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Abstract 
We present solutions of the Schrodinger equation with superposition of 
Manning-Rosen plus inversely Mobius square plus quadratic Yukawa poten-
tials using parametric Nikiforov Uvarov method along with an approxima-
tion to the centrifugal term. The bound state energy eigenvalues for any an-
gular momentum quantum number l and the corresponding un-normalized 
wave functions are calculated. The mixed potential which in some particular 
cases gives the solutions for different potentials: the Manning-Rosen, the 
Mobius square, the inversely quadratic Yukawa and the Hulthén potentials 
along with their bound state energies are obtained. 
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1. Introduction 

The Schrödinger wave equation is primarily considered as one of the most 
commonly used differential equations in non-relativistic quantum mechanics [1] 
[2] [3]. However, since the early times of quantum mechanics, the exact solu-
tions of the Schrödinger equation with some particular physical potentials are of 
much interest. Such solutions provide profound conceptual understanding to 
physical models and certainly lead to a strong judgment supporting the correct-
ness of quantum theory. The exact solutions of central and non-central poten-
tials find their applications in various branches of physics such as molecular, 
solid-state and chemical physics [4] and so forth. Our choice for the real poten-
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tial gives the bound state energy eigenvalues and wave functions of the 
Schrödinger wave equation that might describe essentially the particle dynamics 
in non-relativistic quantum mechanics. Moreover, these solutions are used in 
checking and try to improve models under study and then also finding methods 
in solving complicated physical models. 

Since the early times of quantum mechanics the number of exactly solvable 
physical problems is very limited. Several authors have paid many efforts toward 
studying the exactly solvable physical problems by which one can determine the 
whole energy spectrum analytically for wide range values of potential parameters 
[5]. Therefore, in most of these potentials, the quasi-exactly solvable potentials 
are the ones that provide a part of the energy spectrum [6]. 

Recently, various methods are introduced and employed in quantum me-
chanics in solving the wave equations with a particular given solvable potential. 
We mention few among the many methods: the group theoretical technique [7], 
the factorization method [8] [9], functional analysis approach (FAA) [10], su-
persymmetric (SUSY) quantum mechanics [11], shape invariance (SI) [12], the 
Nikiforov-Uvarov (NU) method [13], exact quantization rule [14] [15] and asymp-
totic iteration method (AIM) [16]. 

The Manning-Rosen, the quadratic Yukawa and the Mobius square potentials 
have been intensively considered and studied in non-relativistic and relativistic 
wave equations in recent years [17]-[27]. Therefore, the main motivation of the 
present work is to give approximate solution to the non-relativistic Schrödinger 
equation with the superposition of Manning-Rosen plus inversely Mobius 
square plus Yukawa potential models. Hence we need to treat the centrifugal 
term with Greene-Aldrich approximation to enable for analytical solution of the 
Schrödinger equation for any angular momentum quantum number l. This 
would provide us the bound state energy spectrum for any angular momentum 
quantum number l and the corresponding wave functions by simply applying 
the parametric Nikiforov-Uvarov (pNU) method. 

The structure of the present work is as follows. In Section 2, we present the 
brief methodology. In Section 3, we apply this method to derive the bound state 
energy and wave functions for the Schrödinger equation with the present poten-
tial model. Section 4 presents our results and discussion. Finally, in Section 5, we 
give our conclusion. 

2. Methodology 

The Nikiforov-Uvarov (NU) [13] method is an efficient tool which is usually 
used to reduce the second-order differential equation into a general form of a 
hypergeometric type. In that sense, any second order differential equation, i.e. 
Schrödinger, Fienberg-Horodecki [28] [29] [30] [31], relativistic Dirac, Klien-Gordon 
equation, etc., can be transformed, using a suitable coordinate transformation s 
= s(t), into the form:  

( ) ( )
( ) ( ) ( )

( )
( )2 0,n n n

s s
s s s

s s
τ σ

ψ ψ ψ
σ σ

′′ ′+ + =
 

              (1) 
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where ( )sσ  and ( )sσ  are polynomials, at most second-degree, and ( )sτ  is 
a first-degree polynomial. The method is noted to be tiresome and time-consuming. 
Therefore, Tezcan and Sever [32] derived a parametric form of the NU method 
to popularize the method more. The parametric NU method is straightforward, 
simpler and more accurate for the determination of the energy eigenvalues and 
the corresponding eigenstates. To apply the parametric NU method, the diffe-
rential equation must be set into the general form given by [33]  

( ) ( ) ( )
( )

( )
2 2
1 2 31 2

22
3 3

0,
1 1

n n n
s sss s s

s s s s
γ γ γα α

ψ ψ ψ
α α

− + −−′′ ′+ + =
− −

         (2) 

The conditions for the energy eigenvalues and the corresponding eigenstates 
are, respectively, given as  

( ) ( ) ( )( )2
2 3 3 5 9 3 8

7 3 8 8 9

2 1 2 1

2 2 0,

n n n nα α α α α α α

α α α α α

− + − + + + +

+ + + =
        (3) 

( ) ( ) ( ) ( )
11

10 10
12 13 3 312

1, 1/
3 31 1 2 ,n nl ns N s s P s

α
α αα α α ααψ α α
 

− − −  − −  = − −       (4) 

where  

( )4 1
1 1 ,
2

α α= −                        (5) 

( )5 2 3
1 2 ,
2

α α α= −                       (6) 

2
6 5 1,α α γ= +                         (7) 

7 4 5 22 ,α α α γ= −                       (8) 

2 2
8 4 3 9 3 7 3 8 6, ,α α γ α α α α α α= + = + +               (9) 

10 1 4 82 2 ,α α α α= + +                    (10) 

( )11 2 5 9 3 82 2 ,α α α α α α= − + +               (11) 

12 4 8 ,α α α= +                       (12) 

( )13 5 9 3 8 ,α α α α α= − +                   (13) 

where nlN  is the normalisation constant and ( ),
nP β γ  is the orthogonal Jacobi 

polynomial. 

3. Solution of the Schrödinger Equation with Two Molecular  
Potential Models 

The Schrödinger equation in spherical coordinates is given as [33]  

( )

( )

2 2
2

2 2 2 2 2

1 1 1sin , ,
2 sin sin

, , ,

r r
r rr r r

E r

θ ψ θ φ
µ θ θθ θ φ

ψ θ φ

 ∂ ∂ ∂ ∂ ∂   − + +    ∂ ∂ ∂ ∂ ∂    
=



  (14) 

where   is the reduced Plank constant, µ  is the reduced mass, E is the ener-
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gy eigenvalues, and ψ  is the wave function of the particle. If we define the 
wave function as  

( ) ( ) ( ), , , ,nl
lm

R r
r Y

r
ψ θ φ θ φ=                  (15) 

the radial part of Schrödinger equation is given by  

( ) ( )( ) ( ) ( )
2

2 2 2

d 12 0,
d

nl
nl

R r l l
E V r R r

r r
µ + 

+ − − = 
 

          (16) 

where n and l are the radial and the angular momentum quantum numbers, re-
spectively. 

We shall solve the Schrodinger equation for the following two molecular po-
tential models:  

3.1. Combination of Manning-Rosen Plus Mobius Square Plus 
Quadratic Yukawa Potentials 

The general potential is given as [34] [35] [36]  

( )
( )

22
1

02 2

ee e e ,
1 e1 e

rr r r

rr

VC D A BV r V
r

αα α α

αα

−− − −

−−

   + + = − − +   −   − 

       (17) 

where 0 1, , ,C D V V  are potential parameters and α  is the screening parameter. 
It is obvious that Equation (16) cannot be solved analytically due to the qua-

dratic Yukawa and the centrifugal terms. However, this can be addressed using 
the Green-Aldrich approximation [37]  

( )
2

2 2

1 e .
1 e

r

rr

α

α

α −

−
≈

−
                      (18) 

Substituting Equation (17) into Equation (16) and using Equation (18) with 
e rs α−=  one obtains Equation (2), where  

( )2 2 2
1 0 12 2

2 ,E D V B Vµγ α
α

− = + + −


               (19) 

( ) ( )2 02 2

2 2 2 1 ,C ABV E l lµγ
α

= + − − +


             (20) 

( )2
3 02 2

2 .E V Aµγ
α

= − +


                   (21) 

Comparing Equation (38) with the parameters Equations (5) to (13), one gets 

1 2 3 4 5
11, 0, ,
2

α α α α α= = = = = −                  (22) 

( )2 2
6 0 12 2

1 2 ,
4

E D V B Vµα α
α

= − + + −


                (23) 

( ) ( )7 02 2

2 2 2 1 ,C ABV E l lµα
α

= − + − − +


              (24) 

( )2
8 02 2

2 ,E V Aµα
α

= − +


                     (25) 
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( ) ( )( )2 2 2
9 0 12 2

1 22 1 ,
4

l C D A B V Vµα α
α

= + − + + + −


         (26) 

( )2
10 02 2

21 2 ,E V Aµα
α

= + − +


                 (27) 

( ) ( )( )

( )

2 2 2
11 0 12 2

2
02 2

1 82 2 2 1
2

2 ,

l C D A B V V

E V A

µα α
α

µ
α


= + + − + + + −




+ − + 






      (28) 

( )2
12 02 2

2 ,E V Aµα
α

= − +


                     (29) 

( ) ( )( )2 2 2
13 0 12 2 2 2

1 1 8 22 1 .
2 2

El C D A B V Vµ µα α
α α

 
= − − + − + + + − + − 

  

(30) 

Substituting the values of the parametric constants Equations (22) to (30) into 
Equations (3) and (4), respectively, one gets the energy eigenvalues and the cor-
responding unnormalized radial eigenstates as  

( ) ( ) ( ) ( )( )
2

2 2 02 2
2

0

1 21 1 1 2
2 ,

2 1 2nl

n n l l n T C V A A B
E V A

n T

µ
α α
µ

 + + + + + + − + + 
= − −  

+ + 
  



  (31) 

and 

( ) ( ) ( ) ( )33 2 ,e 1 e 1 2e ,Tr r r
nl nl nr N P

β γα γ α αψ − − −= − −           (32) 

where  

( ) ( )( )2 2 2
0 12 2

82 1 ,T l C D A B V Vµ α
α

= + − + + + −


          (33) 

( )2
3 02 2

2 ,E V Aµγ
α

= − +


                     (34) 

and 3
1

2
Tβ γ+

= − . 

3.2. Combination of Manning-Rosen Plus Quadratic Yukawa  
Potentials 

The Manning-Rosen plus quadratic Yukawa potential is given by [34] [35]  

( )
( )

2
1

2 2

ee e ,
1 e

rr r

r

VC DV r
r

αα α

α

−− −

−

 
+ = − +

 −  

                 (35) 

where 1, ,C D V  are potential parameters and α  is the screening parameter. 
Substituting Equation (35) into Equation (16) gives  

( )
( )

( ) ( )
2 2

1
2 2 2 2 2

d 1e2 e e 0.
d 1 e

rr r
nl

nl
r

R r l lVC DE R r
r r r

αα α

α

µ −− −

−

    ++   + + − − =     −    


  (36) 

https://doi.org/10.4236/jamp.2021.94052


M. Farout et al. 
 

 

DOI: 10.4236/jamp.2021.94052 741 Journal of Applied Mathematics and Physics 
 

Substituting Equation (18) in Equation (36) leads 

( )
( ) ( )

( )
( )

( )
2 22 22

1
2 2 2 2 2

d 1 ee2 e e 0.
d 1 e 1 e 1 e

rrr r
nl

nl
r r r

R r l lVC DE R r
r

ααα α

α α α

ααµ −−− −

− − −

    ++   + + − − =     − − −    


(37) 

Now, changing of variables using e rs α−=  to transform the equation to the 
form of Equation (2), one obtains  

( ) ( ) ( )
( )

( )
2 2
1 2 3

22

1 0,
1 1

nl nl nl
s ssR s R s R s

s s s s
γ γ γ− + −−′′ ′+ + =

− −
         (38) 

where 

( )2 2
1 12 2

2 ,E D Vµγ α
α

− = + −


                    (39) 

( ) ( )2 2 2

2 2 1 ,C E l lµγ
α

= − − +


                   (40) 

3 2 2

2 .Eµγ
α

= −


                           (41) 

Comparing Equation (38) with the parameters Equations (5) to (13), one gets 

1 2 3 4 5
11, 0,
2

α α α α α= = = = = −                   (42) 

( )2
6 12 2

1 2 ,
4

E D Vµα α
α

= − + −


                   (43) 

( ) ( )7 2 2

2 2 1 ,C E l lµα
α

= − − − +


                  (44) 

8 2 2

2 ,Eµα
α

= −


                          (45) 

( ) ( )2 2
9 12 2

1 22 1 ,
4

l C D Vµα α
α

= + − + −


                (46) 

10 2 2

21 2 ,Eµα
α

= + −


                       (47) 

( ) ( )2 2
11 12 2 2 2

1 8 22 2 2 1 ,
2

El C D Vµ µα α
α α

 
= + + − + − + − 

  

       (48) 

12 2 2

2 ,Eµα
α

= −


                        (49) 

( ) ( )2 2
13 12 2 2 2

1 1 8 22 1 .
2 2

El C D Vµ µα α
α α

 
= − − + − + − + − 

  

      (50) 

Substituting the values of the parametric constants Equations (42) to (50) into 
Equations (3) and (4), respectively, one gets the energy eigenvalues and the cor-
responding unnormalized radial eigenstates as 

( ) ( ) ( )
2

2 2 2 2
1 21 1 1
2 ,

2 1 2nl

Cn n l l n T
E

n T

µ
α α
µ

 + + + + + + − 
= −  

+ + 
  



         (51) 
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and 

( ) ( ) ( ) ( )33 2 ,e 1 e 1 2e ,Tr r r
nl nl nr N P

β γα γ α αψ − − −= − −           (52) 

where 

( ) ( )2 2
12 2

82 1 ,T l C D Vµ α
α

= + − + −


               (53) 

3 2 2

2 ,Eµγ
α

= −


                          (54) 

and 3
1

2
Tβ γ+

= − . 

3.3. Special Cases 

To get special cases some parameters should be set to zero. The first case is 
Manning-Rosen plus Mobius square which can be obtained by setting 1V  to 
zero and the energy eigenvalues will be  

( ) ( ) ( ) ( )( )
2

2 2 02 2
2

0

21 1 0.5 1 2
,

2 1 2nl

n n l l T n C AV A B
E V A

n T

µ
α α
µ

 + + + + + + − + + 
= − −  

+ + 
  



  (55) 

where 

( ) ( )( )2 2
02 2

82 1 .T l C D A B Vµ
α

= + − + + +


            (56) 

The second case is Maning-Rosen plus quadratic Yukawa potential which can 
be obtained by setting 0V  to zero. The eigenvalues obtained are as follows  

( ) ( ) ( )
2

2 2 2 2
21 1 0.5 1

,
2 1 2nl

Cn n l l T n
E

n T

µ
α α
µ

 + + + + + + − 
= −  

+ + 
  



        (57) 

where 

( ) ( )2 2
12 2

82 1 ,T l C D Vµ α
α

= + − + −


               (58) 

which is the same results as in (51) and (53). 
The third case is Mobius square plus inversely quadratic Yukawa potential, 

which results from substituting 0C D= =  in (17). The eigenvalues resulting 
from substituting these parameters in (55) are given by [38]  

( ) ( ) ( ) ( )( )
2

2 2 02 2
2

0

1 21 1 1 2
2 ,

2 1 2nl

n n l l n T V A A B
E V A

n T

µ
α α
µ

 + + + + + + − + 
= − −  

+ + 
  





(59) 

where 

( ) ( )( )2 2 2
0 12 2

82 1 .T l A B V Vµ α
α

= + − + −


            (60) 
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The fourth case is Manning-Rosen which can be obtained by substituting 

1 0 0V V= =  and the resulting eigenvalues are given as  

( ) ( ) ( )
2

2 2 2 2
1 21 1 1
2 ,

2 1 2nl

Cn n l l n T
E

n T

µ
α α
µ

 + + + + + + − 
= −  

+ + 
  



       (61) 

where 

( ) ( )2
2 2

82 1 ,T l C Dµ
α

= + − +


                 (62) 

which agrees with the results in [39] and [40]. 
The fifth case is Mobius square potential which can be obtained by substitut-

ing 1 0C D V= = = . The eigenvalues resulting are given by [19]  

( ) ( ) ( ) ( )( )
2

2 2 02 2
2

0

1 21 1 1 2
2 ,

2 1 2nl

n n l l n T V A A B
E V A

n T

µ
α α
µ

 + + + + + + − + 
= − −  

+ + 
  





(63) 

where 

( ) ( )( )2 2
02 2

82 1 .T l A B Vµ
α

= + − +


              (64) 

The sixth case is inversely quadratic Yukawa potential which can be obtained 
by setting 0 0C D V= = =  and the eigenvalues produced are given by [41]  

( ) ( ) ( )
2

2 2
11 1 1
2 ,

2 1 2nl

n n l l n T
E

n T
α
µ

 + + + + + + 
= −  + + 

 

          (65) 

where 

( )2 1
2

8
2 1

VT l µ
= + +



                     (66) 

The seventh case is the Hulthèn potential which can be obtained by substitut-
ing D C= −  in the Manning-Rosen Potential and the resulting potential will be 
[42]  

( ) e
1 e

r

r

CV r
α

α

−

−= −
−

                     (67) 

and the eigenvalues obtained by substituting the parameters in (31) will be 

( ) ( ) ( )( )
( )

2

2 2 2 2
1 21 1 1 2 1
2 ,

2 2 1nl

Cn n l l n l
E

n l

µ
α α
µ

 + + + + + + + − 
= −  

+ + 
  



    (68) 

which is the same results as in [43] and [44]. 
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4. Numerical Results and Discussion 

In this work, we have studied the solution of the Schrödinger wave equation 
with two sets of potentials. Here we tend to explain our results by commenting 
on the plotted Figures. In Figure 1, we showed the variation in the vibrational 
energy levels against the screening parameter α . It is noted that as α  in-
creases, the energy levels of the system decrease monotonically from zero. It is 
equally seen that rotational energy levels of the system decrease as the screening 
parameter increases as shown in Figure 2. Figure 3 shows the energy states de-
crease as the principal quantum number increases for various values of the 
screening parameter. 

Figure 4 indicates the variation of the vibrational energy levels against the 
strength parameter D. A decrease in the strength D results in an increase in the 
energy. Moreover, as the potential strength D decreases beyond some value it 
results in a sharp decrease in the energy. 

In Figure 5, we examined the variation in the energy against the potential 
strength V1. It is seen that the energy of the system decreases monotonically 
from zero as the potential strength increases for various values of n. A reverse 
case is shown in Figure 6 when energy is plotted against the potential strength C. 
It is obvious that when a particle is subjected to this system, the particle exhibits 
different features of V1 and C for various values of screening parameters; namely, 

0.1α = , 0.2α = . and 0.3α = . However, when the strength parameter C gets a 
large value, the energy drops sharply for 0.1α = . 
 

 
Figure 1. The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen 
plus quadratic Yukawa potential vs α  for different values of n. 1 0.5 eVV = , 5 eVD = − , 

0.5 eVC =  and 0l = . 

 

 

Figure 2. The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen 
plus quadratic Yukawa potential vs α . 1 0.5 eVV = , 5 eVD = − , and 0.5 eVC =  for 

1n =  ( 0l = ), 2n =  ( 0l = , 1l = ), and 3n =  ( 0l = , 1l = , 2l = ). 
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Figure 3. The quantized energy eigenvalues of Schrödinger equation with Man-
ning-Rosen plus quadratic Yukawa potential vs n. 1 0.5 eVV = , 5 eVD = − , 0.5 eVC =  
and 0l =  for different values of α . 
 

 

Figure 4. The quantized energy eigenvalues of Schrödinger equation with Man-
ning-Rosen plus quadratic Yukawa potential vs D. 1 0.5 eVV = , 0.1α = , 0.5 eVC =  
and 0l =  for different values of n. 
 

 

Figure 5. The quantized energy eigenvalues of Schrödinger equation with Man-
ning-Rosen plus quadratic Yukawa potential vs 1V . 5 eVD = − , 0.1α = , 0.5 eVC =  
and 0l =  for different values of n. 
 

 

Figure 6. The quantized energy eigenvalues of Schrödinger equation with Man-
ning-Rosen plus quadratic Yukawa potential vs C. 5 eVD = − , 1 0.5 eVV = , 0n =  and 

0l =  for different values of α . 
 

Figure 7 shows a plot of the variation in the energy against the strength pa-
rameter C for various values of n. It is seen that the energy decreases as the 
strength parameter C increases. It is equally seen that the vibrational energy of 
the system decreases as the screening parameter increases for various values of n 
as shown in Figure 8. A similar behavior to Figure 8 appears for the rotational 
energy levels when plotted against the screening parameters are shown in Figure 
9. 
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Finally, Figure 10 shows the decrease of vibrational energy levels as the 
quantum number n increases for various values of screening parameter α . 
 

 

Figure 7. The quantized energy eigenvalues of Schrödinger equation with Man-
ning-Rosen plus quadratic Yukawa potential vs C. 5 eVD = −  1 0.5 eVV = , 0.1α =  
and 0l =  for different values of n. 
 

 

Figure 8. The quantized energy eigenvalues of Schrödinger equation with Manning- 
Rosen Mobius square plus quadratic Yukawa potential vs α . 5 eVD = − , 1 0.5 eVV = , 

0.5 eVC =  and 0l =  for different values of n. 
 

 

Figure 9. The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen 
Mobius square plus quadratic Yukawa potential vs α . 5 eVD = − , 1 0.5 eVV =  and 

0.5 eVC =  for different values of n. 

 

 

Figure 10. The quantized energy eigenvalues of Schrödinger equation with Manning-Rosen 
Mobius square plus quadratic Yukawa potential vs n. 5 eVD = − , 1 0.5 eVV = , 0.5 eVC =  
and 0l =  for different values of α . 
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5. Conclusion 

In this work, we have analytically solved the non-relativistic wave equation with 
the combination of three important potentials via the parametric Nikifo-
rov-Uvarov method. We have obtained the energy equation and the corres-
ponding non-normalized wave functions of the combination set of Man-
ning-Rosen plus Mobius square plus quadratic Yukawa potential and their sub-
set of potentials. We have obtained in detail the energy eigenvalues and the cor-
responding wave function for subset of potentials. These results could find their 
applications in atomic as well as molecular physics. The effects of the strength 
parameters as well as screening parameter on the vibrational and rotational 
energy levels were also studied. 
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