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Abstract 
The Boltzmann local physical kinetics forecasts the destruction of SC regime 
because of the heat movement of particles. Then, the most fundamental dis-
tinction between a strange metal and a conventional metal is the absence of 
well-defined quasi-particles. Here, we show that the mentioned “quasi-particles” 
are solitons, which are formed as a result of self-organization of ionized mat-
ter. Shortcomings of the Boltzmann physical kinetics consist in the local de-
scription of the transport processes on the level of infinitely small physical 
volumes as elements of diagnostics. The non-local physics leads to the theory 
superconductivity including the high temperature diapason. The generalized 
non-local non-stationary London’s formula is derived. 
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1. Introduction: Shortcomings of Boltzmann Physical  
Kinetics 

In 1872 L Boltzmann published his famous kinetic equation for the one-particle 
distribution function (DF) ( ), ,f tr v  [1] [2]. He expressed the equation in the 
form 

( )stDf J f
Dt

=                        (1.1) 

where stJ  is the collision (“stoß”) integral, and 

D
Dt t

∂ ∂ ∂
= + ⋅ + ⋅
∂ ∂ ∂

v F
r v

                  (1.2) 

is the substantial (particle) derivative, v  and r  being the velocity and ra-
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dius-vector of the particle, respectively. Transport processes in open dissipative 
systems are considered in physical kinetics. Therefore, the kinetic description is 
inevitably related to the system diagnostics. Such an element of diagnostics in 
the case of theoretical description in physical kinetics is the concept of the phys-
ically infinitely small volume ( PhSV ). The correlation between theoretical de-
scription and system diagnostics is well-known in physics. Suffice it to recall the 
part played by test charge in electrostatics or by test circuit in the physics of 
magnetic phenomena.  

Let us consider the hydrodynamic description in more detail from this point 
of view. Assume that we have two neighboring physically infinitely small vo-
lumes 1PhSV  and 2PhSV  in a non-equilibrium system. The one-particle 
distribution function (DF) ( ),1 1, ,smf tr v  corresponds to the volume 1PhSV , 
and the function ( ),2 2 , ,smf tr v  to the volume 2PhSV . It is assumed in a first 
approximation that ( ),1 1, ,smf tr v  does not vary within 1PhSV , same as 

( ),2 2 , ,smf tr v  does not vary within the neighboring volume 2PhSV . This as-
sumption of locality is implicitly contained in the Boltzmann equation (BE) 
[3]-[11]. However, the assumption is too crude; PhSV is an open thermody-
namic system. 

The Boltzmann equation (BE) fully ignores non-local effects and contains on-
ly the local collision integral BJ . But these nonlocal effects are irrelevant only 
in equilibrium systems, where the kinetic approach goes into methods of statis-
tical mechanics. As a result, the difficulties of classical Boltzmann physical ki-
netics arise. Conclusion:  

1) Kinetic theory should be non-local. 
2) The effect is of the order of Knudsen number.  
3) The effect is due to the reduced description and is not related to the specific 

division of the physical system by the PhSV grid.  
4) Accurate derivation of the kinetic equation with respect to the one-particle 

DF should lead to corrections of the order of the Knudsen number before un-
coupling the Bogolyubov chain. 

5) This means that in the Boltzmann equation, the terms of the order of the 
Knudsen number are lost, significant for both large and small Knudsen numbers.  

6) The Boltzmann equation does not even belong to the class of minimal 
models, being only a “plausible” equation. 

7) Boltzmann equation in this sense is the wrong equation. 

2. Generalization of the Boltzmann Kinetic Equation.  
Nonlocal Physical Kinetics 

A rigorous approach to the derivation of the kinetic equation for the distribution 
function (DF) 1f  (

1f
KE ) is based on the hierarchy of the Bogolyubov- 

Born-Green-Kirkwood-Yvon (BBGKY) equations [12] [13] [14] [15] [16]. The 
structure of the fKE  is generally as follows 

B nlDf J J
Dt

= + ,                        (2.1) 

https://doi.org/10.4236/jmp.2021.125037


B. V. Alexeev 
 

 

DOI: 10.4236/jmp.2021.125037 554 Journal of Modern Physics 
 

where nlJ  is the non-local integral term incorporating in particular the time 
delay effect. The generalized Boltzmann physical kinetics, in essence, involves a 
local approximation 

nl D DfJ
Dt Dt

τ =  
 

                       (2.2) 

for the second collision integral, here τ  being proportional to the mean time 
between the particle collisions. All of the known methods [3]-[11] of deriving 
kinetic equation relative to one-particle DF lead to approximation (2.2), includ-
ing the method of many scales, the method of correlation functions, and the ite-
ration method. We can draw here an analogy with the Bhatnagar-Gross-Krook 
(BGK, [17]) approximation for BJ , 

0B f f
J

τ
−

= ,                        (2.3) 

which popularity as a means to represent the Boltzmann collision integral is due 
to the huge simplifications it offers.  

In other words, the local Boltzmann collision integral admits approximation 
via the BGK algebraic expression (2.3), but more complicated non-local integral 
can be expressed as differential form (2.2). The ratio of the second to the first 
term on the right-hand side of Equation (2.1) is given to an order of magnitude 
as ( )2Knnl BJ J O≈  and at large Knudsen numbers (defining as ratio of mean 
free path of particles to the character hydrodynamic length) these terms become 
of the same order of magnitude. It would seem that at small Knudsen numbers 
answering to hydrodynamic description the contribution from the second term 
on the right-hand side of Equation (2.1) is negligible.  

This is not the case, however. When one goes over to the hydrodynamic ap-
proximation (by multiplying the kinetic equation by collision invariants and 
then integrating over velocities), the Boltzmann integral part vanishes, and the 
second term on the right-hand side of Equation (2.1) gives a single-order con-
tribution in the generalized Navier-Stokes description. Mathematically, we can-
not neglect a term with a small parameter in front of the higher derivative. 
Physically, the appearing additional terms are due to viscosity and they corres-
pond to the small-scale Kolmogorov turbulence [8].  

The integral term nlJ  turns out to be important both at small and large 
Knudsen numbers in the theory of transport processes.  

Thus, Df Dtτ  is the distribution function fluctuation, and we find 

( )
a

BDf J f
Dt

= ,                      (2.4) 

where 

a Dff f
Dt

τ= − .                      (2.5) 

Writing Equation (2.4) without taking into account Equation (2.5) makes the 
BE non-closed. From viewpoint of the fluctuation theory, Boltzmann employed 
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the simplest possible closure procedure af f= . Then, the additional GBE 
terms (as compared to the BE) are significant for any Kn, and the order of mag-
nitude of the difference between the BE and GBE solutions is impossible to tell 
beforehand. For GBE the generalized H-theorem is proven [9].  

Madelung’s quantum hydrodynamics is equivalent to the Schrödinger equa-
tion (SE) and furnishes the description of the quantum particle evolution in the 
form of Euler equation and continuity equation. Madelung’s interpretation of SE 
(connected with wave function ( )exp iψ α β= ) leads to the probability density  

2ρ α=  and velocity ( )mβ∂
=
∂

v
r

. Schrödinger-Madelung quantum hydro-

dynamics does not lead to the energy equation in principle; then the Schrödin-
ger-Madelung quantum mechanics cannot be used for the description of the dis-
sipative processes. 

The dependent variable p in the energy equation of the generalized quantum 
hydrodynamics can be titled as the rest quantum pressure or simply quantum 
pressure.  

Generalized Boltzmann physical kinetics brings the strict approximation of 
non-local effects in space and time and after transfer to the local approximation 
leads to parameter τ , which on the quantum level corresponds to the uncer-
tainty principle “time-energy”.  

The appearance of the nonlocal τ  parameter is consistent with the Heisen-
berg uncertainty relation. But in principle generalized nonlocal kinetic equations 
(and therefore GHE) needn’t in using of the “time-energy” uncertainty relation 
for estimation of the value of the non-locality parameter τ . Moreover, the 
“time-energy” uncertainty relation does not produce the exact relations and 
from position of non-local physics is only the simplest estimation of the 
non-local effects. Really, let us consider two neighboring physically infinitely 
small volumes 1PhSV  and 2PhSV  in a non-equilibrium system. Obviously 
the time τ  should tends to diminish with increasing of the velocities u of par-
ticles invading in the nearest neighboring physically infinitely small volume 
( 1PhSV  or 2PhSV ): 

nH uττ = .                       (2.6) 

But the value τ  cannot depend on the velocity direction and naturally to tie 
τ  with the particle kinetic energy, then  

2H muττ = ,                      (2.7) 

where Hτ  is a coefficient of proportionality, which reflects the state of physical 
system. In the simplest case Hτ  is equal to Plank constant 


 and relation (2.7) 

became compatible with the Heisenberg relation. The non-locality parameter τ  
plays the same role as the transport coefficients in local hydrodynamics. The 
different models can be introduced for the τ  definition, but the corresponding 
results not much different like in local kinetic theory for different models of the 
particles interaction. 

In the general case, the parameter τ  is the non-locality parameter; in quan-
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tum hydrodynamics, its magnitude is correlated with the Heisenberg “time-energy” 
uncertainty relation [18] [19] and with the Ehrenfest adiabatic theorem [20].  

Now we can turn our attention to the quantum hydrodynamic description of 
individual particles. The abstract of the classical Madelung’s paper [21] contains 
only one phrase: “It is shown that the Schrödinger equation for one-electron 
problems can be transformed into the form of hydrodynamic equations”. The 
following conclusion of principal significance can be done from the previous 
consideration: 

Madelung’s quantum hydrodynamics is equivalent to the Schrödinger equa-
tion (SE) and leads to the description of the quantum particle evolution in the 
form of Euler equation and continuity equation. Generalized Boltzmann physi-
cal kinetics leads to the strict approximation of non-local effects in space and 
time and in the local limit leads to parameter τ , which on the quantum level 
corresponds to the uncertainty principle “time-energy”. Generalized hydrody-
namic equations (GHE) lead to SE as a deep particular case of the generalized 
Boltzmann physical kinetics and therefore of non-local hydrodynamics. 

Finally of Item 2 we can state that introduction of control volume by the re-
duced description for ensemble of particles of finite diameters leads to fluctua-
tions (proportional to Knudsen number) of velocity moments in the volume. 
This fact leads to the significant reconstruction of the theory of transport 
processes. The violation of Bell’s inequalities [22] is found for local statistical 
theories, and the transition to the non-local description is inevitable.  

3. Basic Quantum Nonlocal Hydrodynamic Equations.  
Superconducting Soliton Motion in the Two Component  
Physical System 

In general case the strict consideration leads to the following system of the 
non-local quantum hydrodynamic equations written in the Generalized Hydro-
dynamic Form (GHE) for multi-component species (see also [4]-[11]): 

Continuity equation for species α : 

( ) ( )

( ) ( )

0 0 0

1
0 0 0I .

t t t

p q
R

m

α
α α α α α α

α α
α α α α α

α

ρ
ρ τ ρ ρ τ ρ

ρ ρ ρ

 ∂ ∂ ∂ ∂  ∂  − + ⋅ + ⋅ −    ∂ ∂ ∂ ∂ ∂   
∂∂ + ⋅ + ⋅ − − × =∂ ∂ 



v v v
r r

v v F v B
r r

      (3.1) 

Continuity equation for mixture: 

( )

( ) ( )

( )

0

0 0 0 0

1
0I 0.

t t

t

p q
m

α
α α

α

α α α
α

α α
α α α

α

ρ
ρ τ ρ

ρ τ ρ ρ

ρ ρ

 ∂ ∂ ∂ − + ⋅  ∂ ∂ ∂  
∂  ∂ ∂+ ⋅ − + ⋅ ∂ ∂ ∂

∂ + ⋅ − − × =∂ 

∑

∑



v
r

v v v v
r r

F v B
r

          (3.2) 
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Momentum equation for species α : 

( ) ( )

( ) ( ) ( )

( )

1
0 0 0 0 0

1
0 0 0

1
0 0 0 0 0

0 0

I

p q
t t m

q
t m t

p q
p

m

t

α α
α α α α α α α

α

α α
α α α α α α α

α

α α
α α α α α α

α

α α

ρ τ ρ ρ ρ ρ

∂ρ
ρ τ ρ ρ τ ρ

∂

ρ ρ ρ ρ

τ ρ

∂∂  ∂ ∂ − + ⋅ + − − × ∂ ∂ ∂ ∂ 
 ∂  ∂  − − + − −   ∂ ∂   

∂ ∂ ∂+ ⋅ + − − × × + ⋅ + ∂ ∂ ∂ 
∂

− +
∂



v v v v F v B
r r

F v v v
r

v v F v B B v v
r r r

v v( ) ( ) ( ) ( )

( ) ( ) [ ] [ ]

0 0 0 0 0

1 1
0 0 0 0 0 0

, ,

I 2I I

d d .st el st inel

p p p

q q
m m

m J m J

α α α α

α α
α α α α α α

α α

α α α α α α α α

ρ

ρ ρ ρ ρ

∂ ∂ ∂  + ⋅ + ⋅ + ⋅  ∂ ∂ ∂  
− − − × − × 


= +∫ ∫

  

v v v v v
r r r

F v v F v B v v v B

v v v v

(3.3) 

Momentum equation for mixture 

( ) ( )

( ) ( ) ( )

( )

1
0 0 0 0 0

1
0 0 0

1
0 0 0

0 0 0I

p q
t t m

q
t m t

p q
m

p
t

α α
α α α α α α

α α

α α
α α α α α α α

α α α

α α
α α α α

α

α α
α

ρ τ ρ ρ ρ ρ

ρ
ρ τ ρ ρ τ ρ

ρ ρ ρ

ρ τ ρ

∂∂  ∂ ∂ − + ⋅ + − − × ∂ ∂ ∂ ∂ 
 ∂ ∂  ∂  − − + − −   ∂ ∂ ∂   

∂∂ + ⋅ + − − × ×∂ ∂ 
∂ ∂

+ ⋅ + −
∂ ∂

∑

∑ ∑

∑


v v v v F v B
r r

F v v v
r

v v F v B B
r r

v v v v
r ( ) ( )

( ) ( ) ( ) ( )

[ ] [ ]

0 0 0 0

1 1
0 0 0 0

0 0 0 0

I

2I I

0

p

p p

q q
m m

α α

α α α α α α

α α
α α

α α

ρ

ρ ρ

ρ ρ

 ∂ + + ⋅  ∂
∂ ∂ + ⋅ + ⋅ − − ∂ ∂ 

− × − × =




 

v v v
r

v v F v v F
r r

v B v v v B

 (3.4) 

Energy equation for α  species 

( )

2 2
0 0

12
0 0 0 0 0

2 2
0 0 0 0 0 0

2
0 0 0 0 0 0 0

3 3
2 2 2 2

1 5
2 2

1 5 1
2 2 2

5 1 7
2 2 2

v v
p n p n

t t

v p n

v p n v
t

p n v p

α α
α α α α α α α

α α α α α α

α α α α α α

α α α α α

ρ ρ
ε τ ε

ρ ε ρ

ρ ε τ ρ

ε ρ

   ∂ ∂ + + − + +  
∂ ∂   

∂  + ⋅ + + − ⋅   ∂   
∂  ∂ + ⋅ + + − ∂ ∂ 

∂+ + + ⋅ + + ∂

v v v F v
r

v v v v
r

v v v v v v
r

( ) ( )

( ) ( ) [ ] [ ]

2
0

2
1 1

0 0 0 0

2
1 12 0

0 0 0

1
2

5
2

1 3 5
2 2 2 2

p v

p p
n p

m

v q q
v p p

m m

α

α α
α α α α α α α

α α

α α α
α α α α α

α α

ε ε ρ
ρ

ρ
ρ

 Ι



+ Ι + + Ι − ⋅ − ⋅ Ι



− − − × − ×

v v F v v F

F F v B v B
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[ ]

( ) [ ]

(1) (1)
0 0

1
0 0 0

2 2
, ,d d .

2 2
st el st inel

q
n n

m

p q n

m v m v
J J

α
α α α α α α α

αα

α α α α α α

α α α α
α α α α α α

ε ε ρ

ρ ρ

ε ε

 − × − − ⋅ 


∂ ∂ + ⋅ + ⋅ Ι − − × ∂ ∂ 
   

= + + +   
   

∑

∫ ∫

v B F v F

v v F v B
r r

v v



        (3.5) 

Energy equation for mixture: 

( )

2 2
0 0

12
0 0 0 0 0

2 2
0 0 0 0 0 0

2
0 0 0 0 0

3 3
2 2 2 2

1 5
2 2

1 5 1
2 2 2

5 1 7
2 2 2

v v
p n p n

t t

v p n

v p n v
t

p n v p

α
α α α α α α

α α

α α α α α α

α α α α
α α

α α α α α

ρ ρ
ε τ ε

ρ ε ρ

ρ ε τ ρ

ε ρ

   ∂ ∂ + + − + +  
∂ ∂   

∂  + ⋅ + + − ⋅   ∂   
∂  ∂ + ⋅ + + − ∂ ∂ 

∂+ + + ⋅ + ∂

∑ ∑

∑ ∑

v v v F v
r

v v v v
r

v v v v v
r

( ) ( )

2
0 0 0

2
1 1

0 0 0 0

1
2

5
2

p v

p p
n p

m

α

α α
α α α α α α α

α α

ε ε ρ
ρ

 + Ι



+ Ι + + Ι − ⋅ − ⋅ Ι





  

v

v v F v v F

 

( ) ( ) [ ] [ ]

[ ] ( ) ( )

( ) ( )

( ) [ ]

2
1 12 0

0 0 0

1 1
0 0

1
0 0 0

1
0

1 3 5
2 2 2 2

0.

v q q
v p p

m m

q
n n

m

t

p q n

α α α
α α α α α

α α

α
α α α α α α α

αα

α α α α
α

α α α α α

ρ
ρ

ε ε ρ

τ ρ ρ

ρ

− − − × − ×

 − × − − ⋅ 


 ∂ ∂− ⋅ + ⋅ ∂ ∂
∂ + ⋅ Ι − − × =∂ 

∑

∑



F F v B v B

v B F v F

F v v v
r

F v B
r

    (3.6) 

Here ( )1
αF  are the forces (acting on the mass unit) of the non-magnetic ori-

gin, B —magnetic induction, I


—unit tensor, qα —charge of the α
-component particle, pα —static pressure for α -component, αε —internal 
energy for the particles of α -component, 0v —hydrodynamic velocity for 
mixture, ατ —non-local parameter. 

In the following we intend to obtain the soliton’s type of solution of the gene-
ralized hydrodynamic equations (GHE). The non-stationary 1D model will be 
used with taking into account the energy equation, external forces and non-locality 
parameter τ  defined by the “time-energy” uncertainty relation of Heisenberg. 
Then GHE contain Poisson equation (reflected fluctuations of charges and flux 
of the charges density), two continuity equations for positive (lattice ions) and 
negative (electrons) species, momentum equation and two energy equations for 
positive and negative species. This system of six non-stationary 1D equations is 
written as: 

(Generalized Poisson equation): 
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( ) ( )
2

2 4 i e
i i i e e e

n n
e n n u n n u

t x t xx
ψ τ τ

  ∂   ∂ ∂ ∂ ∂    = − − + − − +       ∂ ∂ ∂ ∂∂       
π

 
.  (3.7) 

(Continuity equation for ions): 

( )

( ) ( )2 0

i
i i i

i
i i i i i i

u
t t x

p
u u u F

x t x x

ρ
ρ τ ρ

ρ τ ρ ρ ρ

 ∂ ∂ ∂ − +  ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ + − + + − =  ∂ ∂ ∂ ∂  

.         (3.8) 

(Continuity equation for electrons): 

( )

( ) ( )2 0

e
e e e

e
e e e e e e

u
t t x

p
u u u F

x t x x

ρ
ρ τ ρ

ρ τ ρ ρ ρ

 ∂ ∂ ∂ − +  ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ + − + + − =  ∂ ∂ ∂ ∂  

.        (3.9) 

(Momentum equation): 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

2

2

2 2 3

2

3 2

i i i i i i

e e e e e e

i e
i i e e i i i e e e

i i i i i i i

e e e e

u u p u F
t t x

u p u F
t x

F F F u F u
t x t x

u p u p u p u uF
x t x

u p u
t x

ρ τ ρ ρ ρ

τ ρ ρ ρ

ρ ρ
ρ ρ τ ρ τ ρ

ρ τ ρ ρ ρ

τ ρ ρ

∂  ∂ ∂ − + + −  ∂ ∂ ∂ 
∂ ∂  − + + −  ∂ ∂ 

∂ ∂∂ ∂   − − + + + +   ∂ ∂ ∂ ∂   
∂  ∂ ∂ + + − + + + −  ∂ ∂ ∂ 

∂ ∂
− + +

∂ ∂
( )3 3 2 0.e e ep u uFρ  + − =   

     (3.10) 

(Energy equation for ions): 

( ) ( )

( )

( )

( ) ( )

2 2 3

3 3

2
4 2 2

2

3 3 5 2

5 5

8 5 3 5

2 2 .

i i i i i i i i i

i i i i i

i
i i i i i

i

i e
i i i i i i i i i

ei

u p u p u p u F u
t t x

u p u u p u
x t

p
u p u F u p

x

p p
u F F u u p F

t x

ρ τ ρ ρ ρ

ρ τ ρ

ρ ρ
ρ

ρ τ ρ ρ ρ
τ

∂  ∂ ∂  + − + + + −  ∂ ∂ ∂  
∂  ∂+ + − + ∂ ∂

 ∂ + + + − +   
∂   

−∂ ∂ − + + + − = − ∂ ∂ 

   (3.11) 

(Energy equation for electrons): 

( ) ( )

( )

( )

2 2 3

3 3

2
4 2 2

3 3 5 2

5 5

8 5 3 5

e e e e e e e e e

e e e e e

e
e e e e e

e

u p u p u p u F u
t t x

u p u u p u
x t

p
u p u F u p

x

ρ τ ρ ρ ρ

ρ τ ρ

ρ ρ
ρ

∂  ∂ ∂  + − + + + −  ∂ ∂ ∂  
∂  ∂+ + − + ∂ ∂

 ∂ + + + − +   
∂   

 (3.12) 
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( ) ( )22 2 ,e i
e e e e e e e e e

ei

p p
u F F u u p F

t x
ρ τ ρ ρ ρ

τ
−∂ ∂ − + + + − = − ∂ ∂ 

 

where u is velocity of the directed motion of combined quantum object (pho-
non-electron), in  and en —numerical density of the charged species, iF  and 

eF —forces (of potential and non-potential origin), acting on the mass unit of the 
charged particles. The right hand sides of the energy equations are written in the 
relaxation forms following from BGK kinetic approximation. 

For acting potential forces of the electrical origin the relations are valid 

( )pot
i

i

eF
m x

ψ∂
= −

∂
,                     (3.13) 

( )pot
e

e

eF
m x

ψ∂
=

∂
,                      (3.14) 

where ψ —scalar potential.  
Let us introduce approximations for iτ  and iτ  using (2.7) 

2i
im u

τ =
 , 2e

em u
τ =

 .                   (3.15) 

For electron-phonon non-local parameter eiτ  the following relation is ap-
plicable 

1 1 1

ei e iτ τ τ
= + .                       (3.16) 

or 

( )
2 2 2

2

4

1
1

e i e i
e i

ei e i

e i

m u m u u m m

m mu

τ τ
τ τ τ

+
+

= = = +

 



.          (3.17) 

Formula (3.17) is obvious consequence of uncertainty relation for combined 
particle which mass is i em m+ . Energy equation of the generalized quantum 
hydrodynamics contains pressures ,i ep p , which can be named as the quantum 
pressure of the non-local origin. In the definite sense these pressures can be con-
sidered as analog of the Bose condensate pressure.  

4. Combined Quantum Solitons in the Self-Consistent  
Electric Field 

Let us formulate the problem in detail. The non-stationary 1D motion of the 
combined phonon-electron soliton is considered under influence of the self- 
consistent electric forces of the potential and non-potential origin. It should be 
shown that mentioned soliton can exists without a chemical bond formation. We 
introduce the coordinate system moving along the positive direction of the x axis 
in 1D space with the velocity 0C u= , which C is equal to the phase velocity of 
this quantum object. 

x Ctξ = − .                        (4.1) 
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Taking into account de Broglie relation we should wait that the group velocity 

gu  is equal to 02u . Really the energy of a relativistic particle is 
2E mc= ,                        (4.2) 

where 

2 2

0 2

1

1 gv
m m

c

−
 

= −  
 

                    (4.3) 

and c is the light velocity, gv  is the group velocity, 0m —the particle rest mass. 
Relation (4.2) can be written as 

2

p
g

cE
v

=                         (4.4) 

where   

p gmv=                         (4.5) 

is the particle impulse. In the non-relativistic approach the relation (4.4) takes 
the form 

2
0

1
2 gE m v= .                       (4.6) 

Using the dualism principle in the de Broglie interpretation we have for the 
particle energy 

phE kvω= =  ,                     (4.7) 

where ω  is the circular frequency, phv
к
ω

= —the phase velocity, 2к λ= π  is 

the wave number and λ  is the wave length. Correspondingly the particle im-
pulse p is 

p k=                            (4.8) 

and using (4.8), 

p phE v= .                         (4.9) 

Then in the non-relativistic case we have 

2
0

1 1 p
2 2g gE m v v= = .                   (4.10) 

From (4.9) and (4.10) for the non-relativistic case one obtains  

2g phv v= .                      (4.11) 

Then we should wait that the indestructible soliton has the velocity phv  in 
the coordinate system moving with the phase velocity phv . If we pass on the 
moving coordinate system, all dependent hydrodynamic values will be functions 
of ( ), tξ . But we investigate the possibility of the creation of the combined 
quantum object of the soliton type. For this case the explicit time dependence of 
solutions does not exist in mentioned coordinate system moving with the phase 
velocity 0u .  
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Write down the system of Equations (3.7)-(3.12) for the two component mix-
ture of charged particles (without taking into account the component’s internal 
energy) in the dimensionless form, where dimensionless symbols are marked by  

tildes. We introduce the scales for velocity [ ] 0u u= , for coordinate x 0
0e

x
m u

=
 , 

for the potential scale 2
0 0

em
u

e
ψ =  and for the density scale 

4
4

0 02 24
em

u
e

ρ
π

=


 (e 

is absolute electron charge).  
Generalized Poisson Equation (3.7) takes the form 

( ) ( )
2

2 22

1 1 .e e i e
i i e e

i i

m m
u u

m mu u
ρ ρψ ρ ρ ρ ρ

ξ ξ ξ ξ ξ

       ∂ ∂∂ ∂ ∂ = − − − + − − − +       ∂ ∂ ∂ ∂ ∂        

 


    

    



 

(4.12) 

Scaling forces are 
2
0

0
0

e
i i i

i

u m
F

x m
ψρ ρ ρ
ξ

∂
= −

∂






,                  (4.13) 

2
0

0
0

e e e
u

F
x

ψρ ρ ρ
ξ

∂
=

∂






.                    (4.14) 

Analogical transformations should be applied to other equations of the system 
(3.7)-(3.12). As result one obtains the six non-linear dimensionless ordinary dif-
ferential equations 

( ) ( )
2

2 22

1 1e e i e
i i e e

i i

m m
u u

m mu u
ρ ρψ ρ ρ ρ ρ

ξ ξ ξ ξ ξ

       ∂ ∂∂ ∂ ∂ = − − − + − − − +       ∂ ∂ ∂ ∂ ∂        

 


    

    

 

, 

(4.15) 

( )2
2

1 2 0i i e e
i i i i i i

i i

u m m
p u u

m mu
ρ ρ ψρ ρ ρ ρ
ξ ξ ξ ξ ξ

  ∂ ∂ ∂ ∂ ∂ − + + + − + =  ∂ ∂ ∂ ∂ ∂   

   

     

    



, (4.16) 

( )2
2

1 2 0e e
e e e e e e

u
p u u

u
ρ ρ ψρ ρ ρ ρ
ξ ξ ξ ξ ξ

  ∂ ∂ ∂ ∂ ∂ − + + + − − =  ∂ ∂ ∂ ∂ ∂   

   

     

    



, (4.17) 

( ) ( ){ }

( )

( )

2

2 3
2

2 3
2

1 2 2 3

1 2 2 3

1

i e i e i e

e e
i i i i i i

i i

e e e e e e

e
i e

i

u p p u

m m
p p u u u p u

m mu

p p u u u p u
u

m
m

ρ ρ ρ ρ
ξ

ψρ ρ ρ
ξ ξ ξ

ψρ ρ ρ
ξ ξ

ψ ψ ψρ ρ
ξ ξ ξ

∂
+ + + − +

∂

  ∂ ∂ ∂+ + − − − +  ∂ ∂ ∂  
 ∂ ∂ + + − − − −  ∂ ∂  

∂ ∂ ∂
+ − −

∂ ∂ ∂

      





        

  





        

 



  

 

  

( )

( )

2

2

2

2

1 12 0,

e i
i

i

e e
e i e

i

m
u

mu

m
u

u mu

ρ
ρ

ξ ξ

ρψ ψρ ρ ρ
ξ ξ ξ ξ ξ

   ∂ ∂
− +   ∂ ∂  

    ∂∂ ∂ ∂ ∂  + − + − − =   ∂ ∂ ∂ ∂ ∂        



 

 




 

  

    



  (4.18) 

https://doi.org/10.4236/jmp.2021.125037


B. V. Alexeev 
 

 

DOI: 10.4236/jmp.2021.125037 563 Journal of Modern Physics 
 

{ }

( )

3 2 3
2

2
4 2 2 2

2
2

2

15 3 2 10

8 5 3 2 3 5

12 2

в
i i i i i i

i

i в
i i i i i i i

i i

в в
i i i

i i

m
u p u u p u p u

mu

p m
u p u u p u u p

m

m m
u u p

m mu

ρ ρ ρ
ξξ ξ

ψρ ρ ρ ρ
ρ ξ

ψ ψρ ρ
ξξ ξ

  ∂ ∂ ∂
+ − − + + ∂∂ ∂ 

 ∂ − − − − − + − − ∂  

 ∂ ∂ ∂
+ − + − ∂∂ ∂ 

         

 



 

          





 

   

 



( )

( ) 2 1 ,

в
i i

i

i
i в

в

m
u

m

m
p p u

m

ψρ ρ
ξ

 ∂
+ ∂ 

 
= − − + 

 



 



  

 (4.19) 

{ }

( )

( )

3 2 3
2

2
4 2 2 2

2
2

15 3 2 10

8 5 3 3 5 2

12 2

в в в в в в

в
в в в в в в в

в

в в в в в

u p u u p u p u
u

p
u p u u p u p u

u u p u
u

ρ ρ ρ
ξ ξ ξ

ψρ ρ ρ ρ
ρ ξ

ψ ψ ψρ ρ ρ ρ
ξ ξ ξ ξ

 ∂ ∂ ∂+ − − + + ∂ ∂ ∂ 
 ∂ − − − − − + + − ∂  

 ∂ ∂ ∂ ∂
− + + − − ∂ ∂ ∂ ∂ 

         

  



 

          





  

      

   



( ) 21 .i
в i

в

m
p p u

m
 

= − − + 
 

  

  (4.20) 

Some comments to Equations (4.12, 4.15-4.20): 
1) Equations. (4.12, 4.15-4.20) contain 6 dependent variables:  
, , , , ,e i e iu p pψ ρ ρ      . Every equation from the system (4.12, 4.15-4.20) is of the 

second order and needs two conditions. The problem belongs to the class of 
Cauchy problems. 

2) In comparison with the Schrödinger theory connected with behavior of the 
wave function, no special conditions are applied for dependent variables includ-
ing the domain of the solution existing. This domain is defined automatically in 
the process of the numerical solution of the concrete variant of calculations. 

3) From the introduced scales  

0u , 0
0

1

e

x
m u

=
 , 2

0 0
em

u
e

ψ = , 
4

4
0 02 24

em
u

e
ρ

π
=



, 
4

2 6
0 0 0 02 24

em
p u u

e
ρ= =

π
 (4.21) 

only one parameter is independent – the phase velocity 0u  of the combined 
quantum object. The value e qum υ=  can be titled as quantum kinematic vis-
cosity 21.158 cm squυ = . From this point of view the obtained solutions which 
will be discussed below have the universal character defined only by Cauchy 
conditions. 

5. Maple Program Realizing the Solution of the System of  
Equations (4.15)-(4.20) 

The system of generalized quantum hydrodynamic Equations (4.12), (4.15)-(4.20) 
have the great possibilities of mathematical modeling as result of changing of 
twelve Cauchy conditions describing the character features of initial perturba-
tions which lead to the soliton formation. 

On this step of investigation we intend to demonstrate the influence of differ-
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ence conditions on the soliton formation. The following figures reflect some re-
sults of calculations realized according to the system of Equations (4.12), 
(4.15)-(4.20) with the help of Maple. The following notations on figures are used: 
r—density iρ , s—density eρ , u—velocity u , p—pressure ip , q—pressure ep  
and v—self consistent potential ψ . Explanations placed under all following fig-
ures, Maple program contains Maple’s notations, for example the expression  

( )( )0 0D u =  means in usual notations ( )0 0u
ξ
∂

=
∂




, independent variable t re-

sponds to ξ .  

There is the problem of principle significance—is it possible after a perturba-
tion (defined by Cauchy conditions) to obtain the quantum object of the soli-
ton’s kind as result of the self-organization of ionized matter? In the case of the 
positive answer, what is the origin of existence of this stable object?  

Appendixes 1 and 2 contain the corresponding Maple programs. The pro-
grams are ready for using. 

6. Super-Conductivity as Movement of Solitons without  
Destruction 

Let us demonstrate some examples of application of non-local GHE with the 
help of the Maple program in the Item 5. Significant remarks: 

1) We investigate the wave movement of two component ionized matter in 
the form of moving solitons. It is known that the Schrödinger-Madelung quan-
tum mechanics leads to the soliton destruction.  

Extremely important that the really working super-conductivity theory should 
lead to the soliton conservation in the frame of Cauchy problem, but not as a 
boundary problem. It means that we should observe the self-organization of 
matter. 

2) The program contains the following Cauchy dimensionless parameters: 

( )0ψ —self-consistent potential and ( )0ψ
ξ

∂
∂




, ( )0u —velocity and ( )0u
ξ
∂
∂




, 

( )0eρ  density of negative particles and ( )0eρ
ξ

∂
∂





, ( )0iρ  density of positive 

particles and ( )0iρ
ξ

∂
∂





, ( )0ep  pressure of negative particles and ( )0ep
ξ

∂
∂





, 

( )0ip  pressure of positive particles and ( )0ip
ξ

∂
∂





, and the mass ratio of hard (H) 

and light (L) particles. The program (Appendix 1) is ready for calculations. 
3) Let us demonstrate some calculations changing the pressure parameters by 

ten orders of magnitude. We introduce the dimensionless soliton energetic tem-
perature ,en solT  using the definition  

,
i

en sol
i

p
T

R
=






,                        (6.1) 

where 
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( )
di iR

ξ

ρ ξ= ∫





.                       (6.2) 

Analogically we have 

( )
de eS

ξ

ρ ξ= ∫


 


.                      (6.3) 

Figures 1-6 reflect the calculations for the Cauchy conditions 
v(0)=1,r(0)=1,s(0)=1/1838,u(0)=1,p(0)=1000, 
q(0)=950,D(v)(0)=0,D(r)(0)=0,D(s)(0)=0,D(u)(0)=0, 
D(p)(0)=0,D(q)(0)=0,R(0)=0,S(0)=0. 
Figures 7-12 reflect the calculations for the Cauchy conditions 
v(0)=1,r(0)=1,s(0)=1/1838,u(0)=1,p(0)=0.000001, 
q(0)=.00000095,D(v)(0)=0,D(r)(0)=0,D(s)(0)=0,D(u)(0)=0, 
D(p)(0)=0,D(q)(0)=0,R(0)=0,S(0)=0. 
Table 1 contains the Cauchy conditions for pressure, the boundaries ξ  

(designated as lim1 and lim2) of the soliton, dimensionless energetic tempera-
ture for positive particles and dimensionless concentration of the captured elec-
trons.  

From our results obtained in the frame of nonlocal physics follow:  
1) Nonlocal quantum hydrodynamics leads to the following physical picture 

of super-conductivity. So called “quasi-particles” are in reality the solitons which 
cannot be discovered in Schrödinger-Madelung theory in principal. 

 

 

Figure 1. Dimensionless energetic temperature R for positive particles 
and dimensionless concentration S of the captured electrons. 
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Figure 2. q— ( )ep ξ  pressure of negative particles, p— ( )ip ξ  pressure 

of positive particles. 
 

 

Figure 3. u—velocity ( )u ξ , r—density ( )iρ ξ . 
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Figure 4. Velocity u— ( )u ξ . 

 

 

Figure 5. s—density ( )eρ ξ . 
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Figure 6. Self-consistent potential v— ( )ψ ξ . 

 

 

Figure 7. Dimensionless energetic temperature R for positive particles 
and dimensionless concentration S of the captured electrons. 
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Figure 8. q— ( )ep ξ  pressure of negative particles, p— ( )ip ξ  pressure 

of positive particles. 
 

 

Figure 9. u—velocity ( )u ξ . 
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Figure 10. r—density ( )iρ ξ . 

 

 

Figure 11. s—density ( )eρ ξ . 
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Figure 12. Self-consistent potential v— ( )ψ ξ . 

 
Table 1. Cauchy conditions for pressure, the boundaries ξ  (designated as lim1 and 
lim2) of the soliton, dimensionless energetic temperature for positive particles and di-
mensionless concentration of the captured electrons. 

( )0ip  ( )0ep  −lim1 lim2 ,en solT  eS  

103 950 424.7759 424.7759 1309.9075 3.8571 

102 95 130.8158 130.8158 436.4822 1.1636 

10 9.5 42.4775 42.4775 130.9130 0.4294 

1 0.95 13.4325 13.4325 41.3996 1.2591 × 10−1 

0.1 0.095 4.2477 4.2477 13.0909 4.5475 × 10−2 

0.01 0.0095 1.3432 1.3432 4.1396 1.4075 × 10−2 

10−3 0.95 × 10−3 0.4247 0.4247 1.3090 0.4019 × 10−2 

10−4 0.95 × 10−4 0.1343 0.1343 0.4139 1.2488 × 10−3 

10−5 0.95 × 10−5 0.04247 0.04247 0.1352 0.3868 × 10−3 

10−6 0.95 × 10−6 0.01343 0.01343 0.04139 1.0099 × 10−4 

 
2) The stability of the quantum object is result of the self organization of the 

ionized matter. In other words—it is self-consistent influence of electric forces 
and quantum pressures. Solitons defines the extremely “stiff” structure. Look at 
Figure 4 and Figure 9—all solitons parts are moving with the same velocity. 

3) Stability can be achieved if soliton has negative “shell” and positive “nuclei” 
and ( ) ( )0 0i ep p>  , or if soliton has positive “shell” and negative “nuclei” and 
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( ) ( )0 0i ep p<  . The moving plane waves remind the structure of “flat atoms” or 
paired electrons in BCS theory. The previous figures display the typical quantum 
objects placed in the bounded region of 1D space, all parts of these objects are 
moving with the same velocity. Namely from calculations follow that in coordi-
nate system moving with the phase velocity, indestructible soliton has the veloc-
ity equal to the phase velocity. Moreover the attempt to impose to soliton to 
move with another group velocity leads to the soliton destruction. 

4) Table 1 demonstrates practically the linear dependence between energetic 
temperature and quantity of captured electrons. All quantum fluctuations in 
quantum GHE (see Equations 3.1-3.6, 3.7-3.12 and relations 3.15-3.17) are pro-
portional to the Planck constant 


. 

7. The Charge Carrier’s Behavior near the Critical Point 

The step function for profiles in the vicinity of the critical temperature cT  can 
be obtained analytically from the nonlocal GHE equations. Really let us consider 
the generalized continuum Equations (4.16) and (4.17). Equation 

( )2
2

1 2 0e e
e e e e e e

u
p u u

u
ρ ρ ψρ ρ ρ ρ
ξ ξ ξ ξ ξ

  ∂ ∂ ∂ ∂ ∂ − + + + − − =  ∂ ∂ ∂ ∂ ∂   

   

     

    



   (7.1) 

can be immediately integrated 

( ) ( )2
2

11 2e e e e e e eu p u u
u

ψρ ρ ρ ρ ρ
ξ ξ

 ∂ ∂
− = − + + − − ∂ ∂ 



       

 



.      (7.2) 

But for all parts of solitons velocity 1u = . Then 

e
e

p ψρ
ξ ξ

∂ ∂
=

∂ ∂

 



 

.                         (7.3) 

In the vicinity of cT  we have , ~e enT const  and Equation (7.3) is written as 
follows 

, ,
e

C en e eT
ρ ψρ
ξ ξ

∂ ∂
=

∂ ∂








 

                      (7.4) 

or 

, ,
ln e

C en eT
ρ ψ
ξ ξ

∂ ∂
=

∂ ∂






 

.                     (7.5) 

After (7.5) integration we have practically step function. 

,
0e Ce enT

e e

ψ

ρ ρ=




  .                        (7.6) 

Analogically for equation  

( )2
2

1 2 0i i e e
i i i i i i

i i

u m m
p u u

m mu
ρ ρ ψρ ρ ρ ρ
ξ ξ ξ ξ ξ

  ∂ ∂ ∂ ∂ ∂ − + + + − + =  ∂ ∂ ∂ ∂ ∂   

   

     

    



  (7.7) 

we find 

, ,
0e

e

i C i en

m
m T

i i

ψ

ρ ρ
−

=




  .                       (7.8) 
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Some remarks concerning the scales relations. Let us remind Homes-Zaanen 
relation [23] [24] [25] [26] 

( )c
B c

T
k T

τ ≈
                         (7.9) 

or taking into account that in the soliton’s boundaries  

1u =                            (7.10) 

we find (see (3.15)) 

2
0

e
em u

τ =
 ,                        (7.11) 

where 0u  is the phase velocity of the soliton’s movement. An attempt to impose 
a velocity different from the phase velocity using Cauchy conditions leads to the 
destruction of the soliton, and hence to the destruction of superconductivity. 
Then  

2
0 ~e B cm u k T                        (7.12) 

and we reach the scaling law (7.9) in the frame of nonlocal physics 

( )c
B c

T
k T

τ ≈
 .                      (7.13) 

This time is very short. By analogy with the theory of gravity, it was called the 
“Planck time” for dissipation. The attempt to tie the superconductivity effects 
with the cosmological problems seems unacceptable only from the first glance. 
The origin of this analogy is connected with nonlocal physical kinetics which 
applicable from the Planck time in the Big Bang theory to the Universe evolution, 
[7]. 

It means that we find the phase velocity 

0
B c

e

k T
u

m
=                        (7.14) 

or (the value e qum υ=  can be titled as quantum kinematic viscosity 
21.158 cm squυ = , 

Planck constant 341.0545726 10 J s−= × ⋅ , Boltzmann constant 
231.38064 J9 K10Bk −= × ) 

6
0

cm0.389 10
s

B c
qu c

k T
u Tυ= = ×



, where cT  is the temperature measured 

in Kelvin. 
The time scale we used 

0 2 2
0 0

qu

B ce k Tm u u
υ

τ = = =
 

.                  (7.15) 

Let us introduce and calculate the corresponding Reynolds number 

0 0
0

0

Re 1e
qu

qu e

u x m
u

m uυ
= = =





.                (7.16) 
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In other words we consider the flow of nonlocal quantum liquid by the condi-
tion Re 1qu = . 

8. The Generalized Non-Local London’s Theory.  
Longitudinal Electro-Magnetic Waves. The Basic  
Equations 

We use generalized nonlocal Maxwell equations to prove the existence of longi-
tudinal electromagnetic waves. To this end let’s differentiate in time both parts 
of the Maxwell equation. 

2

2
c

t tt
∂ ∂ ∂ ∂ × = + ∂ ∂ ∂∂ 

DH j
r

,                     (8.1) 

where c a fl= +j j j , flj  is fluctuation of the current density. We find 
2

0 2
0

1 c

t tt
µµ

µµ
 ∂ ∂ ∂ ∂

× = + ∂ ∂ ∂∂ 

DH j
r

                  (8.2) 

[ ]
2

0 2
0

1 ln c

t t tt
µµµ

µµ
 ∂ ∂ ∂ ∂ ∂

× − = + ∂ ∂ ∂ ∂∂ 

DH H j
r

.            (8.3) 

Obviously the second term in the square bracket can be omitted with the good 
accuracy, we find 

[ ]
2

0 2
0

1 c

t tt
µµ

µµ
 ∂ ∂ ∂ ∂

× = + ∂ ∂ ∂∂ 

DH j
r

                (8.4) 

or 
2

2
0

1 c

ttµµ
 ∂ ∂ ∂ ∂

× × = − − ∂ ∂ ∂∂ 

DE j
r r

,                (8.5) 

It is known that the double vector product is 

( ) ( )× × = ⋅ − ⋅a b c b a c c a b .                   (8.6) 

Then  

0 0 0

1 1 1
µµ µµ µµ
 ∂ ∂ ∂ ∂ × × = ⋅ − ∆   ∂ ∂ ∂ ∂  

E E E
r r r r

.           (8.7) 

Then the Equation (8.4) is written as follows 
2

2
0 0

1 1c

tt µµ µµ
∂ ∂ ∂ ∂ + = ∆ − ⋅ ∂ ∂ ∂∂  

D j E E
r r

               (8.8) 

or if the electric permeability does not depend on time we have 
2

0 2
0

1c

tt
εε

µµ
∂ ∂  ∂ ∂  + = ∆ − ⋅  ∂ ∂ ∂∂   

E j E E
r r

               (8.9) 

or 
2

02 2

1 c

tv tφ

µµ∂ ∂ ∂ ∂ + = ∆ − ⋅ ∂ ∂ ∂∂  

E j E E
r r

                (8.10) 

where 
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0 02

1
vφ

εε µµ= .                          (8.11) 

We write (8.10) in the form 
2

0 02 2

1 a fl

t tv tφ

µµ µµ∂ ∂ ∂ ∂ ∂ + + = ∆ − ⋅ ∂ ∂ ∂ ∂∂  

E j j E E
r r

,       (8.12) 

where (see [4] [8]) 

( ) ( )0 0 0
fl p

t
τ ρ ρ ρ∂ ∂ ∂ = + ⋅ + − ∂ ∂ ∂ 

j v v v g
r r

           (8.13) 

or 

( ) ( ) ( )0 0 0
fl

B
q pnq nq nk T nq

t m
τ ∂ ∂ ∂ = + ⋅ + − ∂ ∂ ∂ 

j v v v g
r r

.      (8.14) 

Then the nonlocal Equation (8.12) takes the form 

( ) ( )

2

02 2

0

0 0

1

.

a

a

a
B

t tv t

t
q nk T nq

t m

φ

µµ τ

µµ

µµ τ

∂ ∂ ∂ +  
∂ ∂∂  

∂ ∂ ∂ = ∆ − ⋅ − ∂ ∂ ∂ 
∂  ∂ ∂  − ⋅ + −  ∂ ∂ ∂  

E j

E E j
r r

j v g
r r

        (8.15) 

Let be  
a σ=j E ,                         (8.16) 

where σ  is the coefficient of conductivity. In the simplest Drude model 
2

2 r
ne
m

σ τ∗= ,                        (8.17) 

where n is numerical electron density, m∗  is effective mass, rτ  is the relaxa-
tion time, the dimension of the conductivity is s−1. As we see from the definition 
of m∗ , the introduction of an “effective” mass translates the relaxation time to 
the level of the fitting parameter. If nonlocal parameter constτ =  and the coef-
ficient of conductivity ( ), ,x y zσ σ= , we have 

( ) ( )

2 2
2

02 2

2 2
0

2 2
0 0 0

a

a

a
B

v
t t

v v
t

qv v nk T nq
t t m

φ

φ φ

φ φ

µµ τ

µµ

µµ τ µµ τ

∂ ∂
+

∂ ∂
 ∂ ∂  ∂ = ∆ − ⋅ −  ∂ ∂ ∂  

∂ ∂ ∂ ∂   − ⋅ − −   ∂ ∂ ∂ ∂   

E j

E E j
r r

j v g
r r

      (8.18) 

or 

( )

( )

2
2

02
0 0 0

0

1

B

v
t tt

q nk T nq
t m

ϕ
τσ σ τ σ
ε ε ε ε ε ε

τ
ε ε

  ∂  ∂ ∂  ∂ ∂ ∂   + = ∆ − ⋅ − − ⋅      ∂ ∂ ∂ ∂ ∂∂      
∂ ∂ − − ∂ ∂ 

E EE E Ev
r r r

g
r

 (8.19) 
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Equation (8.19) is the basement relation for following investigation. 

9. The Nonlocal Theory of Longitudinal Electromagnetic  
Waves. The 1D Non-Stationary Case 

Let us investigate the 1D non-stationary case. For the 1D case (x—direction), we 
find from (8.19) 

( )

( )

2

02
0 0 0

0

1

.

x x
x x

B x

E E
E v

t t xt

q nk T nqg
t m x

τσ σ τ σ
ε ε ε ε ε ε

τ
ε ε

  ∂ ∂ ∂ ∂ + = − −   ∂ ∂ ∂∂   
∂ ∂ − − ∂ ∂ 

           (9.1) 

After integration we find 

( )

( ) ( )

0
0 0 0

0

1

1 ,

x
x x x

B x

E
E E v

t x

q nk T ng f x
m x

τσ σ τ σ
ε ε ε ε ε ε

τ
ε ε

  ∂ ∂
+ = − −  ∂ ∂ 

∂ − − + ∂ 

          (9.2) 

where the Boltzmann constant 231.380649 10 J KBk −= × . 
Let us consider the main features of the solution of Equation (9.2). With this 

aim we suppose that 0xv const= , constσ =  and the last term of the equation 
can be omitted. The penultimate term in Equation (9.2) can be omitted if the 
pressure gradient can compensate the influence of the gravitation force acting on 
the volume unit and ( ) 0f x = . We have 

0

0 0 0

1 x x x
x

E v E
E

t x
τστσ σ

ε ε ε ε ε ε
  ∂ ∂
+ + = −  ∂ ∂ 

.          (9.3) 

The solution of this equation is a damping longitudinal E-wave. Really 

0

0 0 0

1exp 1 x
x

x

v
E x x t

v
τστσ

τ ε ε ε ε
    

= − Φ + −    
     

.          (9.4) 

Conclusions: 
1) The validity of the solution (9.4) could be verified by the direct substitution 

of this relation (9.4) into Equation (9.3). 
2) If the non-locality parameter τ  is equal to zero, the electric intensity for 

the longitudinal waves (EMLW) also turns into zero. It means that EMLW can-
not exist in the frame of the classic Maxwell electrodynamics. 

Equation (9.2) can be written in the form 

( )0
0 0 0 0

1 x x
x x B x

E E qv E nk T g
t x m x

τσ τσ σ τ ρ
ε ε ε ε ε ε ε ε

  ∂ ∂ ∂ + + = − − −   ∂ ∂ ∂  
.   (9.5) 

The last term in square bracket takes into account the influence of the pres-
sure gradient and the gravitation force. If nonlocal parameter 0τ = , then 

0

x
x

E
E

t
σ
ε ε

∂
= −

∂
                       (9.6) 

and we have in the local electrodynamics the exponential xE  attenuation (if 
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( ) 0f x =  in (9.2)) without the wave creation 

, 0
0

expx x t
tE E σ

εε=

 
= − 

 
.                    (9.7) 

The existence of longitudinal electromagnetic waves does not contradict 
(nonlocal) electrodynamics if longitudinal waves are actually detected and the 
medium in which they are generated is known. Then in this case the problem of 
substantiating such waves in electrodynamics is reduced to the search for ma-
terial equations characterizing the response of the medium to the influence of 
the field and the joint solution of these material equations and Maxwell’s equa-
tions, with appropriate boundary conditions. 

Let be  

0

0 0

1
v

x t const C
τστσ

ε ε ε ε
 
+ − = = 

 
.                (9.8) 

Then 

0

0 0

d1
d

vx
t

τστσ
ε ε ε ε

 
+ = 

 
                      (9.9) 

or 
1

0 0 0
0 0

00 0 0 0 0

d 11
d 1

EMLW
v vxv v v

t
τσ τσ ε ετσ τσ

ε εε ε ε ε ε ε ε ε τσ ε ε τσ
τσ

−
 

= = + = = =  + +  +
. (9.10) 

Low permittivity (low epsilon) materials are now attracting wide attention due 
to potential novel applications in optics and radio communications. Surface 
plasmon polaritons (SPPs) are electromagnetic waves that travel along a met-
al-dielectric or metal-air interface, practically in the infrared or visible-frequency. 
The term “surface plasmon polariton” explains that the wave involves both 
charge motion in the metal (“surface plasmon”) and electromagnetic waves in 
the air or dielectric (“polariton”). Application of SPPs enables subwavelength 
optics in microscopy and lithography beyond the diffraction limit. It also enables 
the first steady-state micro-mechanical measurement of a fundamental property 
of light itself: the momentum of a photon in a dielectric medium.  

Longitudinal electromagnetic waves play important role in plasma, in surface 
plasmon polaritons in anisotropic materials, in space-charge waves in semicon-
ductor materials. Then for so called that in Epsilon Near Zero (ENZ) materials 
the velocity 0EMLWv v≅  (the usual light velocity). For the following details of the 
wave process one needs the explicit form of the ( ),x tΦ  function and boundary 
and initial conditions. As we see from (9.10)  

0EMLWv v→  if 0ε → .                    (9.11) 

Obviously to overcome this velocity limit is possible only in the systems with 
negative conductivity where formally  

EMLWv →∞  if 0ε ε
σ

τ
→ − .                 (9.12) 
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The possibility of the appearance of negative conductivity in a non-equilibrium 
electron system, i.e., a situation in which the current flows opposite to the elec-
tric field, was apparently indicated for the first time by Krömer in the late 1950s 
[27]. The mechanism of absolute negative conductivity (ANC) in a two-dimensional 
electron system placed into magnetic and ac electric fields, which is associated 
with two-dimensional electron scattering by impurities, accompanied by ac field 
photon absorption, was proposed in [28] [29]. The state with negative conduc-
tivity is unstable, the system decays into domains, and the measured macros-
copic resistance becomes zero. The existence of this effect was experimentally 
confirmed in 2002 [30].  

10. Non-Local Magnetic Field Evolution in Plasma 

We consider the 3D non-stationary magnetic field evolution in plasma. With 
this aim let us transform Equation (8.19) written as follows 

( )

( )

2
2

02
0 0 0

0

1

B

v
t tt

q nk T nq
t m

φ
τσ σ τ σ
ε ε ε ε ε ε

τ
ε ε

  ∂  ∂ ∂  ∂ ∂ ∂   + = ∆ − ⋅ − − ⋅      ∂ ∂ ∂ ∂ ∂∂      
∂ ∂ − − ∂ ∂ 

E EE E Ev
r r r

g
r

 (10.1) 

Let us apply the vector product operator to the left and right sides of (10.1) 

( ) [ ]

2
2

2
0 0

0
0 0

1

.

v
tt

nq
t t

φ
τσ σ
ε ε ε ε

τ τσ
ε ε ε ε

  ∂ ∂ ∂  ∂ ∂  ∂ ∂ + × = × ∆ − ⋅ − ×    ∂ ∂ ∂ ∂ ∂ ∂∂    
∂ ∂ ∂ ∂ ∂ − × ⋅ + × ∂ ∂ ∂ ∂ ∂ 

E E E E
r r r r r

Ev g
r r r

 (10.2) 

Let us remind that in the coordinate notations we have 

( ) ( ) ( ) ( )0 0 0 0x y zE E E
x y z

σ σ σ σ∂ ∂ ∂ ∂ ⋅ = + + ∂ ∂ ∂ ∂ 
Ev v v v

r
,      (10.3) 

We use e as absolute charge of electron, 0v  as a mean velocity of the elec-
tron motion and the operator relation  

0p∂ ∂ × ≡ ∂ ∂ r r
                        (10.4) 

The corresponding current density is    

0 0en e= −j v                          (10.5) 

We introduce also the charge number density  

e eenρ =                           (10.6) 

and the character relaxation time 

0
r

ε ε
τ

σ
= .                         (10.7) 

We transform (10.2):  
1) Keeping only the terms proportional to the first power of the non-local pa-

rameter τ , 
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2) Using the relations (for simplicity) constε = , constσ = ; the following 
transformation should be taken into account 

( ) ( ) ( ) ( )0 0 0 0
0 0

0 0
0 0

0 0
0 0 0

0 0
0 0

1

.

x y z

e e

E E E
x y z

τ τσσ
ε ε ε ε

τσ τσ
ε ε ε ε
τσ τσ
ε ε ε ε ε ε
τσ τσ
ε ε ε ε

 ∂ ∂ ∂ ∂ ∂ ∂ × ⋅ = × + +  ∂ ∂ ∂ ∂ ∂ ∂   
∂ ∂ ∂ ∂   = × ⋅ + × ⋅  ∂ ∂ ∂ ∂   

∂ ∂ ∂ ∂   = × ⋅ + × ⋅  ∂ ∂ ∂ ∂   
∂ ∂ ∂ = − × + × ⋅ ∂ ∂ ∂ 

Ev v v v
r r r

v E E v
r r r r

v D E v
r r r r

j E v
r r r

 (10.8) 

The last line in (10.8) corresponds the physical system in which the charge 
current is realized by electrons. Extremely important that the last term in (10.8) 
contains the hydrodynamic velocity 0ev , which can be defined only as a result 
of the whole hydrodynamic problem.  

Then if we want to separate the electro-dynamic and hydro-dynamic prob-
lems we should neglect the changes in the space of the hydrodynamic velocity 
fluctuations. Therefore we use the relation 

( )0 0
0 0

.e
τ τσσ
ε ε ε ε

∂ ∂ ∂ × ⋅ = − × ∂ ∂ ∂ 
Ev j

r r r
            (10.9) 

Using also the Maxwell relation 

t
∂ ∂
× = −

∂ ∂
BE

r
,                     (10.10) 

we write (10.2) as follows (omitting the gravitation influence) 
2

2
02

0

1 11
r r r

v
t t t tt φ

τ τ
τ τ τ εε

  ∂ ∂ ∂  ∂ ∂  ∂ ∂ ∂ ∂ − + = × ∆ − ⋅ + + ×    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂    

B BE E j
r r r r

.  

(10.11) 

Keeping as before only the terms proportional to the first power of the 
non-local parameter τ , we can use the Maxwell relation 

0 t
∂ ∂

+ = ×
∂ ∂
Dj H

r
.                       (10.12) 

Then 
2

2
2

0 0

0

1

1

r

v
t t tt

t t

φ
τσ σ
ε ε ε ε

τ
τ εε

  ∂ ∂ ∂  ∂ ∂  ∂ ∂ − + = × ∆ − ⋅ +    ∂ ∂ ∂ ∂ ∂ ∂∂    
∂ ∂ ∂ ∂ + × × − 
∂ ∂ ∂ ∂ 

B BE E
r r r

DH
r r

    (10.13) 

or 
2

2
2

0 0

2

2
0 0

1

1 1

r r

v
t t tt

t t

φ
τσ σ
ε ε ε ε

τ τ
τ εε τ εε

  ∂ ∂ ∂  ∂ ∂  ∂ ∂ − + = × ∆ − ⋅ +    ∂ ∂ ∂ ∂ ∂ ∂∂    
∂ ∂ ∂ ∂ ∂ + × × − × ∂ ∂ ∂ ∂∂ 

B BE E
r r r

H D
r r r

 (10.14) 
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or 
2

2
2

0 0

2

2
0

1

1

r r

v
t t tt

t t t

φ
τσ σ
ε ε ε ε

τ τ
τ ε ε τ

  ∂ ∂ ∂  ∂ ∂  ∂ ∂ − + = × ∆ − ⋅ +    ∂ ∂ ∂ ∂ ∂ ∂∂    
∂ ∂ ∂ ∂ ∂ + × × + ∂ ∂ ∂ ∂ ∂ 

B BE E
r r r

BH
r r

      (10.15) 

Let us use the identity  

∂ ∂ ∂ ∂   × × ≡ ⋅ − ∆   ∂ ∂ ∂ ∂   
B B B

r r r r
                (10.16) 

and the Maxwell relation  

0,∂
⋅ =

∂
B

r
                            (10.17) 

we have 
2

2
2

0 0

2

2
0 0

1

1 1

r r

v
t t tt

t t t

φ
τσ σ
ε ε ε ε

τ τ
τ µ µ ε ε τ

  ∂ ∂ ∂  ∂ ∂  ∂ ∂ − + = × ∆ − ⋅ +    ∂ ∂ ∂ ∂ ∂ ∂∂    
∂ ∂ ∂

− ∆ +
∂ ∂ ∂

B BE E
r r r

BB

      (10.18) 

or, if the reverse relaxation time is 

0

1

r

σ
τ ε ε

= ,                         (10.19) 

we have 
2

2 2
2

11 2
r r r

v v
t t t tt φ φ

τ τ
τ τ τ

  ∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂  + + = ∆ − × ∆ − ⋅    ∂ ∂ ∂ ∂ ∂ ∂ ∂∂    

B B B E E
r r r

. (10.20) 

Then 
2

2 2
2

11 2
r r r

v v
t t t tt φ φ

τ τ
τ τ τ

  ∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂  + + = ∆ + × × ×    ∂ ∂ ∂ ∂ ∂ ∂ ∂∂    

B B B E
r r r

  (10.21) 

or 
2

2 2
2

11 2
r r r

v v
t t t t tt φ φ

τ τ
τ τ τ

  ∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂  + + = ∆ − × ×    ∂ ∂ ∂ ∂ ∂ ∂ ∂∂    

B B B B
r r

   (10.22) 

or after integration on time we reach 

( )
2

2 2
2

11 2 , ,
r r r

v v f x y z
tt φ φ

τ τ
τ τ τ

  ∂ ∂  ∂ ∂  + + = ∆ − × × +    ∂ ∂ ∂∂    

B B B B
r r

.  (10.23) 

11. Quantization in the Theory of the Magnetic Field  
Penetration. Comparison of the Non-Local and London’s  
Theories 

Let us consider the 1D non-stationary electron evolution in plasma. We suppose 
that 

rτ τ .                         (11.1) 
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After using (11.1) we have from (10.23) 

( )
2 2

2
2 2

1
Tr

B B Bv f x
tt xφ

∂ ∂ ∂
+ = +

∂∂ ∂
.               (11.2) 

In the following Tr  and Lr  are character time and length relaxation. Let us 
remind the London’s equation written here as 

2

0
e

e

n e
m

µµ∆ =B B                      (11.3) 

or 

2

1
∆ =



B B ,                       (11.4) 

where 


 is the London penetration depth.  

0
e

e

n
e

m
µµ= .                     (11.5) 

This London equation predicts that the magnetic field in a superconductor 
decays exponentially decays from whatever value it possesses at the surface. 

We choose the function ( )f x  in the form 

( )
2

2Lr

v
f x Bφ→ − ,                     (11.6) 

or 

( ) 2

1
Tr

f x B→ − .                     (11.7) 

Relation 

( )
2 2

2
02 2 2

1 1
T Tr r

B B Bv B x
tt xφ

∂ ∂ ∂
+ = −

∂∂ ∂
               (11.8) 

is telegraph equation which contains now Tr r constτ = =  and v constφ =  as 
calculations parameters.  

Solution of Equation (11.8) can be written in the form 

( ) ( ) ( )2T L

1
, e sin cos 0,0 e

L
r r

t x

n n
n r

nxB x t B t Bλ
∞− −

=

= +
π∑ ,       (11.9) 

where Lr  is the character scale of the relaxation length. 
Solution (11.9) responds to natural initial and boundary conditions, namely 

( ) ( ) ( )
1
2 T

1
0, e sin 0,0r

t

n n
n

B t B t Bλ
∞−

=

= +∑ ,            (11.10) 

( )0,0B const= ,                    (11.11) 

( ) ( ) L, 0,0 e r

x

B x t B
−

→ ∞ = ,                (11.12) 

( ) ( )
1
2 T

1
, e sin cos

L
r

t

n n
n r

nxB x t B tλ
∞−

=

→ ∞ =
π∑ .          (11.13) 
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Solution (11.9) can satisfy the Equation (11.8) if a condition should be satis-
fied. This condition can be found after the direct substitution of (11.9) in (11.8). 
We have 

( )
2 2

2T 2 2

1

1 1 1e sin cos 0
2T 2T T L L

r

t

n n n
n r r r r r

n nxB v tφλ λ
∞−

=

     − − + =    
    

π



π∑ .  (11.14) 

The relation (11.14) is fulfilled if the expression in the curly bracket is equal to 
zero. 

2 2
2 21 1 1 0

2T 2T T Ln
r r r r

nvφλ
   

− − + =   
   

π ,              (11.15) 

or 

( )22 2 1T
4n r nλ = −π                        (11.16) 

or 

( )21 1
T 4n

r

nλ π= − .                     (11.17) 

As we see in the stationary case we have known equation 
2

2 0
02 2

1
Tr

B
v B

xφ
∂

=
∂

,                      (11.18) 

or 
2

2 0
02Lr

B
B

x
∂

=
∂

,                       (11.12) 

which has a solution 

( ) L
0 0,0 e r

x

B B
−

= .                      (11.13) 

Finally, we have non-stationary solution as a wave with the time attenuation. 

( ) ( ) ( )2T L

1
, e sin cos 0,0 e

L
r r

t x

n n
n r

nxB x t B t Bλ
∞− −

=

= +
π∑ ,        (11.14) 

( )21 1 1~ , 1,2,
T 4 Tn

r r

n n nλ = − π =π               (11.15) 

and approximately we reach 

( ) ( ) ( )2T L

1
, e sin cos 0,0 e

T L
r r

t x

n n
n r r

nt nxB x t B t Bλ
∞− −

=

π π
= +∑ .      (11.16) 

Some conclusions: 
1) Relation (11.16) defines penetration of the longitudinal magnetic field in 

space. 
2) This non-stationary attenuation has the character of wave damping. 
3) The stationary case corresponds to the London’s regime. 
4) It is interesting to notice that the regime of the non-stationary wave attenu-
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ation exists for the evolution of the spherical object without fields (see Appendix 
3). 

12. Nonlocal Pointing-Umov Theorem 

Let us obtain now the generalized nonlocal formulation of the Pointing-Umov 
theorem. In other words we intend to obtain the law of the energy conservation 
for electro-magnetic processes in the frame of non-local physics. We use the 
Equation (8.19) for following transformations. 

( )

( )

2
2

02
0 0 0

0

1

B

v
t tt

q nk T nq
t m

φ
τσ σ τ σ
ε ε ε ε ε ε

τ
ε ε

  ∂  ∂ ∂  ∂ ∂ ∂   + = ∆ − ⋅ − − ⋅      ∂ ∂ ∂ ∂ ∂∂      
∂ ∂ − − ∂ ∂ 

E EE E Ev
r r r

g
r

 (12.1) 

We use the vector identity  

∂ ∂ ∂ ∂   × × ≡ ⋅ − ∆   ∂ ∂ ∂ ∂   
E E E

r r r r
,                (12.2) 

then 

( )

( )

2
2

02
0 0 0

0

1

.B

v
t tt

q nk T nq
t m

φ
τσ σ τ σ
ε ε ε ε ε ε

τ
ε ε

  ∂  ∂ ∂  ∂ ∂ ∂   + = − × × − − ⋅      ∂ ∂ ∂ ∂ ∂∂      
∂ ∂ − − ∂ ∂ 

E EE Ev
r r r

g
r

 (12.3) 

Let us transform now the first term of the right-hand-side of (12.3) 

( )

( )

2
2

02
0 0 0

0

1

.B

v
t t tt

q nk T nq
t m

φ
τσ σ τ σ
ε ε ε ε ε ε

τ
ε ε

  ∂ ∂ ∂ ∂ ∂ ∂   + = × − − ⋅    ∂ ∂ ∂ ∂ ∂∂     
∂ ∂ − − ∂ ∂ 

E EB Ev
r r

g
r

    (12.4) 

After integration on time, we reach 
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( ) ( )

2
0

0 0 0

0

1

, , ,B

v
t

q nk T nq x y z
m

φ
τσ σ τ σ
ε ε ε ε ε ε

τ
ε ε

  ∂ ∂ ∂   + = × − − ⋅    ∂ ∂ ∂    
∂ − − + ∂ 

E B E Ev
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        (12.5) 

where a function ( ), ,x y zF  is defined by the initial and boundary conditions. 
Scalar multiplication by E  of the both parts of Equation (12.5) gives the rela-
tion 

( )

( ) ( )
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0 0 0

0

1
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E g E F
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   (12.6) 

Let us use the vector identity  

[ ]0 0µ µ µ µ∂ ∂ ∂   ⋅ × ≡ ⋅ × − ⋅ ×   
∂ ∂ ∂   

E B H E E H
r r r

.          (12.7) 
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We find 
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or (for simplicity constσ = , constε =  and constµ = ) 
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or 
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or 
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It is the nonlocal formulation of the Umov-Pointing theorem which takes into 
account transport processes in physical system. In the local case we find 

[ ] ( )
2 2

20 0
0 , , .

2
E H

E x y z
t
ε ε µ µ

σ ε ε
+∂ ∂

= − ⋅ × − + ⋅
∂ ∂

E H E F
r

     (12.12) 

As usual a function ( ), ,x y zF  is originated by integration on time and can 
be taken as zero; we obtain the classical formulation of the Umov-Pointing 
theorem. 

[ ]
2 2

2 0 0 div ,
2

E H
E

t
ε ε µ µ

σ
 +∂

= − − ∂  
E H .             (12.13) 

This equation is well known local energy equation, where the left hand side of 
this equation corresponds to the Joule heating.  

13. The Soliton Movement in One Species Physical System  
about the Heat Transfer in Graphene 

Particular attention of researchers has been recently attracted to a new carbon 
material, i.e., graphene, consisting of a single layer of carbon atoms and having a 
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planar hexagonal structure. Electromagnetic waves propagating in carbon struc-
tures become highly nonlinear even at relatively weak fields, which results in 
possible propagation of electromagnetic solitary waves (which are soliton ana-
logs, or even solitons) in carbon nanotubes and graphene (see review in [31] [32] 
[33]). The discussed properties of carbon structures have generated both in-
creased theoretical interest and attempts at application in nonlinear optical de-
vices. 

The fundamental result also consists in discovering of the extremely high 
thermal conductivity in two-dimensional crystals including graphene. This effect 
(which takes place even in room-temperature) can be explained as a result of so-
liton movements without destruction. This effect was forecasted by me many 
years ago. Really, the transport processes in graphene as the effect of the soliton 
movement are investigated by me many years ago. The fundamental monograph 
[5] contains Chapter 6 (Quantum Solitons in Solid Matter), Item 6.2 (Applica-
tion of non-local quantum hydrodynamics to the description of the charge den-
sity waves in the graphene crystal lattice) with the fundamental conclusion (p. 
178): “Important conclusion: high temperature superconductors demon-
strate new type of electronic order and modulation of atomic positions. The 
above mentioned graphene properties can be explained only in the frame of 
the self-consistent non-local quantum theory which leads to the appearance 
of the soliton waves moving in graphene.” 

Then it is impossible to talk about individual particles as heating transfer car-
riers. In the definite sense the high temperature super conductivity and super 
heat conductivity have the same origin—the appearance of moving solitons 
without destruction.  

Let us demonstrate the example of the electron soliton movement in 1D phys-
ical system. 

We transform nonlocal Maxwell equation 

( )4 e
e eE u

x t x
ρ

ρ τ ρ
 ∂ ∂ ∂ = − −  ∂ ∂ ∂  

π ,               (13.1) 

where eρ  is the electron charge density, or 

( )
2

2 4 e
e e e

n
U n n u e

t xx
τ

 ∂ ∂ ∂ − = − −  ∂ ∂∂   
π ,              (13.2) 

where eU  is electrical potential and en  is the electron number density. Equa-
tion (13.2) can be written in terms of wave parameters ( x Ctξ = − ). Namely 

( )
2

2 4e
e

eU C u
m

ρρ τ ρ
ξ ξξ

  ∂ ∂ ∂
− = − − −  ∂ ∂∂   

π ,           (13.3) 

where ρ  is the mass density, or introducing the absolute electron charge and 
potential e eU U m=  we find 

( )
2

2 24
e

e
U C u

m
ρρ τ ρ
ξ ξξ

  ∂ ∂ ∂
= + +  ∂ ∂ 

π
∂ 

.             (13.4) 

https://doi.org/10.4236/jmp.2021.125037


B. V. Alexeev 
 

 

DOI: 10.4236/jmp.2021.125037 586 Journal of Modern Physics 
 

We use the following system of scales: 
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m x
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The single independent scale is 0x .  
Taking into account 271.054572 10 erg s−= × ⋅ , 270.9109383 10 gem −= × , we 

have 

cm1.0759538
sem

=
 , s0.964058

cm
em
=



, 2

1
u

τ =


.      (13.7) 

The considered physical system works in Meissner regime, and then we 
needn’t to use the influence of magnetic field. We reach the system of dimen-
sionless equations 
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Appendix 2 contains the corresponding Maple program. 
The following Figure 13 reflects the result of calculations for the Cauchy con-

ditions: 
u(0)=1,p(0)=2,r(0)=1,D(u)(0)=0,D(p)(0)=0,D(r)(0)=0, D(v)(0)=0,v(0)=1.  
As we see from Figure 13: the pressure distribution (leading to the heat 

transport) and the density distribution (leading to the charge transport) have the 
character of moving solitons. 
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Figure 13. Density r ( ρ )—solid line, velocity u ( u )—dashed line, pres-

sure p ( p )—dash-dot line, self-consistent potential v (U )—dotted line. 

14. Discussion, Principal Derivations, Conclusion and  
Proposals 

Research of superconductors is curried out very actively. But in spite of obvious 
success, the following conclusion could be established: 

1) Contemporary theories of superconductivity based on the Schrödinger eq-
uation, practically exhaust their arguments and have no possibility to explain ef-
fects of the high temperature superconductivity. 

2) Contemporary theories of superconductivity (including BCS) based on the 
Schrödinger equation, can’t propose the principles of search and creation of su-
perconducting materials. 

The most impressive demonstration of these difficulties consists in the fun-
damental distinction between a strange metal and a conventional metal; in other 
words in the absence of well-defined quasi-particles in the frame of local physics. 
This is manifested in transport properties which defy conventional theory, the 
most famous of which is a T-linear resistivity that persists from nearly 0 K to 
high temperatures above the proposed Mott-Ioe-Regel (MIR) limit, beyond 
which Boltzmann theory ceases to be valid.  

Without exception, all existing before proposals fail this test. Most of these 
theories depart from the assumption that the electrical currents are carried by 
one or the other system of quasi-particles. This is fundamental: it is impossible 
to identify the simplicity principle dealing with particle physics. The transport is 
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assumed to be due to thermally excited quasi-particles behaving like classical 
balls being scattered in various ways, dumping eventually their momentum in 
the lattice. However, it is a matter of principle that the physics of such qua-
si-particles in real solids is never simple. These interact with phonons which are 
very efficient sources of momentum dissipation which should be strongly tem-
perature dependent for elementary reasons.  

The conclusion is that quasi-particles are quantum solitons which are moving 
without destruction. 

From position of the quantum non-local hydrodynamics, the problem of 
search and creation of superconductive materials come to the search of materials 
which lattices ensure the soliton movement without destruction. In my opinion, 
the mentioned materials can be created artificially using the technology of the 
special introduction of quantum dots in matrices on the basement of proposed 
quantum hydrodynamics. It is known that technology of material creation with 
special quantum dots exists now in other applications. 
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Appendix 1 

Maple program for modeling of soliton motion in two species physical 
system. 

(the program is ready for application) 
The ratio L/H is ratio of masses of the light and heavy particles; for example L 

= 1, H = 1838. 
dsolve[interactive]({ 
diff(v(t),t$2)=-r(t)*(L/H)+(L/H)^2*diff(r(t)*u(t)-r(t),t)/u(t)^2+ 
s(t)-diff(s(t)*u(t)-s(t),t)/u(t)^2, 
diff(r(t)*(1-u(t)),t)+(L/H)*diff(diff(p(t)+r(t)+r(t)*u(t)^2- 
2*r(t)*u(t),t)/u(t)^2,t)+(L/H)^2*diff(r(t)*diff(v(t),t)/u(t)^2,t)=0, 
diff(s(t)*(1-u(t)),t)+diff((diff(q(t)+s(t)+s(t)*u(t)^2-2*s(t)*u(t),t))/u(t)^2,

t)-diff(s(t)*diff(v(t),t)/u(t)^2,t)=0, 
diff((r(t)+s(t))*u(t)^2+p(t)+q(t)-(r(t)+s(t))*u(t),t)+ 
diff(diff(2*r(t)*u(t)^2+2*p(t)-r(t)*u(t)-r(t)*u(t)^3- 
3*p(t)*u(t),t)/(u(t)^2*(H/L)),t)+ 
diff(diff(2*s(t)*u(t)^2+2*q(t)-s(t)*u(t)-s(t)*u(t)^3- 
3*q(t)*u(t),t)/u(t)^2,t)+ 
diff(r(t)*diff(v(t),t)*(L/H)^2/u(t)^2,t)- 
diff(s(t)*diff(v(t),t)/u(t)^2,t)+ 
r(t)*diff(v(t),t)*(L/H)-s(t)*diff(v(t),t)- 
(L/H)^2*diff(v(t),t)*diff(r(t)*(u(t)-1),t)/u(t)^2+ 
diff(v(t),t)*diff(s(t)*(u(t)-1),t)/u(t)^2- 
2*diff(((L/H)^2*r(t)-s(t))*diff(v(t),t)/u(t),t)=0, 
diff(r(t)*u(t)^3+5*p(t)*u(t)-r(t)*u(t)^2-3*p(t),t)+ 
(L/H)*diff(diff(2*r(t)*u(t)^3+10*p(t)*u(t)-r(t)*u(t)^4-8*p(t)*u(t)^2-5*p(

t)^2/r(t)-r(t)*u(t)^2-3*p(t),t)/u(t)^2,t)+ 
(L/H)^2*diff((2*r(t)*u(t)-3*r(t)*u(t)^2-5*p(t))*diff(v(t),t)/u(t)^2,t)+ 
2*(L/H)*r(t)*diff(v(t),t)*u(t)- 
2*(L/H)^2*diff(v(t),t)*diff(r(t)*u(t)^2+p(t)-r(t)*u(t),t)/u(t)^2- 
2*(L/H)^3*r(t)*diff(v(t),t)^2/u(t)^2=-(p(t)-q(t))*u(t)^2*((L+H)/L), 
diff(s(t)*u(t)^3+5*q(t)*u(t)-s(t)*u(t)^2-3*q(t),t)+ 
diff(diff(2*s(t)*u(t)^3+10*q(t)*u(t)-s(t)*u(t)^4-8*q(t)*u(t)^2-5*q(t)^2/s(

t)-s(t)*u(t)^2-3*q(t),t)/u(t)^2,t)+ 
diff(diff(v(t),t)*(3*s(t)*u(t)^2+5*q(t)-2*s(t)*u(t))/u(t)^2,t)- 
2*s(t)*diff(v(t),t)*u(t)+ 
2*diff(v(t),t)*diff(s(t)*u(t)^2+q(t)-s(t)*u(t),t)/u(t)^2-2*s(t)*diff(v(t),t)^2

/u(t)^2=-(q(t)-p(t))*u(t)^2*((L+H)/L), 
diff(R(t),t)=r(t),diff(S(t),t)=s(t), 
v(0)=1,r(0)=1,s(0)=1/1838,u(0)=1,p(0)=1000,q(0)=950,R(0)=0, S(0)=0, 
D(v)(0)=0,D(r)(0)=0,D(s)(0)=0,D(u)(0)=0,D(p)(0)=0,D(q)(0)=0 
}); 
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Appendix 2 

Maple program for modeling of soliton motion in one species physical 
system. 

(the program is ready for application) 
dsolve[interactive]({ 
diff(r(t)*(1-u(t)),t)+diff((diff(p(t)+r(t)+r(t)*u(t)^2-2*r(t)*u(t),t))/u(t)^2,

t)+diff(r(t)*diff(v(t),t)/u(t)^2,t)=0, 
diff(r(t)*u(t)^2+p(t)-r(t)*u(t),t)+diff(diff(2*r(t)*u(t)^2+2*p(t)-r(t)*u(t)-

r(t)*u(t)^3-3*p(t)*u(t),t)/u(t)^2,t)+diff(diff(v(t),t)*r(t)/u(t)^2,t)+r(t)*diff(
v(t),t)-diff(v(t),t)*diff(r(t)*(u(t)-1),t)/u(t)^2- 

2*diff(diff(v(t),t)*r(t)/u(t),t)=0, 
diff(r(t)*u(t)^2+3*p(t)-r(t)*u(t)^3-5*p(t)*u(t),t)-diff(diff(2*r(t)*u(t)^3+

10*p(t)*u(t)-r(t)*u(t)^2-3*p(t)-r(t)*u(t)^4-8*p(t)*u(t)^2-5*p(t)^2/r(t),t)/u
(t)^2,t)+diff(diff(v(t),t)*(3*r(t)*u(t)^2+5*p(t))/u(t)^2,t)-2*r(t)*diff(v(t),t)*
u(t)-2*diff(r(t)*diff(v(t),t)/u(t),t)+2*diff(v(t),t)*(r(t)*diff(v(t),t)+diff(p(t)+r
(t)*u(t)^2-r(t)*u(t),t))/u(t)^2=0, 

diff(v(t),t$2)=r(t)+(1/u(t)^2)*diff(r(t)*(1+u(t)),t), 
u(0)=1,p(0)=2,r(0)=1,D(u)(0)=0,D(p)(0)=0,D(r)(0)=0,D(v)(0)=0,v(0)=1}

); 

Appendix 3 

The non-stationary wave attenuation of the spherical object without 
fields. 

Let us consider the nonlocal space—time evolution of the spherical object. We 
suppose:  

1) The nonlocal parameter constτ = . 
2) Radial velocity of the object 0rv const= . 
3) The thermal velocity Tv const= , then  

2
Tp vρ= .                          (A3.1) 

The nonlocal system of hydrodynamic equation has the following form—the 
continuity equation is [5] 

2 2

2 2

2 1p p
r r tt r

ρ ρ
τ

∂ ∂ ∂ ∂
+ + =

∂ ∂∂ ∂
                   (A3.2) 

and 
2 2 2 2

2 2

5 10 1 .
3 3

p p p p
r r tt r ρ ρ τ

   ∂ ∂ ∂ ∂
+ + =   ∂ ∂∂ ∂    

             (A3.3) 

The system consists of the continuity equation and the energy equation ( ρ
—density, p—quantum pressure). The equation of motion in a spherical coor-
dinate system is absent if the radial component of the velocity is absent in the 
case of radial symmetry. Using (A3.1) we find in the dimensionless form; conti-
nuity equation 
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2 2

2 2

2
r r tt r

ρ ρ ρ ρ∂ ∂ ∂ ∂
+ + =

∂ ∂∂ ∂
   



 

                    (A3.4) 

and 
2 2

2 2

2 3 .
5

p p p p
r r tt r

∂ ∂ ∂ ∂
+ + =

∂ ∂∂ ∂
   



 

                   (A3.5) 

The following scales are used: t τ↔ , Tr v τ↔ . Nonlinear parabolic Equa-
tions (A3.4), (A3.5) can be solved by Fourier method. Really, for (A3.4) we sep-
arate the unknown variables using 

( ) ( )R r T tρ = 

  .                       (A3.6) 

We find  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

2 2 2
T t T t T tR r R r

R r R r T t
t r rt r

∂ ∂ ∂ ∂
= + +

∂ ∂∂ ∂

  

 



 

 

 

    (A3.7) 

or 

( )
( )

( )
( )

( )
( )

( )
( )2 2

2 2

1 1 1 12
T t T t R r R r

T t t T t R r rR r rt r
∂ ∂ ∂ ∂

− = +
∂ ∂∂ ∂

 

 

   

   

.   (A3.8) 

Relations (A3.7) and (A3.8) lead to two ordinary differential equations 

( ) ( ) ( )
2

2 0
T t T t

CT t
tt

∂ ∂
− + =

∂∂

 





                 (A3.9) 

and 

( ) ( ) ( )
2

2

2 0
R r R r

CR r
r rr

∂ ∂
+ − =

∂∂

 



 

.               (A3.10) 

If 0C <  

1 1 4exp
2

CT t
 − −

=   
 

 , 0C < .              (A3.11) 

Equation (A3.10) can be solved by numerical methods. For example 

( ) ( ) ( )
2

2 2 0
R r R r

r CrR r
rr

∂ ∂
+ − =

∂∂

 

  



.            (A3.12) 

The solution for the quantum pressure can be found by the analogical way. It 
should be noticed that the solution of the homogeneous Equations (A3.4) and 
(A3.5) for unknown variables p and ρ  can be found up to an additive arbitrary 
constant (Figure 14). 
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Figure 14. Radial density damping. 
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