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Abstract 
In this article, our proposed kernel estimator, named as Gumbel kernel, 
which broadened the class of non-negative, asymmetric kernel density esti-
mators. Such kernel estimator can be used in nonparametric estimation of the 
probability density function (pdf). When the density functions have limited 
bounded support on [0, ∞) and they are liberated of boundary bias, always 
non-negative and obtain the optimal rate of convergence for the mean inte-
grated squared error (MISE). The bias, variance and the optimal bandwidth 
of the proposed estimators are investigated on theoretical grounds as well as 
on simulation basis. Further, the applicability of the proposed estimator is 
compared to Weibull kernel estimator, where performance of newly proposed 
kernel is outstanding. 
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1. Introduction 

To investigate the properties and features of data or in anomaly detection, den-
sity estimation performs a vital role. For this purpose, the nonparametric kernel 
density estimation or curve estimation is a famous technique. Nonparametric es-
timation has certain advantages over parametric estimation, e.g. the problem of 
priori distribution choice, possibility of using non-homogenous data, no func-
tional form and the most important is allocation of weights, etc. [1]. In nonpa-
rametric density estimation, boundary bias is a very serious issue. It affects the 
performance of the estimator at boundary points due to boundary effects, then 
from the interior points. Such problem is happened; when smoothing is carried 
out near the boundary and fixed symmetric kernel allocate weights outside the 
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density support. That’s why in some cases, parametric method for curve estima-
tion performs better than nonparametric estimation [2]. Such problem is hap-
pened when variables represent some sort of physical measure such as time or 
length. These variables thus have a natural lower boundary, e.g. time of birth, 
etc. So, when smoothing is carried out near the boundary and then fixed, sym-
metric kernels allocate weights outside the density support and due to this, boun-
dary bias arise [3]. 

There is a vast literature on removing boundary effects in nonparametric me-
thod. As yet there appears to be no single dominating solution that corrects the 
boundary problem for all shapes of densities. Some common techniques are ref-
lection of data, introduced by Schuster [4]. Similarly, Silverman [5] proposed 
negative-reflection. Eubank and Speckman [6] suggested semi-parametric mod-
el. Chen [7] suggested the solution of this problem by replacing the symmetric 
kernels by the asymmetric Bata kernel which never assigns weight outside the 
support. Many others used Chen’s idea and proposed other kernels, i.e. Gamma 
[8], lognormal [9], Inverse Gaussian [10], Weibull [11], etc. 

By following Chen [7], we are going to propose a new class of density esti-
mator named as a Gumbel kernel estimator along with its bias, variance and 
optimal bandwidth, which will be the keen addition in category of asymme-
trical kernel(s) that solve the problem of boundary bias. The Gumbel distribu-
tion is a particular case of the Generalized Extreme Value (GEV) distribution, 
and also known as the log Weibull or Fisher-Tippett distribution. GEV is a fam-
ily of continuous probability distributions which combines the Gumbel, Fre-
chet and Weibull families and also known as type I, II and III extreme value 
distributions. The common functional form for all 3 distributions was discov-
ered by McFadden [12]. 

This paper is organized as follows. In the first Section, we present some in-
formation about kernel smoothing and in Section 2 we presented the proposed 
kernel. In third Section, we investigated the bias, variance and optimal band-
width of the Gumbel kernel estimator. The performance of the proposed esti-
mator will be tested via real and simulated data sets in Section 4, while Section 5 
concludes. 

2. Gumbel Kernel Estimator 

Let 1, , nX X  be a random sample from a distribution with an unknown 
probability density function f which has bounded support on [0, ∞). Representa-
tion of pdf of Gumbel (µ, β) is 

( ) ( )e1 e
zz

f j
β

−− +
= , 0j > ,                      (1) 

where jz µ
β
−

=  and 0β > . The mean and variance of J are equal to µ βγ+  

and 
2 2

6
β π , where 0.5772γ ≈  is the Euler-Mascheroni constant.  

https://doi.org/10.4236/ojs.2021.112018


J. A. Khan, A. Akbar 
 

 

DOI: 10.4236/ojs.2021.112018 321 Open Journal of Statistics 
 

As xµ =  and 
1
2s h= , the class of Gumbel kernel considered is: 

( )1
2

e

Gumbel ,

1 e .
j x j x

h h

x h

K j
h

−  − −
− +     

 
 
  
 

=                 (2) 

where h is bandwidth satisfying the condition that 0h →  and nh →∞  as 
n →∞ . If a random variable X has a pdf ( )1

2,Gumbel x h

K x 
 
  
 

, then ( )E X x hγ= +  

and the variance is ( )
2

var
6

hX π
= . 

The corresponding estimator of pdf is 

( ) ( )1
2

1
Gumbel 1

Gumbel ,

ˆ n
ii

x h

f X n K X−
 =
 
  
 

= ∑ .              (3) 

This estimator is easy to use and similar to following kernels for comparison: 
Gamma 1 and Gamma 2 kernels by Chen [7] are; 

( ) ( ) { }
{ }1 1, 1

exp
Γ 1

x b

Gam x b b x b

y y b
K y

x b b+ +

−
=

+
,                (4) 

and 
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where 
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[ )

( ) [ )2

if 2 , ;
1 1 if 0,2 .
4

b

x b x b
x

x b x b
ρ

 ∈ ∞
= 

+ ∈

               (6) 

Beta kernel by Chen [7] is; 

( ) ( ) ( )( )

( ){ }
1

1,1 1

1
1, 1 1

x bx b

B x b x b

y y
K y

B x b x b

−

+ − +

−
=

+ − +
,            (7) 

where, B is Beta function. 
Birnbaum-Saunders and Log-Normal kernels by Jin and Kawczak [9] are; 

( ) ( )1 2 32,

1 1 1exp 2
22BS b x

x y xK y
xy b x yybπ

    
= + − − +         

,     (8) 

and  

( )( ) ( )
( )

( )
( )

2

ln ,4 ln 1

ln ln1 exp
8ln 18 ln 1LN x b

y x
K y

bb yπ+

 −
= − 

+ +  
      (9) 

Inverse Gaussian and Reciprocal Inverse Gaussian kernels by Scaillet [10] are; 

( ) ( ),1 3

1 1exp 2
22

IG x b
y xK y

bx x ybyπ

  
= − − +  

  
,          (10) 
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and 

( )( ) ( )ln ,4 ln 1

1 exp 2
22RIG x b

x b y x bK y
b x b ybyπ

  − −
= − − +  −  

      (11) 

Erlang kernel by Salha, et al. [13] is; 

( )
1

1

1,

1 1 1 11 exp 1
11

b
b

h

E x
b

yK y y
x b x b

b

+

 
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 
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       (12) 

Weibull kernel by Salha, et al. [11] is;  

( ) ( ) ( ) ( )
1 11

1,

1 1 1
exp

b b

w x
b

b y b y b
K y
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−
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      (13) 

3. Bias, Variance and Optimal Bandwidth 

Theorem 1 (Bias) 
The bias of proposed estimator is given by; 

( ){ } ( ) ( ) ( )
2

Gumbel
1ˆBias 1
2 6

f x
f x h f x o

h
γ π′ 

′′= + + 
 

         (14) 

Proof:  

( )( ) ( ) ( ) ( )( )1
2

Gumbel
0 Gumbel ,

ˆ d ,i x
x h

E f x K X f x x E f ξ
∞

 
 
  
 

= =∫  

where xξ  follows a Gumbel distribution with scale parameter 
1
2h  and shape 

parameter x. 
The Taylor expansion about xµ  for ( )xf ξ  is: 
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Theorem 2 (Variance) 
The variance of the proposed estimator is given by: 

( )Gumbel 1
2

1ˆvar ( )
2 2

2

h hf x x f x
h

γ γ  
= + +      

            (15) 

Proof: 
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Let xη  be a Gumbel 
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Optimal Bandwidth 
To proceed for optimal bandwidth, initially Mean Squared Error (MSE) and 

Mean Integrated Squared Error (MISE) are derived as; 
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As we know Mean square errors for Gumbel kernel estimator is  

( ) ( ) ( )
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We can approximate MISE to be: 
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To find optimal bandwidth, now we minimize Equation (16) with respect to h, 
so we have 
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Setting (17) equal zero yields an optimal bandwidth opth  for the given pdf 
and kernel: 

( ) ( )

2
2 32

4 d
12

d
2 2

opt

hf x f x x
h

h hx f x x

πγ

γ γ

−
  
 ′ ′′+    =    + +     
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∫
 

4. Applications 

In this section, the performance of the proposed estimators in estimating the pdf 
is observed through real life data as well as by simulation study. 

4.1. Suicide Data Example 

We take suicide data given in Silverman [5] to inspect the performance of new 
developed kernel. The data gives the lengths of the treatment spells (in days) of 
control patients in suicide study. 

We used the logarithm of the data to draw Figure 1 using data driven band-
width, named as normal scale rule (NSR) by Silverman [5]. The NSR is given by; 

1
50.79 ,NSRh Rn

−
=                     (18) 

where R is inter-quartile range, which results in 0.4894. It can be observed that 
Gumbel kernel performed very well, especially near end points and free of boun-
dary bias. 
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4.2. Flood Data Example 

Further, we used the flood data given in Gumbel [14], to exhibit the practical per-
formance of the Gumbel estimator. The data give the discharge per second of the 
Rhone River (Europe).  

Here fixed bandwidth which is 1,000,000, is used. Figure 2 shows that the 
performance of new proposed kernel estimator, which is acceptable.  

4.3. Simulation Study 

In this section we wish to investigate the finite sample properties of the two asym-
metric kernel estimators; Gumbel and Weibull, which belong to family of ex-
treme value distributions. The experiments are based on 1000 random samples 
of length 53 243n = = , 486n =  and 972n = . For each simulated sample and 
each estimator considered, mean squared errors (MSE) are reported in Table 1, 
for extreme value distributions, namely Frechet, Weibull and Gumbel distribu-
tions and various parameter values by using bandwidth given as [8]. 
 

 
Figure 1. The Gumbel kernel estimator for the suicide data. 

 

 

Figure 2. The Gumbel kernel estimator for the flood data. 
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Table 1. Mean square errors. 

 Gumbel Weibull 

n = 243 

Gumbel (3, 1) 0.0017 0.0054 

Gumbel (10, 1) 0.0026 0.0213 

Gumbel (100, 1) 0.0013 0.0279 

Frechet (3, 1, 1) 0.0009 0.0086 

Frechet (5, 1, 1) 0.0015 0.0140 

Frechet (10, 1, 1) 0.0006 0.0098 

Weibull (25.713, 1) 7.0497e−05 0.0001 

Weibull (76.318, 1) 8.9387e−06 6.8821e−06 

Weibull (350.832, 1) 1.0607e−06 2.0332e−06 

n = 486 

Gumbel (3, 1) 0.0007 0.0034 

Gumbel (10, 1) 0.0015 0.0127 

Gumbel (100, 1) 0.0009 0.0342 

Frechet (3, 1, 1) 0.0006 0.0071 

Frechet (5, 1, 1) 0.0008 0.0074 

Frechet (10, 1, 1) 0.0011 0.0126 

Weibull (25.713, 1) 9.7541e−05 0.0006 

Weibull (76.318, 1) 8.4365e−06 7.2863e−06 

Weibull (350.832, 1) 4.7844e−07 5.0882e−07 

n = 972 

Gumbel (3, 1) 0.0010 0.0021 

Gumbel (10, 1) 0.0014 0.0137 

Gumbel (100, 1) 0.0012 0.0241 

Frechet (3, 1, 1) 0.0006 0.0056 

Frechet (5, 1, 1) 0.0005 0.0052 

Frechet (10, 1, 1) 0.0005 0.0074 

Weibull (25.713, 1) 8.5902e−05 0.0007 

Weibull (76.318, 1) 8.1771e−06 5.4514e−06 

Weibull (350.832, 1) 4.15146e−07 3.1866e−08 

 
Here in Table 1, variety of randomly selected location parameter (small/me- 

dium/large) is examined with constant scale parameter. We may observe that the 
Gumbel kernel estimator performs better than Weibull kernel estimator un-
animously almost for all density estimates with all different parameters and dif-
ferent sample sizes. For both Gumbel and Weibull kernel, MSEs decreased as 
sample size increased. In graphical representation, we present Gumbel kernel 
with real density. It can be examined in Figure 3 that the performance of the  
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Figure 3. The Gumbel kernel estimator of the density functions with different distribu-
tions. (where solid line shows the real density and other line represents the density esti-
mated by Gumbel kernel). (a) Gumbel (3, 1) (b) Frechet (3, 1, 1) (c) Weibull (25.713, 1). 
 
Gumbel estimator is acceptable at the boundary near the zero with different 
densities. In the interior, the behavior of the pdf estimator becomes more similar 
as we get away from zero in any extreme value distribution case. 

5. Conclusion 

In this paper, we have proposed a new kernel estimator for probability density 
functions for (iid) data [0, ∞), namely Gumbel kernel. Such densities are en-
countered in a wide variety of applications to describe extreme wind speeds, sea 
wave heights, floods, rainfall, age at death, minimum temperature, rainfall dur-
ing droughts, electrical strength of materials, air pollution problems, geological 
problems, naval engineering etc. [4]. Gumbel kernel is free of boundary bias, 
non-negative, with natural varying shape. We showed that the bias depends on 
the smoothing parameter h and the estimated point x, and it goes to zero as h → 
0, also it gets smaller for the values of x closed to zero. The variance of the new 
proposed kernel estimator was investigated, and we noticed that it depends also 
on h and x. On the other hand, it goes to zero as h → 0, and gets large at the val-
ues of x close to zero.  

In addition, the performance of the proposed estimators is tested in three ap-
plications. In a simulation study, we used different densities of GEV distribution 
and compared it with Weibull (Extreme value distribution III) kernel estimator 
on basis of MSE. We observed that the performance of the proposed estimator is 
excellent, and gives a smaller MSE. Additionally, by using real data examples, we 
exhibited the practical performance of the new estimator. 

From the above discussion, it can be concluded that one of the reason for 
adaptation of nonparametric method was to control the allocation of weights at 
boundary points. But boundary bias is still present if symmetrical kernels are 
used for curve estimation. In this situation, best alternative is to use asymmetric-
al kernel and Gumbel kernel is finest selection than Weibull kernel, compara-
tively. 
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