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Abstract 
Using the method of Laplace transform, analytical expressions are derived for 
the time periodic pulse electroosmotic flow (EOF) velocity of the triangle and 
sawtooth of Maxwell fluid in circular microchannel. The solution involves 
analytically solving the linearized Poisson-Boltzmann (P-B) equation, togeth-
er with the Cauchy momentum equation and the general Maxwell constitu-
tive equation. By numerical computations of inverse Laplace transform, the 
effects of electrokinetic width K, relaxation time 1λ  and pulse width a on the 
above several pulse EOF velocities are investigated. In addition, we focused 
on the comparison and analysis of the formulas and graphs between the tri-
angle and sawtooth pulse EOF with the rectangle pulse EOF. The study found 
that there are obvious differences in formulas and graphs between triangle 
and sawtooth pulse EOF with rectangle pulse EOF, and the difference mainly 
depends on the different definitions of the three kinds of time periodic pulse 
waves. Finally, we also studied the stability of the above three kinds of pulse 
EOF and the influence of relaxation time on pulse EOF velocity under differ-
ent pulse widths is discussed. We find that the rectangle pulse EOF is more 
stable than the triangle and sawtooth pulse EOF. For any pulse, as the pulse 
width a increases, the influence of the relaxation time on the pulse EOF ve-
locity will be weakened. 
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1. Introduction 

Microfluidic devices have become increasingly more important because of their 
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application in micro-electro-mechanical systems (MEMS) and microbiological 
sensors (such as lab-on-a-chip) [1] [2]. In general, when most substances come 
into contact with polar solutions, they tend to generate negative charges on the 
surface. The distribution of ions near the wall in the solution will be affected by 
this phenomenon. The opposite ions with the opposite polarity to the wall will 
be attracted to the wall, while the same ions will be repelled away from the wall. 
In this way, an electric double layer (EDL) will be formed [3]. Further, when an 
external electric field is applied to both ends of the channel, the ions in the elec-
tric double layer will move under the force of the electric field. This is due to the 
viscosity of the fluid itself, the moving free ions will drive the movement of 
nearby fluid clusters, and eventually form an electro-osmotic flow (EOF). 

In previous research, a large number of theoretical and experimental studies 
[4]-[9] on the fully developed EOF problem of Newtonian fluids in various geo-
metric shapes of microchannels have been completed. However, this steady EOF 
problem requires higher voltage and larger field strength, which may bring many 
difficulties to the experimental conditions. Very recently, time-dependent EOF 
as an alternative mechanism of microfluidic transport has attracted the attention 
of scholars at home and abroad [10]-[15]. 

All of the above-mentioned studies are related to Newtonian fluids. But most 
of solutions of industry and biopharmaceutical are fluid that has the structural 
characteristic of non-Newtonian fluids, such as biological fluid and other solu-
tions of long-chain molecules, which structural characteristics include strain 
force, normal shear stress, hysteresis effect, variable viscosity, memory effect and 
so on [16]. Therefore, the study of non-Newtonian fluids becomes very impor-
tant. Additionally, the theoretical research of electroosmotic flow of non-Newtonian 
fluids is mainly limited to simple fluid models because of the inherent analytical 
difficulties introduced by more complex constitutive equation [17]. So far, some 
work has been done on the simple fluid models, for example Oldroyd-B fluid 
model [18] [19] [20], Power-law fluid model [21] [22] [23], Maxwell fluid model 
[24] [25] [26] [27] and Jeffrey fluid model [28] [29] [30]. 

Although some basic characteristics of EOF of non-Newtonian fluids have 
been reported in the above studies, its rich properties still need to be examined. 
Recent study have shown that Maxwell fluid model simulation of blood in nar-
row conical vessels has achieved an ideal effect, and it is completely possible to 
analyze the blood-based microfluidics and other microbial fluid transmission 
systems by means of electric mechanism [30]. At the same time, the literature 
[31] shows that low-frequency pulses can promote local blood circulation, which 
has been proved in clinical medical research. Thus, the study of Maxwell fluid 
pulse EOF will play a very beneficial role in blood transport. 

However, from the current research situation, there is almost no research on 
pulse EOF, and it has not attracted enough attention from the majority of re-
searchers. Therefore, based on the rectangle pulse EOF, we have re-selected sev-
eral common pulses (such as triangle pulse and sawtooth pulse) to study the 
time periodic pulse EOF of Maxwell fluid through a circular microchannel in 
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present work. The target of this article is to derive the semi-analytical solutions 
of the above two time periodic pulse EOF for viscoelastic fluid. Meanwhile, we 
analyzed the effect of several parameters such as the electrokinetic width, the re-
laxation time and the pulse width on the pulse EOF of Maxwell fluid. Moreover, 
we also discussed the different effects of relaxation time on the EOF velocity of 
different pulses. It is mainly compared with the rectangle pulse EOF [32] com-
pleted before, and some new results have been found. In the second section, the 
physical model of the problem is described and the semi-analytical solutions of 
the governing equations of rectangle pulse EOF, triangle pulse EOF and saw-
tooth pulse EOF are derived. In the third section, the article discusses numerical 
results and the parametric which dependent on the pulse EOF velocity for dif-
ferent pulses. At last, in the fourth section, the article presents the conclusions. 

2. Problem Formulation 
2.1. Cauchy Momentum Equation and Constitutive Relation 

The time periodic pulse EOF of an incompressible Maxwell fluid through a cir-
cular microchannel is sketched in Figure 1. The channel has a circular 
cross-section with a radius R and a length L, assumed to be much larger than the 
diameter i.e., 2L R . As shown in Figure 2, the pulse EOF is pumped through 
several pulse electric fields of strength E0 with pulse amplitude of 1, pulse repeti-
tion period of 2a and pulse width of a, respectively. 

Due to the symmetry of the geometry, we only study the semi-section of the 
microchannel. Provided that the pressure gradient along z direction is ignored, 
then the one-dimensional Cauchy momentum equation can be written as 

( ) ( ) ( ) ( )0

, 1
rz e

u r t
r r E f t

t r r
ρ τ ρ
∂ ∂

= − +
∂ ∂

             (1) 

where ( ),u r t  is the velocity along z axial direction, ρ  is the fluid density, t is 
the time, rzτ  is the stress tensor and ( )e rρ  is the volume charge density, 

( )0E f t  is the ideal pulsed electric field of strength E0. 
Provided that the boundary condition of Equation (1) is no slip, and it can be 

given as [33] 

( ), 0
r R

u r t
=

= , 
( )

0

,
0

r

u r t
r

=

∂
=

∂
                   (2) 

 

 
Figure 1. Schematic of the time periodic pulse EOF of Maxwell fluid in a circular micro-
channel. 
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(a) 

    
(b)                                     (c) 

Figure 2. The diagram of three kinds of time periodic pulse waves. (a) Ideal rectangle 
pulse wave; (b) Ideal triangle pulse wave; (c) Ideal sawtooth pulse wave. 
 

For the Maxwell fluid, the constitutive equation satisfies [34] 

( )
z 1 z 0

,
r r

u r t
t r

τ λ τ η
∂∂

+ = −
∂ ∂

                     (3) 

where 1λ  is the relaxation time, 0η  is zero shear rate viscosity. 

2.2. Electric Potential Field Solution 

The chemical interaction between the electrolyte liquid and the solid wall pro-
duces an electric double layer (EDL), a very thin layer of charged liquid at the 
solid-liquid interface. A cylindrical coordinate system ( ), ,r zθ  is adopted. In 
this theoretical model, it is assumed that the channel wall is uniformly charged, 
so that the electrical potential in the EDL only varies in this r direction and does 
not depend on θ  [33]. For a symmetric binary electrolyte solution, assuming 
that the electrical potential ψ  of the EDL is stable, and its distribution and the 
local volumetric net charge density ( )e rρ  are described by the Poisson- 
Boltzmann (P-B) equation 

( ) ( )d1 d
d d

er r
r

r r r
ψ ρ

ε
 

= − 
 

                    (4) 

( ) ( )0
0 02 sinhe

b

z e r
r n z e

k T
ν

ν

ψ
ρ

 
= −  

 
                  (5) 

where ε  is the dielectric constant of the electrolyte liquid, ( )rψ  is the elec-
trical potential of the EDL, n0 is the ion density of the bulk liquid, zν  is the va-
lence, e0 is the electron charge, kb is the Boltzmann constant, T is the absolute 
temperature, and sinh is the sine function. 
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Combing Equation (4) and Equation (5) gives 

( ) ( )00 0d 21 d sinh
d d b

r z e rn z e
r

r r r k T
ννψ ψ

ε
   

=   
   

               (6) 

which is subject to the following boundary conditions 

( ) 0r R
rψ ψ

=
= , 

( )
0

d
0

d
r

r
r

ψ

=

=                     (7) 

where 0ψ  is wall zeta potential, r is radial coordinate and R is radius of the 
circular microchannel. 

Assuming that the electrical potential is small enough, the Debye-Hückel li-
nearization approximation can be applied to the hyperbolic sine function ap-
pearing on the right hand side of Equation (6), which means that the electrical 
potential is physically small compared to the thermal energy of the charged spe-
cies [28]. Thus, Equation (6) can be simplified as 

( ) ( )2d1 d
d d

r
r r

r r r
ψ

κ ψ
 

= 
 

, and 
1 22 2

0 02

b

n z e
k T
νκ

ε
 

=  
 

             (8) 

where κ  is the Debye-Hückel parameter, which 1 κ  usually represents the 
thickness of the EDL in physical. 

By solving Equation (7) and Equation (8), the net charge density distribution 
for circular microchannel can be express as 

( ) ( )
( )

02
0

0
e

I r
r

I R
κ

ρ εκ ψ
κ

= −                        (9) 

where 0I  is the first kind modified Bessel function of order zero. 

2.3. The Analytical Solutions of the Cauchy Momentum Equation 

In order to obtain the solution of the velocity field of the triangle pulse EOF and 
the sawtooth pulse EOF, let us first briefly review the process of solving the ve-
locity field of the rectangle pulse EOF, and then analyze the difference among 
the three formulas to obtain the corresponding velocity field solution above. 

2.3.1. Rectangle Pulse Wave 
The ideal rectangle pulse can be expressed as the following form 

( )
[ )
( ]

1, 0, ,

1, , 2 .

t a
f t

t a a

 ∈= 
− ∈

                    (10) 

For simplicity, the following dimensionless groups are introduced: 

( ) ( ) ( ) ( )1
1 2

0

0 0

0 0

, ,
, , , , , ,

,

eo

rz
eorz

eo

t u r trr K R t u r t
R UR

E
U

U R

λ
κ λ

ρ η
εψτ

τ
η η

= = = =

= = −
         (11) 

where eoU  denotes steady Helmholtz-Smoluchowshi EOF velocity of Newto-
nian fluids, K is the ratio of the characteristic width of the microchannel to 
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Debye length. 
Using Equation (11), Equations of (1) and (3) and boundary conditions (2) 

are normalized as 
( ) ( ) ( ) ( )

( )
02

0

, 1
rz

u r t I Kr
r f t K

t r r I K
τ

∂ ∂
= − +

∂ ∂
             (12) 

( )
1

,
rz rz

u r t
t r

τ λ τ
∂∂

+ = −
∂ ∂

                     (13) 

( )
1

, 0
r

u r t
=
= , 

( )
0

,
0

r

u r t
r

=

∂
=

∂
                   (14) 

Eliminating rzτ  from Equation (12) and Equation (13) yields 

( ) ( )

( ) ( ) ( )
( )

2

1 2

02
1

0

, ,

,1 1

u r t u r t
t t

u r t I Kr
r f t K

r r r t I K

λ

λ

∂ ∂
+

∂ ∂
∂ ∂ ∂ = + +   ∂ ∂ ∂  

           (15) 

Let us employ the method of Laplace transforms defined by 

( ) ( ) ( )
0

, , , e dstU r s L u r t u r t t
∞ −= =   ∫                (16) 

Obviously ( ) 0f t
t
∂

=
∂

 in Equation (15), and the Laplace transform of 
( )f t  is given by the Appendix A. 
From the literature [32], the solution of the velocity field is given as 

( ) ( )
( )
( )

( )
( )

2

0 0
2 2

0 0

tanh
2,

as K I r I Kr
U r s

I I Ks K
β
ββ

 
    = −  −  

             (17) 

where 2
1s sβ λ= + , tanh is a hyperbolic tangent function. 

The inverse Laplace transform is defined by 

( ) ( ) ( )1 1, , , e d
2

stu r t L U r s U r s s
i

−

Γ

= =
π

   ∫               (18) 

where Γ  is a vertical line to the right of all singularities of ( ),U r s  in the 
complex s plane. The exact solution of the EOF velocity cannot be obtained ana-
lytically due to the complexity of the express of ( ),U r s . Therefore, the numer-
ical computation must be performed by numerical inverse Laplace transform 
[35]. 

2.3.2. Triangle Pulse Wave 
The ideal triangle pulse can be expressed as the following form 

( )

2 , 0, ,
2

2 32 , , ,
2 2

2 34, , 2 .
2

at t
a

a af t t t
a

at t a
a

  ∈   
  = − ∈   
  − ∈   

                    (19) 
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The difference from the rectangle pulse wave is ( ) 0f t
t
∂

≠
∂

 in Equation 
(15), the others are the same, and the Laplace transform of ( )1+ f t

t
∂ 

 ∂ 
 is 

given by the Appendix B. 
If initial condition satisfies ( ),0 0u r = , then the transforms of Equation (15) 

and Equation (14) can be written as 

( ) ( )

( ) ( ) ( ) ( )
( )

2
1

2
2 1

0
2 2

0

, ,

2 1 1 sech
, , 21

s U r s sU r s
ass K

U r s U r s I Kr
r r I Kr as

λ

λ

+
  + −   ∂ ∂   = + +

∂∂

     (20) 

( ) ( )
1

0

,
, 0, 0

r
r

U r s
U r s

r=
=

∂
= =

∂
                 (21) 

Equation (20) can be simplified as 

( ) ( ) ( )

( ) ( )
( )

2
2

2

2
1

0
2

0

, ,1 ,

2 1 1 sech
2

U r s U r s
U r s

r rr
ass K

I Kr
I Kas

β

λ

∂ ∂
+ −

∂∂
  + −     = −

               (22) 

where 2
1s sβ λ= + , sech is a hyperbolic secant function. 

Equation (22) is a linear and inhomogeneous ordinary differential equation, 
and its solution can be written as the sum of a general solution ( ),hU r s  cor-
responding to homogeneous equation and a special solution ( ),sU r s . 

( ) ( ) ( ), , ,h sU r s U r s U r s= +                   (23) 

The homogeneous solution of Equation (22) is expressed as 

( ) ( ) ( )0 0,hU r s AI r BK rβ β= +                  (24) 

where 0I  and 0K  are modified Bessel functions of first and second kinds of 
order zero, respectively. 

Due to the finite of ( ),U r s  at 0r = , the constant B equal to zero from the 
boundary condition Equation (21). Therefore, the homogeneous solution of Eq-
uation (22) is rewritten as 

( ) ( )0,hU r s AI rβ=                       (25) 

here A is constant, which can be determined from boundary conditions of Equa-
tion (21). 

Considering the formation of the right hand side of Equation (22), the special 
solution can be given as 

( ) ( )0,sU r s CI Kr=                        (26) 

Inserting Equation (26) into Equation (22) gives 

( ) ( ) ( )
( ) ( )

( )

2
2 1

0 0 02
02 2

0

2 1 1 sech
d d 21

dd

ass K
I Kr I Kr I Kr

C I Kr
r r I Kr as

λ
β

  + −       + − = − 
  

(27) 
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From Equation (8) and Equation (11), we can get 

( ) ( ) ( )
2

0 0 2
02

d d1
dd

I Kr I Kr
K I Kr

r rr
+ =                (28) 

Substituting Equation (28) into Equation (27) and equalizing the coefficients 
in front of the modified Bessel functions ( )0I Kr  at the two sides of the equa-
tion yields 

( )
( ) ( )

2
1

2 2 2
0

2 1 1 sech
2
ass K

C
as K I K

λ

β

  + −     = −
−

                (29) 

Thus, the solution of velocity ( ),U r s  can be written as 

( ) ( )
( )

( ) ( )
( )

2
1

0 02 2 2
0

2 1 1 sech
2

,

ass K
U r s AI r I Kr

as K I K

λ
β

β

  + −     = −
−

      (30) 

The coefficient A with boundary condition of Equation (21) can be deter-
mined as 

( )
( ) ( )

2
1

2 2 2
0

2 1 1 sech
2
ass K

A
as K I

λ

β β

  + −     =
−

                (31) 

Inserting Equation (31) into Equation (30), we have 

( )
( )

( )
( )
( )

( )
( )

2
1

0 0
2 2 2

0 0

2 1 1 sech
2

,

ass K
I r I Kr

U r s
I I Kas K

λ
β
ββ

  + −       = −  −  
      (32) 

where 2
1s sβ λ= + , sech is a hyperbolic secant function. 

As with rectangle pulse wave, the numerical computation must be performed 
by numerical inverse Laplace transform of Equation (32). 

2.3.3. Sawtooth Pulse Wave 
The ideal sawtooth pulse can be expressed as the following form 

( )
[ )

( ]

, 0, ,

2, , 2 .

t t a
af t
t t a a
a

 ∈= 
 − ∈


                   (33) 

The Laplace transform of ( )1 f t
t
∂ + ∂ 

 is given by the Appendix C. 

Making the Laplace transform for Equation (15), we have 

( ) ( ) ( )

( )( ) ( )
( )

2
2

2

2
1 0

2
0

, ,1 ,

1 csch

U r s U r s
U r s

r rr
s as as K I Kr

I Kas

β

λ

∂ ∂
+ −

∂∂
+ −

= −
               (34) 

where 2
1s sβ λ= + , csch is a hyperbolic cosecant function. 
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Therefore, the solution of Equation (34) with boundary condition (21) can be 
given as 

( )
( )( )

( )
( )
( )

( )
( )

2
1 0 0

2 2 2
0 0

1 csch
,

s as as K I r I Kr
U r s

I I Kas K

λ β
ββ

+ −  
= −  −  

        (35) 

Similar to the above several pulse waves, the numerical calculation must also 
be performed by the numerical inverse Laplace transform of Equation (35). 

3. Results and Discussion 

In the previous section, we have obtained the semi-analytical solutions of the 
time periodic pulse EOF velocity of the triangle and sawtooth of Maxwell fluid 
through a circular microchannel, which rely mainly on electrokinetic width K, 
relaxation time 1λ  and pulse width a. Then, we also compare with the rectangle 
pulse EOF on the graph, and discuss the influence of the above several parame-
ters on the velocity distribution of different pulse EOF. Among them, it is im-
portant to analyze the influence of relaxation time on the three kinds of EOF 
under the condition of a fixed pulse width, that is, the stability. Additionally, the 
effect of relaxation time on pulse EOF under different pulse widths is discussed.  

Figure 3 gives the variations of pulse EOF velocity with time for different 
pulses (rectangle pulse, triangle pulse and sawtooth pulse) when 20K = , 1a =   
 

 

Figure 3. Variations of pulse EOF velocity u  at different relaxation times with time for 
different pulses when 20K = , 1a =  and 0.5r = . (a) Rectangle pulse; (b) Triangle 
pulse; (c) Sawtooth pulse. 
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and 0.5r = . We can clearly find that for different pulses, the variations of ve-
locity are relatively significant. Therefore, it is very necessary to study different 
time periodic pulse EOF. At the same time, it can be seen from Figure 3 that for 
any pulse, the velocity amplitude increases with relaxation time 1λ . The main 
reason is that the longer relaxation time, which means the greater elastic effect 
and weaker recovery ability of Maxwell fluid. Because of the “fading memory” 
phenomenon of Maxwell fluid, increasing the relaxation time leads more easily 
to the variation of the pulse EOF velocity profiles caused by external electric field 
[36]. Moreover, it is very obvious from Figure 3 that the velocity of three kinds 
of pulse EOF gradually attains to steady state with the elapse of time t . 

Figure 4 shows the variations of pulse EOF velocity with time for different re-
laxation times 1λ  (0.01 and 0.1) when 20K = , 1a =  and 0.5r = . It is found 
that the time it takes for the fluid to change from a static state to a flowing state 
increases with relaxation time 1λ . In this case, a possible explanation is that 
when the relaxation time is small, the viscoelasticity is not obvious. However, as 
the relaxation time 1λ  increases, the viscoelasticity of the fluid becomes signifi-
cant. In order to make the fluid flow, a part of the pulse force is needed to offset 
the resistance caused by viscoelasticity, so the time it takes for the fluid to change 
from a static state to a flowing state becomes longer. Meanwhile, it still can be 
found from Figure 4 that when the relaxation time is small (for example 

1 0.01λ =  and 1 0.1λ = ) and the time is in the range of 0 to 1 ( 0 1t≤ ≤ ), the 
order of velocity amplitude from large to small is always rectangle pulse, triangle 
pulse, and sawtooth pulse. The reason is due to the influence of the nature of 
their different shaped pulses (see Figure 2). Furthermore, it is noted that no 
matter what kind of pulse, the velocity amplitude increases with relaxation time 

1λ . The reason for this fact is that the longer relaxation time means the larger 
elastic effect of the Maxwell fluid and results in larger velocity amplitude. 

Figure 5 and Figure 6 depict the variations of pulse EOF velocity with time 
for different pulses (rectangle pulse, triangle pulse and sawtooth pulse) when 

1 0.01λ =  and 1 0.1λ =  ( 20K = , 0.5r = ), respectively. It still can be noted  
 

 

Figure 4. Variation of pulse EOF velocity u  at different pulses with time for different 
relaxation times 1λ  when 20K = , 1a =  and 0.5r = . (a) 1 0.01λ = ; (b) 1 0.1λ = . 
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Figure 5. Variations of pulse EOF velocity u  at different pulse widths with time for dif-
ferent pulses when 20K = , 0.5r =  and 1 0.01λ = . (a) Rectangle pulse; (b) Triangle 
pulse; (c) Sawtooth pulse. 
 

 

Figure 6. Variations of pulse EOF velocity u  at different pulse widths with time for dif-
ferent pulses when 20K = , 0.5r =  and 1 0.1λ = . (a) Rectangle pulse; (b) Triangle 
pulse; (c) Sawtooth pulse. 
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that the amplitude of velocity increases with relaxation time 1λ . At the same 
time, we can also be seen from both Figure 5 and Figure 6 that for different 
pulse widths a, the effect of relaxation time on the amplitude of different pulse 
EOF velocity is different. Especially for smaller pulse width is more significant 
(for example 1a = ). The reason may be that for small pulse width a, the pulse 
force has a short duration and the flow of fluid stability is relatively weak, so it is 
easily affected by other forces. In addition, we can see from the above picture 
that as the pulse width a increases, the different change frequency of velocity 
profiles slows down, which means a long cycle time [37], and the time required 
for the velocity profiles to reach a steady state has also become longer.  

Figure 7 and Figure 8 present the variations of pulse EOF velocity with radius 
for different pulses (rectangle pulse, triangle pulse and sawtooth pulse) when

1 0.1λ =  and 1 0.8λ =  ( 1a = , 0.5t = ), respectively. It is clearly seen from 
Figure 7 that with the increase of electrokinetic width K value, the pulse EOF 
velocity variations are mainly limited to the narrow area close to the EDL for 
small relaxation time (for example 1 0.1λ = ). From Figure 8, we can find that a 
larger relaxation time 1λ  will result in larger velocity amplitude, and the veloc-
ity distribution is no longer mainly restricted to EDL. This is because that for a 
larger relaxation time 1λ , the elasticity of the fluid is more obvious. And since 
elasticity is the physical property of the fluid as a whole, the velocity variation 
can extend to the entire region of the flow [38]. Additionally, by comparing the  
 

 

Figure 7. Variations of pulse EOF velocity u  at different electrokinetic widths with ra-
dius for different pulses when 1a = , 0.5t =  and 1 0.1λ = . (a) Rectangle pulse; (b) 
Triangle pulse; (c) Sawtooth pulse. 
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Figure 8. Variations of pulse EOF velocity u  at different electrokinetic widths with ra-
dius for different pulses when 1a = , 0.5t =  and 1 0.8λ = . (a) Rectangle pulse; (b) 
Triangle pulse; (c) Sawtooth pulse. 
 
variations in the amplitude of the three kinds of pulse EOF velocity, we can see 
that the relaxation time has different effects on the velocity amplitude for dif-
ferent pulses. In particular, it has a greater impact on triangle pulse and saw-
tooth pulse than rectangle pulse (see Figure 7(b) and Figure 7(c), Figure 8(b) 
and Figure 8(c)). The possible reason is that the velocity expressions of triangle 
pulse EOF and sawtooth pulse EOF have one more variable about the relaxation 
time 1λ  (see Equation (32) and Equation (35)) than that of rectangle pulse 
EOF. Thus, the rectangle pulse EOF is a relatively more stable pulse EOF among 
the three kinds of pulse EOF. 

4. Conclusion 

In this article, the semi-analytical solutions for both triangle and sawtooth time 
periodic pulse EOF of Maxwell fluid through a circular microchannel under the 
Debye-Hückel approximation are presented. Based on the results obtained in 
this work, it can be concluded that with the electrokinetic width K increases, the 
velocity variations are mainly limited to the narrow area close to the EDL for 
small relaxation time 1λ . However, as the increase of relaxation time 1λ , the 
elasticity of the fluid becomes significant and the velocity variations can be ex-
tended to the entire flow field. At the same time, the velocity amplitude will sig-
nificantly larger, and the flow needs longer time to attain steady status. Moreo-
ver, the time it takes for the fluid to change from a static state to a flowing state 
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increases with relaxation time 1λ . For given pulse width a, the effect of relaxa-
tion time 1λ  on triangle pulse EOF and sawtooth pulse EOF is greater than 
rectangle pulse EOF, which implies that the rectangle pulse EOF is more stable. 
With the increase of pulse width a, the effect of relaxation time 1λ  on the ve-
locity will be weakened, the change period of the velocity profiles becomes larg-
er, and the time required for the velocity profiles to reach a steady state also be-
comes longer. 
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Appendix A. The Laplace Transform of Ideal Rectangle Pulse 

The Laplace transform of ideal rectangle pulse is expressed as follows [32] 
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here 2T a= . It needs to point out that all of the following pulses have a period 
of 2a. 

By shifting the term of Equation (A.1) and using the Equation (10), we can get 
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Appendix B. The Laplace Transform of Ideal Triangle Pulse 

With the aid of Equation (A.1) and Equation (A.2), the Laplace transform of 
ideal triangle pulse can be given as 
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Appendix C. The Laplace Transform of Ideal Sawtooth Pulse 

Similarly, the Laplace transform of ideal sawtooth pulse with Equation (A.1) and 
Equation (A.2) can be written as 
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