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Abstract 
The paper presents a non-probabilistic approach to the time interval asso-
ciated with the energy emission produced by the electron transition in a 
quantum system. The calculations were performed for the hydrogen atom 
and the electron particle in a one-dimensional potential box. In both cases, 
the rule of conservation of the electron momentum has been applied. The re-
sults, limited to the time intervals of transitions between two neighbouring 
quantum energy levels, occur to be much similar to those obtained earlier 
with the aid of the Joule-Lenz energy emission theory. 
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1. Introduction 

In principle, we assume that some interval of time should accompany any quan-
tum process in which a change of a quantum physical system does occur. In the 
previous approach to such processes, a probabilistic analysis accompanied any 
electron transition phenomenon (see e.g. [1] [2] [3] [4]), leaving unknown the 
corresponding interval, or intervals, of time. In general, such situation did not 
change in the modern quantum theory [5] [6]. 

A different, viz. non-probabilistic situation, took place when the classical 
Joule-Lenz theorem for the energy emission (see e.g. [7]) has been adapted in 
calculating the transition time of an electron between two quantum energy levels 
[8]-[14]. In this case, a very simple rule coupling the distance between two 
quantum energy levels with the size of the time interval for the electron transi-

How to cite this paper: Olszewski, S. 
(2021) Time Intervals of the Energy Emis-
sion in Quantum Systems Obtained from 
the Conservation Rule of the Electron Mo-
mentum. Journal of Modern Physics, 12, 
661-670. 
https://doi.org/10.4236/jmp.2021.125043 
 
Received: March 12, 2021 
Accepted: April 26, 2021 
Published: April 29, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2021.125043
https://www.scirp.org/
https://doi.org/10.4236/jmp.2021.125043
http://creativecommons.org/licenses/by/4.0/


S. Olszewski 
 

 

DOI: 10.4236/jmp.2021.125043 662 Journal of Modern Physics 
 

tion could be found. Nevertheless, the limitations of that rule became rather 
evident. In consequence, an alternative approach to the time interval of the elec-
tron transition seemed to be of use. Such approach is outlined in the next Sec-
tions of the present paper. 

2. Electron Momentum, Its Change and a Use of the Postulate  
Concerning Conservation of the Momentum. The Case of  
the Hydrogen Atom Taken as an Example  

In principle any change of the electron energy, say obtained in effect of the elec-
tron transition between two quantum levels, can be associated with a corres-
ponding change of the electron momentum. By taking into account the bound 
electron states of the hydrogen atom, the state n of the energy is given by [15] 
[16] 

( ) 2
kin ,

2
n

n n
mE E v= − = −                        (1) 

where the first equation in (1) is due to the virial theorem  
( ) ( )
kin pot2 0n nE E+ =                          (2) 

in result of which the total electron energy of the atom equal to a sum of the ki-
netic and potential parts becomes  

( ) ( ) ( )
tot kin pot .n n n

nE E E E= + =                       (3) 

The electron velocity entering (1) is [17]  
2

n
ev
n

=


                            (4) 

and the electron momentum in state n becomes  

.n
np mv=                            (5) 

Another approach to np  can be obtained from the quanta of the electron 
angular momentum  

2 2 2

2 .n n n
me nL mv r n
n me

= = =






                (6) 

which holds because  
2 2

2n
nr
me

=
                            (7) 

is the radius of the electron circular orbit in the hydrogen atom [17]. 
A final result for the quanta of energy in (1) is  

4

2 22n
m eE

n
= −



                          (8) 

and the energy change  

1n nE E E+∆ = −                           (9) 

due to the change of the quantum state is equal to  
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( )
( )

( ) ( )

2 24 4 4 4

2 2 2 2 2 2 2 2 32 2

11 1 1 .
2 21 1

1 2
1

n nm e m e me n meE
n nn n n n n

  + − +
∆ = − = = ≅ 

+ + +     

(10) 

The last step in (10) is valid on condition n is a large number. 
Respectively to (9) we have the momentum change  

( )
2 2 2

1
2

1 1 1
1 1

n n n me me mep p p
n n n n n

+  ∆ = − = − = − ≈ − + +   

    (11) 

which provides us evidently with a smaller electron momentum in state 1n +  
than in state n. 

If the momentum in states 1n +  and n should be conserved, the negative 
difference in (11) has to be compensated by the momentum supplement result-
ing from the orbit change, viz.  

1 ,n n nr r r+∆ = −                         (12) 

in effect of which we obtain the momentum change  

( ) ( )2 2 22 2 2
1

2 2 2 2

1 2 1 2 .n n n n nr r r m n nm m
t t t me me te te

+
 + +∆ −

= = − = ≈ 
∆ ∆ ∆ ∆ ∆  

 

 

   (13) 

We postulate that the sum of (11) and (13) has to be zero, so  

0n
n

r
p m

t
∆

∆ + =
∆

                       (14) 

or  
2 2

2 2

2 0.me n
n te

− + =
∆




                      (15) 

It should be noted that the momenta balance postulated in (15) concerns 
solely the momenta values and not directions of the vectors. The requirement in 
(15) gives  

2 2

2 2

2me n
n te

=
∆




                        (16) 

from which  
3 3

4

2 .nt
me

∆ =
                         (17) 

This t∆  is a time interval necessary to provide us with a conservation of 
momentum represented by the formula (14).  

3. Comparison with the Joule-Lenz Law [8]-[14]  

According to that law the time interval  
( )JLt∆                             (18) 

should approximately satisfy the formula  

( ) ( )
4

3 ,JL JLmeE t t h
n

∆ ∆ = ∆ =


                  (19) 
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where the interval E∆  is taken from (10). In virtue of (19) we have  

( )
3 3

4

2 .JL nt
me
π

∆ =
                       (20) 

In result we find that the Joule-Lenz emission time (20) differs from the time 
interval obtained in (17) solely by the factor of π .  

4. Time Interval Connected with the Absorption of Energy  
Compared with the Time of the Emission Process  

Both the absorption and emission processes are of a semiclassical nature. There-
fore if in case of absorption we have a change of quantum indices  

1n n→ +                           (21) 

the result for the time interval t∆  becomes equal to that for the case of emis-
sion between the levels  

1n n+ →                           (22) 

A different situation can be obtained when the emission change of states  

1n n→ −                           (23) 

is compared with the absorption change which is for example  

1.n n→ +                           (24) 

In the case of (23) we have the momentum balance given by the condition  

( )

( ) ( )

2 22 2
1 1

2

2 2

2

11 1
1

1 2 1 0
1

n n n n n nr r mep p m m
t n n t me

me m n
n n t me

− − − −−  − + = − + ∆ − ∆ 

= + − + =
− ∆









     (25) 

from which we obtain the equation  

( ) ( )
2 2

2

1 2 1
1

me m n
n n t me

= −
− ∆





                  (26) 

or  

( )( )
3 3

3
4 42 1 1 2emt t n n n n

me me
∆ = ∆ = − − ≅

              (27) 

where the last step holds for the large n. 
On the other hand, for the absorption process in (24), we have the balance  

( )

( )

2
21 2

2

2 2

2

1

1 1 2 1 0
1

n n mp p n n
t me

me m n
n n t me

+  − + + − ∆
 = − + + = + ∆ 







             (28) 

from which  

( ) ( )
2 2

2

1 2 1
1

me m n
n n t me
−

= − +
+ ∆





                 (29) 
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or  

( )( )
3 3

3
4 42 1 1 2 ,abst t n n n n

me me
∆ = ∆ = + + ≈

               (30) 

where the last step holds for the large n. 
Evidently  

( )( ) ( )( )
3 3

2
4 42 1 1 2 1 1 6 .abs em
nt t n n n n n

me me
∆ −∆ = + + − − − =  

       (31) 

For large n the difference (31) becomes only a small fraction of t∆  in (27) or 
(30).  

5. Electron Particle Moving in a One-Dimensional Potential  
Box and Its Transition Process  

A reasoning similar to that developed for the electron in the hydrogen atom can 
be applied also in case of the electron particle moving in a one-dimensional po-
tential box. 

Let the box has the length L. The electron quantum states for the energy are 
[18]  

2 2
2

2 28n n
n h mE v
mL

= =                       (32) 

or  
2

2
n

n
p

E
m

=                         (32a) 

where nv  are the electron velocities:  

2n
nhv
mL

=                         (33) 

and np  are the electron momenta  

.
2n
nhp
L

=                         (33a) 

The electron can have the momenta in both motion directions along the box, 
so np  in (33a) can have both positive and negative values. Let the energy emis-
sion produces the difference of momenta equal to that in the states n and 1n − . 
This difference becomes:  

1 .
2n n n
hp p p
L−∆ = − =                    (34) 

Due to the momentum conservation the difference (34) should be cancelled 
by the momentum  

2Lm
t∆

                          (35) 

where t∆  is the time interval of the electron motion along the box length, first 
from zero to L, next from L to zero. This implies  
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2
n

L v
t
=

∆
                           (36) 

which is the velocity of the particle. This velocity has been obtained from the 
electron energy in the formula (33). 

The momentum balance provides us with the equation  

2 0n
Lp m
t

−∆ + =
∆

                        (37) 

which gives  

2
2n n
h Lp m mv
L t

∆ = = =
∆

                     (38) 

where the last step is due to (36). 
From (38) we obtain the relation for t∆ :  

22 2 42
n

L mL mLt L
v nh nh

∆ = = =                     (39) 

identical to that calculated from [19]:  

2 2

n n n n

q L Lt
E p p m v
∆

∆ = = =
∂ ∂

                   (39a) 

because the distance 2q L∆ = . This result can be compared with the formula 
represented by the Joule-Lenz law, viz.  

.E t h∆ ∆ =                            (40) 

Since E∆  in (40) becomes for a free particle  

( )22 2 2
2

1 2 2 2

1 2
8 8 4n n

n n nh nhE E E h
mL mL mL−

− −
∆ = − = ≈ =             (41) 

we obtain from (41) the time interval  
2 2

2

4 4 .h mL mLt h
E nhnh

∆ = = =
∆

                    (42) 

This is a result identical to t∆  in (39) and (39a). 

6. Size Limits of Mechanical Parameters Entering Simple  
Quantum Systems 

Conservation of momentum suggests to calculate the limits of mechanical para-
meters like energy, velocity, distance and time entering the examined simple 
quantum systems. These limits can be obtained in an equally simple way. 

Beginning with the hydrogen atom, the relativistic limit of the electron veloc-
ity leads to requirement  

2

11n n

ev v c
=
= = <



                      (43) 

which gives 

21 137.c
e

< ≅


                        (44) 
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A limit for the absolute value of the electron energy is represented by the for-
mula  

( )
2 4

1 21
1 kin 22 2

n mv meE E mc== = = <


                 (45) 

which gives the relation  
4

2
2 .

2
e c<


                           (46) 

This relation is equivalent to the formula  
2 2

2
4

21 2 137 .c
e

< ≅ ⋅
                       (47) 

The result in (47) is an extension of that presented in (44). 
The properties connected with the radius limit of the electron orbit which for 

the quantum number 1n =  is equal to  
2

1 2nr r
me

= =
                         (48) 

can be deduced from the virial theorem  

kin pot2 0.E E+ =                        (49) 

This gives the largest negative size of the electron potential energy equal to  

( ) ( )
2

1 1
pot kin

1

2n neE E
r

= == − = −                     (50) 

coupled with the largest kinetic electron energy value. From (50) we have the re-
lation  

( )
2

1 2
kin 1

1

2 .ne E mv
r

== =                       (51) 

Since 1v c<  we obtain  
2

2

1

e mc
r
<                          (52) 

or  
2

1 2 .er
mc

>                         (52a) 

By taking into account (48), we obtain from (52a):  
2 2

2 2

e
me mc

>
                         (53) 

according to which 
4

2 2 2

11 .
137

e
c

> ≅


                      (54) 

There remains still the condition satisfied by the time interval t∆  of the 
electron transition. We have the formula  
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( )2 2
2 2

1 2 2

1 2 1
n n n

n n nr r r
me me+

+ − +
∆ = − = =              (55) 

which gives the change of the radius of the electron orbit. For two neighbouring 
quantum numbers, n and 1n + , we have  

,n
n

r
v

t
∆

= ∆
∆

                         (56) 

where the velocity change satisfies the condition:  

( ) ( )
2 2 2 2 2

2

1 1
1 1n

e e n n e e ev c
n n n n n

+ −
∆ = − = ≈ < <

+ +    

        (57) 

where the last steps hold for any large n. An alternative formula for the last step 
in (57) is:  

2

1 .
ce

>


                          (58) 

We obtain  
2 3 3

2
2 2 4

2 1 2 .n

n

r n n nt
v me e me
∆ +

∆ = = ≈
∆

 

               (59) 

For very low n, say 1n = , relation (59) for t∆  becomes  
3

4 2

3 3t
me mc

∆ = >
                        (60) 

on condition (58) does hold. 
A similar reasoning can be performed for the electron particle moving in a 

one-dimensional potential box. In the first step, from the requirement that the 
kinetic energy on the quantum level 1n =  is smaller than the rest energy of the 
electron particle, we obtain the formula:  

22 2
21

1 2

1
28n

mvhE mc
mL= = = <                   (61) 

which gives the requirement  
2

1
12 .v c<                         (62) 

Therefore, with the aid of the first equation given in (61), we obtain:  

2
1

12 .
2

hv c
mL

= <                      (63) 

In effect it should be  

3 2 .
2

h L
mc

<                         (64) 

The limits obtained for L and 1v  can provide us with the size of the interval 
t∆  according to the formula  

1 2 ,tv L∆ ≅                           (65) 

so a maximal size of the interval t∆  for the electron oscillation in the box be-
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comes:  
2

1

2 2 2 4 .L L mL mLt
v h h

⋅
∆ ≅ = =                  (66) 

Another approach applies L calculated in (64) and 1v  in (63):  

21 1
1

2 2

2 1 .
2 2 2

L h ht
v mc c mc

∆ ≅ ≅ ⋅ =                (67) 

7. Summary  

In the paper, the transition time between the nearest quantum energy levels is 
examined for the case of the Bohr hydrogen atom and the electron particle en-
closed in a one-dimensional potential box. In both cases, the calculations are 
based on the assumption that the electron momentum in course of the electron 
transition is conserved. 

It is found that the time intervals of the electron transitions obtained in this 
way are much similar to those calculated on the basis of the Joule-Lenz law for 
the energy emission: in the case of hydrogen, a difference between the results of 
both kinds is represented by a constant factor π ; for the electron particle mov-
ing in a one-dimensional potential box there exists an identity of the results for 

t∆  calculated in both ways. The limiting sizes of the mechanical parameters 
characterizing the quantum states in the systems considered in the paper have 
been also calculated. 

It should be noted that the electron transition time t∆  considered in the pa-
per does not correspond, in general, to the reciprocal time of the frequency 

,n q nν +  joining the energy difference of two quantum states n qE +  and nE  by 
the formula  

,
,

.n q n n q n
n q n

hE E h
T

ν+ +
+

− = =                   (68) 

Only for the case of  

1q =                             (69) 

we have proved the formula  

1, ;n nT t+ = ∆                           (70) 

see [8] [9] [10] [11]. 
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