butions. Define the ϕ-divergence between the two distributions as 

( ) ( )
1 2 1 2, ,D F F Dφ θ θ φ θ θ=  

The broader family of f-divergences (φ -divergences) take the general form  

( ) ( ) ( )

( )
( )
( ) ( )

( )
( )

1 2 1 2 2

1
2

2

1
2

2

1 2, , d d d

d

,

x

D F F D F F F

f x
f x x

f x

f X
f X

φ θ θ φ θ θ θ

θ
θ

θ

θ
θ

θ

θ θ φ

φ µ

φ φ

= =

 
=   

 
  

= ∈Φ      

∫

∫



            (4) 

where Φ  is the class of all convex functions ( )tφ , 0t >  satisfying ( )1 0φ = . 
To avoid indeterminate expressions at any point 0t = , the following assump-
tions in relation to the functions φ  involved in the general definition of φ
-divergence statistics are given in [13]. 

( )

00 0
0

0 lim
0 u

up
u

φ

φ
φ

→∞

  = 
 

  = 
 

                       (5) 
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Assumption 1. The function [ ) ( ): 0, ,φ ∈Φ ∞ → −∞ +∞  is convex and con-
tinuous. The restriction on [ )0,∞  is finite, twice continuously differentiable with 
( ) ( )1 1 0φ φ′= = , ( )1 1φ′′ = . 
Different choices of φ  result in many divergences that play important roles 

in statistics. ( ) ( )1 2 2 1, ,D Dφ φθ θ θ θ≠  hence divergence measures are not distance 
measures but give some difference between two probability measures hence the 
term “pseudo-distance”. More generally a divergence measure is a function of 
two probability density (or distribution) functions, which has non-negative 
values and takes the value zero only when the two arguments (distributions) 
are the same. A divergence measure grows larger as two distributions are fur-
ther apart. Hence, a large divergence implies departure from the null hypothe-
sis. 

Based on the divergence 4 a change point estimator can be constructed as;  

( ) ( )( ) ( ) ( )1 2
2 ˆ ˆarg max 1 ,
1a b

D Dφτ
λ λ λ θ θ

φ< <
= −

′′
            (6) 

To test for the possibility of having a change in distribution of X it is natural 
to compare the distribution function of the first τ  observations to that of the 
last ( )n τ−  since the location of the change time is unknown. When τ  is near 
the boundary points, an estimation calculated on a correct large number of ob-
servations ( )n τ−  is compared to an estimation from a small number of obser-
vations τ . This may result to an erratic behavior of the test statistic due to in-
stability of the estimators of the parameters [6]. [14] provides the following re-
sult. 

Theorem 1. Suppose that λ  maximizes the test statistic over [ ]0,1  then 
under the null hypothesis, 

[ ]
( ) ( )

[ ]
( )

,1

0,1

1sup

sup

p

p

D O

D
λ ε ε

λ

λ ε

λ

∈ −

∈

= ∀

→∞
                   (7) 

for proof of theorem 1 see [14]. 
If λ  is not bounded away from zero and one the test statistic does not con-

verge in distribution. However, fixed critical values can be obtained for increas-
ing sample sizes when λ  is bounded away from zero and one and yields sig-
nificant power gains if the change point is in Λ . Let 0ε >  be small enough 
such that ( ),1λ ε ε∈ − . 

Suppose there exists constants ,a b  such that the unique maximum likelih-
ood estimates 1 2

ˆ ˆ,θ θ  exist for all a bτ≤ ≤ . Then the test statistic is maximized 
over λ  such that 

( ) ( ) ( )1 21

2 ˆ ˆarg max 1 ,
1n n n

D D
n nτ φε τ ε

τ τ θ θ
φ< < −

  = −   ′′  
          (8) 

where a nε=  and ( )1b nε= −  
The trimming parameter is usually taken to satisfy 0 0.5ε< <  [15]. 
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Let ( ) ( ){ }, 1, , 1N n n nε ε ε ε= + −
 be the set of all values over which the 

test statistic 8 is maximized. A change time τ  is estimated by the least value of 
τ  that maximizes the test statistic 8.  

( ) ( ) ( )1 2
2 ˆ ˆˆ min : arg max 1 ,
1n N

D D
n nτ φε

τ ττ τ θ θ
φ

    = = −    ′′    
        (9) 

with 1̂θ , 2̂θ  being parameter estimates of 1θ  and 2θ  respectively and that they 
are dependent on the change point τ . 1̂θ  represents the parameter estimates 
before the change point and 2̂θ  gives the parameter estimates after the change 
point. The difference between the two estimators 1̂θ , 2̂θ  give an idea of the 
difference between the two samples hence departure from the null hypothe-
sis. 

3. Main Result 

Consider a second order Taylor expansion of ( )1 2
ˆ ˆ,D θ θ  about the true para-

meter values 1 2,θ θ . 
For 1, ,i d=   

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1 2 1 2
1 2 1 2 1 1 2 2

1 11 2
2

1 2
1 1 1 1

1 1 1 1

2
1 2

2 2 2 2
1 1 2 2

2
1 2

1 1
1 1 1 2

, ,ˆ ˆ ˆ ˆ, ,

,1 ˆ ˆ
2

,1 ˆ ˆ
2

, ˆ ˆ

d d

i i i i
i ii i

d d

i i j j
i j i j

d d

i i j j
i j i j

d d

i i
i j i j

D D
D D

D

D

D

φ φ

φ

φ

φ

θ θ θ θ
θ θ θ θ θ θ θ θ

θ θ

θ θ
θ θ θ θ

θ θ

θ θ
θ θ θ θ

θ θ

θ θ
θ θ θ

θ θ

= =

= =

= =

= =

∂ ∂
= + − + −

∂ ∂

∂ ′+ − −
∂ ∂

∂ ′+ − −
∂ ∂

∂ ′+ −
∂ ∂

∑ ∑

∑∑

∑∑

∑∑ ( )

( ) ( )
2 2

2 2

1 1 2 2
ˆ ˆ

j j

o o

θ

θ θ θ θ

−

+ − + −

  (10) 

( )
( ) ( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

( ) ( ) ( )

1 1

2

1

1

1

1 2

1 2

1 1

1

1

1

, 0

,
d

1 d

1 d

1 d 0

i i

i

i

i

D

f x f xD
x

f x

f x
x

f x
x

f x x

θ θφ

θ

θ

θ

θ

θ θ

θ θ
φ µ

θ θ

φ µ
θ

φ µ
θ

φ µ
θ

=

  ∂∂
′=   ∂ ∂ 

∂
′=

∂

∂
′=

∂

∂′= =
∂

∫

∫

∫

∫

               (11) 

This is by assumption 1 and that ( )
1

f xθ  is a pdf. 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )

1 2 1 1
2

2 2 2

2

1 2
2

2 2

2

,

1 1 0
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i

f x f x f x f xD
f x

f x f x f x

f x

θ θ θ θφ
θ

θ θ θ

θ

θ θ
φ φ

θ θ

φ φ
θ

    ∂∂
 ′= −       ∂ ∂    

∂
′= − =

∂

∫

∫

   (12) 
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( ) ( ) ( )
( )

( )
( ) ( )

( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

1 1 1

2 2

1 1

1

1 1

1

2
1 2

1 1 1 1

1 2

1 1
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1 d
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11 d , by assumption 1

1 d

i j i j
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f x f x f xD
x
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x
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θ θ θφ
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θ
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θ

θ θ
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θ θ
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θ θ

µ
θ θ

 ∂ ∂∂
′′=   ∂ ∂ ∂ 

=

∂ ∂
′′=

∂ ∂

∂ ∂
=

∂ ∂

∫

∫

∫

 

( ) ( )
( )

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

2 2 2

1 1

2 2

1

2 2

1

2
1 2

2 2 2 2

2 2

2 2

1 d

11 d

1 d , by assumption 1

i j i j

i j

i j

f x f x f xD
x

f x f x

f x f x
x

f x

f x f x
x

f x

θ θ θφ

θ θ

θ θ

θ

θ θ

θ

θ θ
φ µ

θ θ θ θ

φ µ
θ θ

µ
θ θ

  ∂ ∂∂
′′=   ∂ ∂ ∂ 

∂ ∂
′′=

∂ ∂

∂ ∂
=

∂ ∂

∫

∫

∫

    (13) 

( ) ( )
( )

( ) ( )
( )( )

( ) ( )

( )
( ) ( )

( ) ( )

( )

1 1 2
1

2
2

1 2

1

2
1 2

2
1 2 1 2

1 2

2
1 2

1 1

1 d

11 d

i j j j

j j
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f x f x f xD
f x x

f x f x
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x

f x

D

θ θ θφ
θ

θ θ

θ θ

θ

θ

θ θ
φ µ

θ θ θ θ

φ µ
θ θ

θ θ
θ θ

  ∂ ∂∂
′′= −  ∂ ∂ ∂ 

∂ ∂
′′= −

∂ ∂

 ∂ = − 
∂ ∂  

∫

∫   (14) 

By definition of the Fisher information matrix,  

( ) ( ) ( )

( ) ( )

2 2
1 2 1 2

1 1 2 2

2
1 2

1 2

, ,

,
i j i j

i j

D D
I

D
I

φ φ

φ

θ θ θ θ
θ

θ θ θ θ

θ θ
θ

θ θ

∂ ∂
= =

∂ ∂

∂
= −

∂

                 (15) 

Equation (10) reduces to  

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )
1 1 0 1 1 2 2 0 2 2

2 2

1 1 0 2 2 1 1 2 2

1 1ˆ ˆ ˆ ˆ
2 2

ˆ ˆ ˆ ˆ

I I

I o o

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

′ ′− − + − −

′− − − + − + −
         (16) 

Further,  

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )

1 2 1 1 0 1 1 2 2 0 2 2

2 2

1 1 0 2 2 1 1 2 2

2 2

1 2 0 1 2 1 1 2 2

2 ˆ ˆ ˆ ˆ ˆ ˆ,
1

ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ ˆ

D I I

I o o

I o o

φ θ θ θ θ θ θ θ θ θ θ θ θ
φ

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

′ ′= − − + − −
′′

′− − − + − + −

′= − − + − + −

 (17) 

From Equation (17) we obtain  
( ) ( ) ( ) ( ) ( ) ( )2 2

1 2 0 1 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆn

I o o
n

τ τ
θ θ θ θ θ θ θ θ θ

−  ′− − + − + − 
 

     (18) 
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From 8 and Equations (10)-(18) then the test statistic can be expressed as 

( )

( ) ( ) ( ) ( ) ( ) ( )2 2

1 2 0 1 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆmaxn N

n
D I o o

nτ τ ε

τ τ
θ θ θ θ θ θ θ θ θ

∈

−  ′= − − + − + − 
 

(19) 

Let, 

( )

( ) ( ) ( ) ( )1 2 0 1 2
ˆ ˆ ˆ ˆmax nN

n
I W

n ττ ε

τ τ
θ θ θ θ θ

∈

− ′− − =  

Then,  

( ) ( ) ( ) ( )2 2

1 1 2 2
ˆ ˆmax maxn nN N

D W o oτ ττ ε τ ε
θ θ θ θ

∈ ∈
= + − + −           (20) 

Consider the second and third terms on the RHS.  

( ) ( )
( ) ( )

2

1 1 1 1 1 1

2

2 2 2 2 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ

θ θ θ θ θ θ

θ θ θ θ θ θ

′− = − −

′− = − −
                  (21) 

for n →∞  

( ) ( ) ( ) ( )
2 2

1 1 2 2
ˆ ˆ1 , 1p po o o oθ θ θ θ− = − =             (22) 

The distribution of nD τ  is similar to that of nW τ  since the second and third 
terms of 20 are ( )1po . 

The change point estimator is reduced to a trimmed maximal Wald type test 
statistic. Consider the following conditions [16] [17]. 

(C1) Regularity: Interchanges of derivative and integral operations be valid so 
that,  

( )log ; 0f x θ
θ
∂  = 
∂ 

                     (23) 

( ) ( )
2

2 log ;f x Iθ θ
θ

 ∂
= − 

∂ 
                   (24) 

(C2) for , 1, ,i j d=   

( ) ( )
2

; , ;
i i j

f x f xθ θ
θ θ θ
∂ ∂
∂ ∂ ∂

 

exist almost everywhere such that  

( ) ( ) ( ) ( )
2

; , ;i ij
i i j

f x H x f x G xθ θ
θ θ θ
∂ ∂

≤ ≤
∂ ∂ ∂

 

where 
( ) ( ),d di ijH x G x< ∞ < ∞∫ ∫ 

 

i.e. the first and second partial derivatives of ( );f x θ  with respect to θ  are 
bounded by functions with finite integrals. 

(C3) for , 1, ,i j d=   

( ) ( )
2

log ; , log ;
i i j

f x f xθ θ
θ θ θ
∂ ∂
∂ ∂ ∂

 

exist almost everywhere and are such that the information matrix ( )I θ  exists 
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and is positive definite throughout Θ  and is continuous in θ . Hence 

( ) ( ) ( )1 1 2 1 2I I Iθ θ θ− − −′=  

for some non-singular matrix ( )1 2I θ−  
A positive definite matrix is always non-singular (determinant ≠ 0) and the 

determinant is always positive implying that the matrix is invertible i.e.  
( )1I θ− = Σ  (variance-covariance matrix). 

(C4) There are constants ,a b  such that we can find unique 1 2
ˆ ˆ,θ θ  for each 

a bτ≤ ≤ . 
(C5) There is an open subset 0Θ ∈Θ ⊆   containing 0θ  such that  
( ) ( ); , ; ,1 , ,i ijg x g x i j k dθ θ ≤ ≤  exist and are continuous in θ  for all dx∈  

and 0θ ∈Θ . 
(C6) as 0δ →   

( ) ( )
2 2

2 2
:

log ; log ; 0sup
h h

f x h f x δ
δ

θ θ υ
θ θ≤

 ∂ ∂ + − = → 
∂ ∂  

        (25) 

Theorem 2. Under the null hypothesis and that conditions C1-C6 hold then 
the asymptotic distribution of the test statistic is given by,  

,
D

n pW Sτ ε→                         (26) 

as n →∞ , dimp θ= . where 

[ ]
( )2

,
,1

supp p
t

S B tε
ε ε∈ −

=  

for ( ) ( ) ( )( ) ( )( ) ( )( )
( )1 2

1 21 2

1
1

p p pB t W t W t
t t

 ′=  
 −

 such that ( )pW t  is a p-di- 

mensional Brownian bridge process. 
The following results hold for approximation of the distribution function us-

ing the inverted Laplace transformation, 

( )

( )
( ) ( )

2

1

22
2 2

2

sup

11 2e log 1
2 2

d
t

d
u

P B t u

u d O u
d u u

ε ε

ε
ε

< < −

− −

 ≥ 
 

  −     = − + +     Γ      

     (27) 

for proof of this see [18]. Rather than considering a fixed trimming value ( ε ) for 
all sample sizes, the approach of [4] [11] is followed such that the trimming pa-
rameter is s function of the sample size n. 

Critical Values 

At any given level of significance, the asymptotic critical values of the test can 
then be estimated. Depending on the dimension of the parameter space (d), the 
critical values can be estimated. For a bi-variate parameter space i.e. d = 2, 

( )10%,5%,1%α ∈ , the asymptotic critical values are presented in Table 1 for 
different sample sizes such that { }50,200,500,1000n∈ . 
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Table 1. Asymptotic critical values. 

Sample size 1 α−  CV 

50 
0.90 
0.95 
0.99 

9.954 
11.715 
15.569 

200 
0.90 
0.95 
0.99 

11.115 
12.835 
16.638 

500 
0.90 
0.95 
0.99 

11.676 
13.377 
17.157 

1000 
0.90 
0.95 
0.99 

12.034 
13.725 
17.490 

4. Simulation Study 

In this section change point estimation for the generalized Pareto distribution is 
considered. For any given finite set of data, at least one of the following is likely 
at any given change point τ: ξ changes by a non-zero quantity; σ changes by a 
non-zero quantity; both ξ and σ change by non-zero quantities. A simple change 
point problem can be formulated in the following way;  

( )
( )
( )

0 1 1

1 1 1

2 2

: ~ , : for 1, ,

: ~ , : for

~ , : for

t

t

t

H X GP t n

H X GP t

X GP t

=

≤

>

ξ σ

ξ σ τ

ξ σ τ

                (28) 

where 1 2 1 2,≠ ≠ξ ξ σ σ  
Assumption: This work assumes that both parameters of the GP distribution 

(shape and scale) change at the same time. 
Let ( ) ( )logt t= −φ . The resulting divergence is the Kullback Leibler (KL) di-

vergence. The KL divergence between two GP distributions is given as 

{ } ( ) ( ) 2

1 1ˆ
1 1 2 1

2 1 2
2 1 1 2 1

ˆ ˆ ˆˆ 1ˆ ˆ ˆ; log 1 1 1
ˆ ˆ ˆ ˆ ˆKLD x x

− −
      

= − + + + + +                   
∫

ξσ ξ ξ ξ
θ θ ξ

σ σ σ σ σ
 (29) 

The KL divergence is a function of the parameters of two densities (before and 
after the change point). 

The change point estimator thus becomes 

( ) ( ) ( ), 1 21
2 ˆ ˆmax 1 ;
1n KLnD D

n n< < −

  = −   ′′  
 τ τ

τ τ θ θ
φ

          (30) 

For the simulation study, the following model is considered under the alterna-
tive hypothesis; 

( )
( )

1 : ~ 1,0.1 for

~ 3,0.35 for
t

t

H X GP t

X GP t

≤

>

τ

τ
                 (31) 

The change point τ  is fixed at n/2 for 100,200,500n =  and 1000. For a 5% 
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level of significance the change point is estimated and the results are presented 
in Figures 1-3. The change point process ,nD τ  takes a hill shape with the peak 
being observed at the point where the detected change point lies. To estimate the 
change time, the estimated critical value is superimposed on the graph and the 
change points taken as the maximum value exceeding the critical bound (critical 
value at 𝛼𝛼 level of significance). The estimated time of change is also superim-
posed on the respective plots of the time series data. 

Figure 1 shows the evolution of the change point test statistic on the left panel 
and the time series data on the right panel. The graph of hypothesis testing gives 

{ } 24.86981nD =τ . { } 0.05 12.835nD C> =τ . H0 is therefore rejected and it is con-
cluded that a change point exists in the time series data. The largest divergence is 
estimated at ˆ 88=τ  against the actual true change point ˆ 100=τ . Figure 2 of 
hypothesis testing has { } 18.525111nD =τ . { } 0.05 13.3777nD C> =τ . H0 is there-
fore rejected and a change point is declared in the time series. The largest diver-
gence is estimated at ˆ 245=τ  against the actual true change point of 250=τ . 
Figure 3 has the evolution of the change point process on the top panel and the 
time series data on the bottom panel. 19.42708nD =τ  which rejects H0 at  

5%=α  level of significance. The estimated change point is at ˆ 494=τ  against 
the true change point 500=τ . 
 

 
Figure 1. Change point test process (left panel) and time series data (right panel) for n = 
200 and τ = n/2. 
 

 

Figure 2. Change point test process (left panel) and time series data (right panel) for n = 
500 and τ = n/2. 
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Figure 3. Change point test process (left panel) and time series data (right panel) for n = 
1000 and τ = n/2. 
 

The change point estimator is examined when the true change point is no 
longer located in the middle of the sample size but is fixed towards the boundary 
points at n/3 for n = 200, 500, 1000. The results are shown in Figures 4-6. 

Figure 4 shows the evolution of the change point test statistic on the left panel 
and the time series data on the right panel. The graph of hypothesis testing gives

0.0513.943 12.8358nD C= > =τ . H0 is therefore rejected and it is concluded that a 
change point exists at the respective level of significance. The largest divergence 
is estimated at ˆ 70=τ  against the actual true change point 66=τ . Figure 5 of 
hypothesis testing has 0.0516.7829nD C>=τ . H0 is therefore rejected and a 
change point is declared. The largest divergence is estimated at ˆ 164=τ  against 
the actual true change point of 166=τ . Figure 6 has 14.6752nD =τ  which re-
jects H0 at 5% level of significance. The estimated change point is at ˆ 330=τ  
against the true change point 333=τ . 

The asymptotic power of the change point test is examined. The most com-
monly used criteria for checking the optimality of a statistical test involves fixing 
the false alarm probability (type I error) and maximizing the detection probabil-
ity (minimizing the type II error). The power of the test at a given level 𝛼𝛼 
against a particular alternative is defined as the probability of rejecting the null 
hypothesis when the alternative is actually true. 

( ) ( )1|np P D C H= >τ αα                    (32) 

For power or sample-size computation, not only the distribution of the test 
statistic under the null hypothesis needs to be obtained but also its distribution 
under the alternative hypothesis. This is beyond the scope of this work hence re-
liance on simulation results. nD τ  is estimated for 1000 replicates of simulated 
data using defined sample size 500n = . The behavior of the test as the change 
point approaches the data boundary points is analyzed using the power function 
such that. 
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Figure 4. Change point test process (left panel) and time series data (right panel) for n = 
200 and τ = n/3. 
 

 

Figure 5. Change point test process (left panel) and time series data (right panel) for n = 
500 and τ = n/3. 
 

 

Figure 6. Change point test process (left panel) and time series data (right panel) for n = 
1000 and τ = n/3. 

 

( ) ( )( ) ( )ˆ 1 # 1np D C Nτ αα = + > +                  (33) 

The results in Table 2 indicate that the change point test is most powerful 
when the change point is located at the middle of the data set and less powerful  
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Figure 7. The 95% power function for 500n = . 
 
Table 2. Change point power estimates of the test with n = 500. 

τ  75 150 225 250 300 350 375 

( )p̂ α  0.5894 0.8022 0.9191 0.9250 0.8821 0.7183 0.5395 

 
when the change point is located towards the boundary points. This behavior is 
attributed to comparing an estimate computed from a small sample (say the first 
τ  observations) to one computed from a larger sample (say the last n −τ  ob-
servations). Small sample sizes result to erratic behavior of the test statistic due to 
instability of the parameter estimates. This implies that the test is more likely to 
incorrectly reject a change point when is it located towards the boundary points of 
any given data set (This is shown in Figure 7 that is the power function graph). 

5. Conclusion 

In this work, a divergence based (pseudo-distance) estimator has been used for 
estimating change in the parameters of any given parametric distribution. The 
change-point estimator is the first point at which there is maximal sample evi-
dence of a change characterized by maximum divergence exceeding a critical 
bound. By application of the likelihood standard regularity conditions the dis-
tribution of the pseudo-metric based estimator is found to converge to that 
of a Brownian bridge process on a given interval. The distribution of the pseu-
do-distance based change point process is found to be similar to that of a max-
imal trimmed Wald-type test statistic under the null hypothesis of no change 
point. The distribution does not depend on the choice of the function φ  and 
this is therefore applicable within a parametric framework when using other 
choices of the function φ  for other statistical divergences. Further work can be 
done on the theoretical power properties of this particular change point estima-
tor.  
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